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Abstract  
For the broad commercial success of electric vehicles (EVs), it is essential 

to deeply understand how batteries behave in this challenging application. 

This thesis has therefore been focused on studying automotive lithium-ion 

batteries in respect of their performance under EV operation. Particularly, 

the need for simple methods estimating the state-of-health (SOH) of 

batteries during EV operation has been addressed in order to ensure safe, 

reliable, and cost-effective EV operation. 

Within the scope of this thesis, a method has been developed that can 

estimate the SOH indicators capacity and internal resistance. The method 

is solely based on signals that are available on-board during ordinary EV 

operation such as the measured current, voltage, temperature, and the 

battery management system’s state-of-charge estimate. The approach is 

based on data-driven battery models (support vector machines (SVM) or 

system identification) and virtual tests in correspondence to standard 

performance tests as established in laboratory testing for capacity and 

resistance determination. 

The proposed method has been demonstrated for battery data collected in 

field tests and has also been verified in laboratory. After a first proof-of-

concept of the method idea with battery pack data from a plug-in hybrid 

electric vehicle (PHEV) field test, the method was improved with the help 

of a laboratory study where battery electric vehicle (BEV) operation of a 

battery cell was emulated under controlled conditions providing a 

thorough validation possibility. Precise partial capacity and instantaneous 

resistance estimations could be derived and an accurate diffusion 

resistance estimation was achieved by including a current history variable 

in the SVM-based model. The dynamic system identification battery model 

gave precise total resistance estimates as well. The SOH estimation method 

was also applied to a data set from emulated hybrid electric vehicle (HEV) 

operation of a battery cell on board a heavy-duty vehicle, where on-board 

standard test validation revealed accurate dynamic voltage estimation 

performance of the applied model even during high-current situations. In 

order to exhibit the method’s intended implementation, up-to-date SOH 

indicators have been estimated from driving data during a one-year time 

period. 

Keywords 
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Sammanfattning 
För ett brett kommersiellt genomslag av elfordon är det viktigt att 

ordentligt förstå hur batterier beter sig i detta utmanande 

användningsområde. Doktorsarbetet har därför fokuserats på att studera 

prestandan hos litiumjonbatterier som används i elfordon. För att kunna 

garantera en säker, pålitlig och kostnadseffektiv användning har 

framförallt behovet av enkla metoder för uppskattning av batteriers 

hälsotillstånd ombord på elfordon adresserats. 

Inom ramen för denna avhandling har en metod utvecklats som kan 

uppskatta hälsotillståndsindikatorerna kapacitet och inre resistans. 

Metoden baseras på signaler som är tillgängliga ombord på elfordon: den 

uppmätta strömmen, spänningen, temperaturen och laddningstillståndet 

uppskattat av batteriövervakningssystemet. Som angreppssätt har 

datadrivna batterimodeller (stödvektormaskin (SVM) eller 

systemidentifikation) valts. För att göra uppskattningar av kapacitet och 

resistanser har virtuella tester, motsvarande redan i laboratorier 

etablerade standardiserade prestandatester använts. 

Metoden för att uppskatta hälsotillstånd har tillämpats på batteridata som 

samlats in under fälttest och har också verifierats med laboratorietester. 

Efter en första utvärdering av konceptet på batteripaketsdata från ett 

laddhybridtest i fält har metoden förbättrats genom en laboratoriestudie. 

Där har rena elfordonsanvändningen av en battericell emulerats under 

kontrollerade förhållanden, vilket gav möjligheten till ordentlig validering. 

Genom att en strömhistorievariabel inkluderades i den SVM-baserade 

modellen har den partiella kapaciteten, den momentana resistansen och 

diffusionsresistansen noggrant uppskattats. Även den dynamiska 

systemidentifikationsmodellen gav precisa uppskattningar av den totala 

resistansen. Metoden för att uppskatta hälsotillstånd har också tillämpats 

på data från emulerad hybridfordonsanvändning av en battericell ombord 

på ett tungt fordon. Standardtestvalideringen ombord visade en noggrann 

uppskattning av den dynamiska spänningen genom den använda 

modellen, även i situationer där hög ström applicerades. För att visa 

metodens tänkta implementering, har aktuella hälsotillståndsindikatorer 

uppskattats från körningsdata under en ettårsperiod. 
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ARX  Autoregressive exogenous model 

BEV  Battery electric vehicle 

BMS   Battery management system 

BOL  Beginning-of-life 

CAN  Controller area network 

CPU  Central processing unit 

EV  Electric vehicle 

HEV  Hybrid electric vehicle 

LCO  Lithium cobalt oxide 

LMO  Lithium manganese oxide 

LTO   Lithium titanium oxide 

NMC  Lithium nickel manganese cobalt oxide 

OCV  Open circuit voltage 

PHEV  Plug-in hybrid electric vehicle 

RE  Relative error 

RMSPE  Root-mean square percentage error 

SOC  State-of-charge 

SOH  State-of-health 

SV  Support vector 

SVM  Support vector machine 

VE  Voltage error 
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Introduction 

The vision of electrified transport is on the way to become reality. Most 

vehicle manufacturers have started selling electric vehicles (EVs)* and 

many cities strive to become sustainable and fossil fuel-free 1–8. In Sweden, 

numerous demonstration activities have been initiated e.g. electrified 

buses in Stockholm and Gothenburg anticipating the full 

commercialization of electric vehicles in the near future 9,10. 

From the point of view of sustainable cities, electrification of vehicles is 

desired for a number of reasons. All-electric vehicles are free from local 

emissions contributing to a better air quality and helping to meet emission 

regulations. In combination with a renewable energy generation from e.g. 

solar, wind, or hydro power, an overall emission reduction or even 

elimination can be achieved. In contrast to combustion-engine driven 

vehicles, all-electric vehicles are quiet opening up for new application areas 

like nighttime distribution and low-noise waste collection. Further benefits 

of electric vehicles in comparison to combustion-engine driven cars are the 

higher energy efficiency of the electric drive train, regeneration of braking 

energy, and fuel independency. For EV users, the low operating and 

maintenance costs are also an important advantage 11,12. 

For the vision of electrified transport to be successfully realized, amongst 

other transitions, electric vehicles have to be sustainably introduced on a 

broad scale. As a prerequisite, EVs have to be safe, reliable, and cost-

effective 13,14. The EV’s energy storage, where today’s most common choice 

is a lithium-ion battery, is often pointed out as the weak component in EVs 

in these respects. However, rapidly falling costs of 14 % per year for EV 

battery packs have been reported recently promising lithium-ion batteries 

to become cost-effective in the near future 13,15. But more challenges 

remain. In order to allow for more business cases than EV commuting for 

all-electric vehicles, an increased electric driving range would be desirable. 

Also, safety has to be assured and a life time of at least 10 years in vehicle 

context has to be guaranteed 15.  

A reliable state estimation of the battery on-board the vehicle can 

contribute to solutions for all of these issues. State estimations are essential 

for managing the battery in order to ensure its safety and optimize its 
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performance and reliability 16. For example, the battery can be utilized 

more efficiently so that oversizing, which is expensive and adds weight, 

becomes unnecessary with a reliable state estimation. Moreover, the 

battery’s life time can be extended by adjusting its operating conditions to 

an up-to-date state-of-health estimation 17. 

Lithium-ion battery performance and state-of-health 

Lithium-ion batteries are a family of rechargeable batteries that shuttle 

lithium ions between their electrodes during charge and discharge. 

Figure 1 illustrates the working principle of a lithium-ion battery with 

graphite and lithium nickel manganese cobalt oxide electrodes. During 

discharge, lithium ions (Li+) are extracted from the negative electrode and 

transported via the electrolyte to the positive electrode where they are 

intercalated. The electrochemical reactions at the electrodes during 

discharge are: 

LiC6 → C6 + Li+ + e-                                                                   (1) 

Ni1/3Mn1/3Co1/3O2 + Li+ + e- → Li Ni1/3Mn1/3Co1/3O2.             (2) 

 

Figure 1 Schematic of a lithium-ion battery during discharge. 
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The electrons (e-) released at the negative electrode travel via the current 

collector through the external circuit where a load such as e.g. an electric 

motor in an EV can be connected in order to use the electrical energy 

(current I in Figure 1). The driving force of the current flow is the potential 

difference between the electrodes. Depending on the choice of electrode 

materials, a lithium-ion battery provides a cell potential of around 3 to 4 V. 

A common positive electrode material for automotive lithium-ion batteries 

is lithium nickel manganese cobalt oxide (NMC) and as negative electrode 

material graphite and other carbon-based materials are prevalent 18,19. 

Apart from the active electrode materials, the electrodes contain a binder 

and sometimes conductive additives.  

The performance of a lithium-ion battery is determined by the processes 

that occur inside the battery during operation. Performance losses depend 

therefore on the kinetics of the electrochemical reactions at the electrodes, 

the mass transport through the electrolyte and in the electrodes, and the 

contact between the different electronically conducting phases in the 

electrode. These processes cause voltage losses in a battery cell when a 

current is flowing. The voltage losses associated with the kinetics 

(activation losses) are a function of the applied current, just as the 

contribution from the contact resistance and the part of the mass transport 

loss that comes from the insufficient ionic and electronic conductivity 

(ohmic drop) 20,21. The other part of the mass transport loss is called 

diffusion resistance (or polarization) as it is coupled to the concentration 

gradients that build up in the electrolyte and in the electrodes when a 

current is applied. The diffusion resistance and the voltage drop related to 

it is thus not only dependent on the applied current, but also on the time 

that the current has been flowing 21. 

Batteries are complex systems whose internal state variables are not 

accessible with sensors. Therefore, standard performance tests 22,23 to 

access figures-of-merit of battery performance are established in 

laboratory testing. Capacity and internal resistance are the two battery 

properties that capture the most important characteristics of battery 

performance. Capacity is a measure for the total electric charge that a 

battery can deliver. Internal resistance is a figure-of-merit for the 

opposition to a current flow in a battery. “Internal resistance” will be 

referred to as “resistance” in the remaining thesis summary. Capacity and 

resistance can be derived from low, constant current discharge tests and 
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high-current pulse tests respectively. Both capacity and resistance are 

strongly dependent on ambient operating and load conditions.  

Battery performance degrades with time and usage, which is manifested in 

a decrease in capacity and an increase in resistance. In order to assess the 

declining battery health, one usually compares the battery’s current state 

variables to their beginning-of-life (BOL) values. According to this, the 

BOL performance is usually defined as 100 % state-of-health (SOH), a 

percentage that decreases for degrading battery performance. A battery is 

often regarded to have reached its end-of-life for vehicle application when 

one of the battery’s performance values has gone below 80 % SOH 24. 

Second use of traction batteries in applications with lower performance 

requirements is therefore a promising market 25,26. 

The electrochemically measured loss of battery performance is a result 

from so-called aging processes occurring in lithium-ion batteries with time 

and usage. Aging mechanisms have been revealed in different parts of 

lithium-ion batteries and vary for different battery chemistries. Major 

reasons for performance degradation are e.g. the formation of resistive 

surface films at the electrolyte/electrode interface, loss of active electrode 

material and active lithium, and contact losses in the electrodes 24,27,28. 

These aging mechanisms, leading to a higher resistance and a lower 

capacity have been found to depend on the battery’s operating conditions. 

The load cycle has for example a major impact on the aging of a battery as 

well as the state-of-charge (SOC) level of the battery 17,29,30. High 

temperatures promote not only the rates of the desired electrochemical 

reactions but also the ones of side reactions 27. Low temperatures can also 

have negative effects, e.g. lithium plating during fast charge 31,32.  

Lithium-ion batteries in electric vehicles 

Most of today’s electric vehicles use lithium-ion batteries as energy storage. 

In all-electric i.e. battery electric vehicle (BEV) systems, the battery pack is 

the only energy storage whereas in hybrid electric vehicle (HEV) systems, 

the electrical drive train (battery pack powering an electric motor) is 

combined with an internal combustion engine with its fuel tank as primary 

energy storage. The battery in HEV systems can only be charged through 

the electric motor (used as generator) with energy from regenerative 

braking or from the combustion engine. In plug-in hybrid electric vehicles 
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(PHEV), however, the battery pack is designed to be able to receive charge 

from the electrical grid. 

During the application on-board vehicles, batteries are subject to different 

operation modes such as battery discharge, battery regenerative charge, 

battery grid charge, and rest. The battery’s duty cycle i.e. the demanded 

charge and discharge current are determined by the driving events and the 

driver behavior together with the restrictions set by the battery 

management system. Moreover, the battery is exposed to external 

operating conditions like ambient temperature, humidity, and vibration.  

The operating conditions have a large impact on automotive battery 

performance. Looking at the example of ambient temperature, lithium-ion 

batteries perform e.g. badly at low temperatures due to an increasing 

resistance. As a result, the driving range will drop dramatically 33. On the 

other hand, low temperatures are advantageous to store i.e. “park” a 

battery as self-discharge as well as aging will be slowed down. At 

temperatures above the comfort range on the other hand, a battery can be 

discharged much more efficiently, but aging and self-discharge are faster 

and can seriously shorten the battery’s life time 27.  

As a consequence from the different architectures of BEV, HEV, and PHEV 

systems, the requirements on lithium-ion batteries as energy storage in 

such systems are varying 34. In BEVs, batteries are operated in so-called 

charge depleting mode whereas HEV operation is charge sustaining. Under 

PHEV operation both modes are applied, i.e. charge depleting at higher 

SOC and charge sustaining at minimum SOC resulting in conflicting 

requirements for PHEV batteries. A selection of important requirements 

for automotive batteries is summarized in Table 1. The requirements on 

the battery’s capacity and power specifications result from the operating 

and system conditions. In order to comply with the power and energy 

requirements of electric vehicles, lithium-ion battery cells are connected in 

series and parallel to form modules and packs. Automotive lithium-ion 

battery cells are preferably adjusted to their specific application in terms 

of the chosen materials and the system design. For example, an energy-

optimized battery cell for application in BEVs will have thicker electrodes 

than a power-optimized battery cell for a HEV application. 

Some battery requirements are however universal for all types of electric 

vehicles: safety, low cost, long life time, low self-discharge rate, wide 

operating temperature range, vibration and abuse tolerance – it is a long 
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list. For most electric vehicle batteries, a low weight and a small volume are 

also desirable.  

Table 1 Requirements on automotive battery systems for application in BEV, HEV, 

and PHEV. The typical currents are given as C-rate, i.e. the current rate normalized 

against capacity. 

Battery application BEV  HEV PHEV 

Capacity  High  Low High 

Power Low High High 

Typical current 1 C >10C 3 C 

 

In order to be able to optimize battery systems for the application in 

automotive traction systems, their on-board usage has to be studied. 

Laboratory tests under controlled conditions can provide fundamental 

insight into calendar and cycle life of batteries revealing dependencies on 

temperature, cycling depth, and SOC 24,27,35. However, those tests have 

limited validity for real-life applications as the conditions during vehicle 

operation are complex as presented above 36–41. Field tests of traction 

batteries are therefore an inevitable complement.  

As a consequence from the battery’s sensitivity to its operating conditions, 

it is essential to manage it in order to optimize its performance, reliability, 

and life time. Battery management systems (BMSs) are therefore applied 
42,43. The BMS’s primary task is to ensure safe battery operation. This can 

be achieved by providing accurate measurements of voltage (cell voltages), 

current, and temperature in order to comply with usage limits i.e. protect 

the battery from damage like overheating, overcharging, and 

overdischarging. The SOC estimation is another central task, which is 

commonly accomplished based on either a combination of Coulomb 

counting and open circuit voltage (OCV) measurements or equivalent 

circuit battery models with Kalman filters 44–47. Ideally, the battery 

management also makes sure that the battery is used as efficiently as 

possible by keeping it within its optimal conditions e.g. with the help of cell 

balancing and a climate system. In order to optimize battery usage, 

information about the battery’s status is necessary. The state estimation 

can be used in order to assess how much power and energy for vehicle 

propulsion and other subsystems is available. 
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This thesis focusses on the state estimation “health”. In electric vehicle 

applications, the battery’s SOH is primarily linked to resistance and 

capacity 14,48,49. In HEVs, resistance increase is usually the limiting factor, 

in contrast to capacity fade in BEVs. A reliable SOH estimation enables 

efficient utilization of the battery, which will lead to lowered costs as the 

battery does not have to be oversized. Optimizing the battery usage for the 

battery’s SOH will finally result in an extended battery life time. For SOH 

estimation of batteries, a number of different methods have been suggested 

in the literature ranging from extensive experimental aging studies via  

electrochemical physics-based battery models to the previously mentioned 

equivalent circuit models 29,30,50–55. 

Scope and aim of the thesis 

The ongoing demonstration of electric vehicles provides a situation where 

battery operating data from vehicle application is available. In field tests, 

battery data is collected but it is not necessarily obvious how the data can 

be used in order to improve for future battery operation. At the same time, 

conventional battery testing in controlled laboratory environments is still 

performed. The objective of this project was therefore to make use of the 

available field data trying to condensate information on the battery from 

the raw signals and in this way rendering the data meaningful information. 

With this starting point, the idea was to make a contribution to the research 

field mirroring the electrochemical point of view. From this perspective, 

the battery’s instantaneous performance and life time are central. Figures-

of-merit that measure battery performance were evaluated and it became 

apparent that in order to reach the initial goal of evaluating battery usage 

on-board electric vehicles, a data-driven method to access battery 

performance measures from the raw data is needed. Consequently, it was 

decided to develop a method for on-board SOH estimation. The idea was 

though to keep a close connection to electrochemical methods such as 

standard performance tests from laboratory testing. 

Accessing the battery SOH on-board is, however, not a trivial question as 

conventional standard tests established in laboratory testing for 

determination of degrading battery properties such as capacity and 

resistance are not accessible during constant battery operation. A way to 

avoid this problem is the usage of a battery model that captures the 

essential battery behavior. State-of-the-art battery SOH estimation 
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methods, however, suffer often from a number of shortcomings with 

respect to on-board application such as battery-specificity, high 

computational effort, extensive preceding laboratory work or need for 

operation interruptions or additional equipment 20,29,30,56–60. Preferably, 

the SOH estimation method to be developed within this thesis work was 

therefore meant to accomplish battery performance estimation without 

these restrictions. Instead it should be inexpensive and easy to implement 

in the battery management system.  
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Methods 

Within the scope of this thesis, a number of different experimental and 

modeling methods were applied. To start with, field and laboratory test 

methods were used to collect battery usage data, followed by modeling 

methods to derive data-driven battery models that in turn provided access 

to SOH indicator estimations. As a large part of the thesis work has been 

method development, the choices and applications of methods for the 

purpose of information retrieval from battery operating data are research 

results in themselves. 

Battery data collection 

The collection of data from battery operation on-board an electric vehicle 

has to fulfill certain requirements in order to ensure a reasonable data 

quality enabling a meaningful analysis 61. As a start, detailed specifications 

about the battery should be available. The data that is actually monitored 

during battery operation most importantly has to encompass the battery 

behavior itself, i.e. voltage, current, temperature, and state-of-charge. 

Time stamps for those signals are crucial. In order to be able to capture 

transients, a logging frequency of at least 1 Hz is necessary at least during 

driving (battery discharge and battery regenerative charge); the frequency 

can be lower during grid charging and rest times (parking). Current and 

voltage has to be measured simultaneously and the accuracy of the 

collected data values has to be sufficient. In addition, the operating 

conditions in the vehicle (ambient temperature, vehicle speed, vibration 

etc.) can be interesting. A long-term data collection is a further prerequisite 

if battery life time is to be studied. 

This thesis is based on three sets of battery usage data. One data set 

originates from the application of a battery pack in the drive train of a 

PHEV (Paper I). Another data set was produced in the laboratory with a 

BEV battery cell exposed to a real BEV driving cycle (Paper II-IV). Finally, 

data from a battery cell mounted on a heavy-duty truck experiencing an 

emulated HEV environment was used (Paper V). 
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PHEV battery field test 

ETC Battery and FuelCells Sweden AB tested a Volvo V70 plug-in hybrid 

electric vehicle prototype within the scope of a joint Volvo Cars-Vattenfall 

project during 2010. The car has been equipped with a 32 Ah Li-ion battery 

pack whose specifications are summarized in Table 2. Both the behavior of 

the battery pack and information on the operating conditions were 

collected with a 2 Hz frequency whenever the ignition was started or the 

charging cable was connected to the grid 62. Monitored signals on battery 

pack behavior were battery pack voltage, battery pack current, battery pack 

temperature (average of cell temperatures), and battery pack SOC 

estimated by the BMS provided by the manufacturer with a resolution of 

0.4 %). Examples of operating condition signals were date, time, vehicle 

speed, ambient temperature, and PHEV mode (battery discharge, battery 

regenerative charge, battery grid charge, diesel drive). 

The raw CAN-bus data (controller area network) received from ETC was 

prepared for further analysis by amongst others extracting only data from 

battery discharge and battery regenerative charge modes. One driving 

event for each month of 2010 was selected as exemplified with the current 

profile during the selected driving event in January 2010 in Figure 2. 

 

Figure 2 Battery pack current during a selected driving event in a Volvo V70 PHEV 

prototype recorded by ETC Battery and FuelCells Sweden AB in January 2010. 

Discharge current is defined positive here as well as in the remaining thesis 

summary. 
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BEV battery laboratory test 

An automotive lithium-ion battery cell with a nominal capacity of 17.5 Ah 

(see Table 2 for further specifications) was exposed to a typical BEV current 

profile in a climate chamber. The current profile was taken from real-life 

BEV operation (recorded in a C30 Electric by Volvo Car Corporation and 

scaled down from pack to cell level) constituting an example of a typical 

commuting driving cycle with a SOC difference of about 15 %. This BEV 

current profile as depicted in Figure 3 was applied to the cell at four SOC 

levels (90, 70, 50, 30 %) and five temperature levels (0, 10, 20, 30, 40 oC) 

that span realistic BEV operating conditions generating the battery usage 

data for further analysis. 

Table 2 Specifications for the three batteries that the data sets in this thesis 

originate from. Abbreviations used in the table: NMC=lithium nickel manganese 

cobalt oxide, LMO=lithium manganese oxide, LCO=lithium cobalt oxide, 

LTO=lithium titanium oxide. 

Type PHEV Li-ion BEV Li-ion HEV Li-ion 

Number of cells 192 1 1 

Weight / kg 150 0.43 0.14 

Positive electrode NMC Mixed oxide LMO-LCO 

Negative electrode Hard carbon Hard carbon LTO 

Maximum voltage / V 395 4.1 2.8 

Minimum voltage / V 270 2.5 1.8 

Nominal capacity / Ah 32 17.5 3.1 

Maximum continuous 

charge/discharge current / A 
250/250 35/35 80/120 

 

Before each current profile test at the respective temperature, standard 

performance tests were performed: two successive low constant-current 

(C/3) discharge tests for capacity determination and four 2C (35 A) pulse 

tests at 90, 70, 50, and 30 % SOC for resistance determination 63. At 20 oC, 

some supplementary standard performance tests were conducted: 50 A 

pulse tests and a synthetic driving cycle test with a maximum current of 
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35 A as adapted from the ISO standard 22. An example current profile for 

each standard test is shown in Figure 4. 

 

Figure 3 Cell current (downscaled from pack level) during a selected driving event 

in a Volvo C30 Electric recorded by Volvo Car Corporation in March 2013. 

Figure 4 Measured current during standard performance tests of a BEV battery 

cell at 20 oC. From left to right: 35 A resistance test at 90 % SOC, 50 A resistance 

test at 90 % SOC, cycle test at 90 % SOC, capacity test. 

During these experiments, voltage and current with their respective time 

stamp were logged with 10 Hz frequency. Temperature and its time stamp 

were monitored with 1 Hz frequency. From the current I and the time t, the 

state-of-charge SOC was calculated with conventional Coulomb counting, 

starting from the fully charged state SOCstart=100%:  

𝑆𝑂𝐶 = 𝑆𝑂𝐶𝑠𝑡𝑎𝑟𝑡 − 100 ∙
∫ 𝐼𝑑𝑡

𝑄
 .                          (3) 

The capacity value Q was taken from the standard capacity tests at each of 

the tested temperature levels.  
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HEV battery field test 

Scania mounted a commercial power-optimized cell rated to 3.1 Ah (see 

Table 2 for further specifications) onto a conventional heavy-duty vehicle 

where it experienced HEV operation 38. The HEV environment was 

emulated by charging and discharging the test cell with the starter battery 

according to the real-time driving pattern of the heavy-duty vehicle. The 

field test data used in this thesis was collected between September 2011 

and August 2012 and encompassed cell voltage and current recorded with 

10 Hz frequency and temperature with 0.1 Hz frequency 64. The BMS also 

provided a SOC estimate from Coulomb counting and OCV measurements. 

An example of a current profile monitored in August 2012 is depicted in 

Figure 5. About once a month, standard pulse and capacity tests were 

performed. 

 

Figure 5 Current of a test cell experiencing HEV operation on-board a conventional 

heavy-duty truck recorded by Scania in August 2012. 

Battery data analysis 

The battery data sets were explored in terms of statistics of the single 

signals, relationships between the signals, frequency content of the signals 

etc. All activities were conducted in order to learn more about the battery 

systems that the signals originate from as well as to map how the batteries 

are used in the PHEV, BEV, and HEV applications. The attained knowledge 

was applied for designing suitable battery models. 
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Data-driven battery models 

Battery models were created on the basis of the previously presented data 

sets. In the different papers, models were built with two different modeling 

techniques (support vector machines or system identification), based on 

varying model architectures (choice of input and output variables), for 

different points in time (Paper I and V), and diverse operation conditions 

such as SOC and temperature levels (Paper II).  

Support vector machine-based battery model 

Data-driven battery models were created with the help of support vector 

machines (SVM) in Paper I-III and V 65. Support vector machine regression 

is an established machine learning method which has been previously 

applied to different kinds of optimization problems such as bioinformatics, 

financial time series, electric load forecasting, and SOC estimation 66–77. 

The general idea of this statistical learning method is to find a small 

number of support vectors out of a large number of examples that still 

describe a system 78. A hyperplane approximating the system behavior is 

optimized from the input/output data. In this thesis, the system “battery” 

was modeled with the output variable battery voltage from a number of 

input variables such as current, SOC, temperature, and current history as 

illustrated schematically in Figure 6. In Paper I, the models are based on 

the two basic inputs current and SOC for the isothermal case, whereas the 

models in the proceeding papers incorporate even temperature (Paper II, 

III, V), and current history (Paper III and V).  

 

Figure 6 Schematic overview of the structure of the created SVM models. 

Samples of battery usage data taken from the previously mentioned PHEV, 

BEV, and HEV data sets functioned as training data, i.e. “learning 

examples” for the SVM models. In order to minimize the training time, a 

training data sample which matched the data range of the intended test 

was selected, as a SVM is only expected to predict well within the trained 

data range. The selected training data was prepared for SVM training with 
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the chosen software (SVMlight 79) by scaling the variables X to a [0,1] 

interval with  

𝑋𝑠𝑐𝑎𝑙𝑒 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
   .                                          (4) 

The upper and lower variable limits Xmax and Xmin are listed in Table 3. 

Table 3 Upper and lower limits for scaling of the variables included in the battery 

models based on the three data sets (PHEV, BEV, HEV). 

 PHEV data BEV data HEV data 

Variable X Xmax Xmin Xmax Xmin Xmax Xmin 

Voltage / V 395 270 4.1 2.5 2.8 1.8 

Current / A 250 -250 100 -100 120 -120 

SOC / % 100 0 100 0 100 0 

Temperature / oC - - 60 -10 50 -20 

Current history 

variable / A 

- - 100 -100 120 -120 

 

The scaled input/output vectors together with a set of SVM parameters 

determined from a grid search optimization with cross-validation (Paper 

I) were read into the program. The training resulted in a SVM model, i.e. a 

file where the support vectors are listed. The SVM training can be evaluated 

in terms of training runtime in CPU-seconds (central processing unit) and 

number of support vectors of the obtained model. 

Virtual tests 

The derived battery model was used to predict the voltage response of the 

battery for an input of current, SOC, temperature, and current history. In 

principle, any other sample of the battery usage data apart from the 

training data can be used in order to test the performance of the battery 

models (see e.g. model validation in Paper I and V). As the goal of this 

thesis is the development of a method for on-board SOH estimation, the 

battery models were used as an information source of battery properties. 

The black-box battery models were thus chosen to estimate the voltage 

response for virtual tests corresponding to standard performance tests 

established in laboratory testing for determination of resistance and 

capacity. For the cases that standard performance test validation data was 
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available (Paper II- V), the monitored real current and temperature as well 

as the calculated SOC and current history variables served directly as input 

data for the virtual tests. The input variables were scaled prior to SVM test, 

just as for the SVM training. The voltage estimation Xestimated, which the 

SVM software returned for a certain virtual test and SVM model, was 

compared to the voltage measured in the real standard tests Xmeasured, 

which represented the experimental validation. The voltage estimation 

performance was evaluated in respect of the (maximum and average) 

relative error RE of the voltage estimation in %, 

𝑅𝐸 = 100 % ∙
│𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑−𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑│

𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
    ,                              (5) 

and the root-mean square percentage error RMSPE of the voltage 

estimation in %, 

𝑅𝑀𝑆𝑃𝐸 = √
1

𝑛
∑ 𝑅𝐸2𝑛

1   ,                                      (6) 

where n is the number of estimations. In Paper I, where no validation was 

available, a hypothetical standard test was applied just as it would be like 

in the intended application of the method on-board a vehicle. 

Inclusion of current history 

In Paper III and V, the battery model has been complemented with a 

current history input variable as indicated above. In addition to current, 

SOC, and temperature, different current history variables were evaluated 

in terms of their ability to improve the time-dependent estimation 

performance of the battery model. The investigated current history 

variables were derived by applying different weight functions of time to the 

current vector for a specified period back in time. The different weight 

functions of time are shown in Figure 7. The simplest evaluated function 

was the unweighted mean of the current for 100 s back in time. The other 

moving current averages were weighted with the reciprocal square root of 

time for two different time windows and an exponential weighing factor  

with different time constants 21,80–82. Just as the other battery model input 

variables, the current history variables were scaled prior to SVM training 

(see Table 3).  
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Figure 7 Weight functions of time used to treat the current vector in order to derive 

different moving current averages as model input variable. The first values of the 

exp(-t) function, which are close to 0.1, have been truncated in favor of the visibility 

of the other functions. 

System identification battery model 

In Paper IV, dynamic battery models were obtained with a system 

identification approach 83,84. System identification means the derivation of 

mathematical models of dynamic systems from measured input-output 

data with statistical data-driven methods. The model structure, which was 

suggested based on an analysis of the BEV battery laboratory data, was a 

current input and a voltage output with SOC and temperature being part 

of the model parameters. The used model structure, which is derived with 

an equivalent circuit battery model as starting point with an autoregressive 

exogenous model (ARX), was 

𝑣(𝑘) = (𝑎 + 1)𝑣(𝑘 − 1) − 𝑎𝑣(𝑘 − 2) + 𝑏0𝑖(𝑘) + 𝑏1𝑖(𝑘 − 1)        (7) 

where v(k) and i(k) are the dynamic voltage and the current and the index 

k is the uniform discrete-time instant. a, b0, b1 are the model parameters 

to identify. When the model parameters are known, the resistance for a 

certain constant current pulse can be calculated analytically.  
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Capacity and resistance estimation 

Capacity and resistance values were determined from real and virtual 

standard performance tests. In Figure 8 and Figure 9, examples of voltage 

responses during such standard tests are given. For the respective current 

profiles of the shown pulse and capacity tests it is referred to Figure 4. 

 

Figure 8 Measured voltage of a BEV battery cell during a standard resistance test 

at 20 oC (2C-discharge pulse at 90 % SOC). 

The internal resistance of a battery may be determined from pulse tests. A 

battery at open circuit is exposed to high-current charge and discharge 

pulses resulting in voltage rises/drops caused by the battery’s resistance. 

Resistance determination is exemplified in Figure 8 for the 10 s discharge 

resistance of a BEV battery cell from the voltage during a 35 A discharge 

pulse. The 10 s discharge resistance R10s is obtained from the value of the 

applied current Imax (see Figure 4) and the voltage drop U0s-U10s , where 

U0s is the open circuit voltage at a specified SOC and temperature, and U10s 

is the voltage under discharge after 10 s (as indicated in Figure 8): 

 𝑅10𝑠 =
(𝑈0𝑠−𝑈10𝑠)

𝐼𝑚𝑎𝑥
.                                                   (8) 
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The voltage drop during the Imax-pulse can be divided into an 

instantaneous voltage drop, 

 𝛥𝑈𝑖𝑛𝑠𝑡. = 𝑈0𝑠 − 𝑈𝑖𝑛𝑠𝑡. ,                                            (9) 

and a time-dependent voltage drop, 

  𝛥𝑈𝑡𝑖𝑚𝑒−𝑑𝑒𝑝. = 𝑈𝑖𝑛𝑠𝑡. − 𝑈10𝑠 ,                                       (10) 

where 𝑈𝑖𝑛𝑠𝑡.  is the voltage directly after the current is applied. The 

instantaneous voltage drop, i.e. the initial steep drop, is related to the 

activation losses, contact resistances, and ohmic drop in the battery, 

whereas the further drop during the pulse comes from diffusion resistance 

and the SOC decrease. 

Different resistances were looked at for the batteries studied in this thesis 

depending on the specifications of the battery under test, the intended 

application of the battery, and for the case of the virtual tests even the 

availability of training data. The 10 s discharge resistance over a 35 A (2C) 

pulse with its contributions was used as SOH indicator for the BEV battery 

cell in Papers II-IV. In Paper III, additional resistances from 50 A 

discharge pulses and pulse groups in the performed cycle tests were 

derived (see indications in Figure 4). The PHEV battery pack in Paper I was 

evaluated with a 10 s discharge resistance over a 65 A (0.26 C) discharge 

pulse and for the HEV battery cell (Paper V) 18 s discharge and charge 

pulses with a current rate of about 20 C (60 A) were used for resistance 

determination.  

Capacity is the charge that a battery can deliver between specified voltage 

limits. Discharge capacity is thus determined from a low-current discharge 

from the maximum to minimum specified voltage. Figure 9 illustrates the 

concept for the example of a BEV battery cell being fully discharged at C/3 

rate from the upper voltage limit of 4.1 V to the lower limit of 2.5 V. The 

discharge capacity Q is calculated by numerically integrating the current I 

(see Figure 4) between these voltage limits over the discharge time t:  

𝑄 = ∫ 𝐼𝑑𝑡.                                                       (11) 

The capacity test in this form has been applied in Papers II-IV. The virtual 

capacity tests have been restricted to partial discharges from 4.1 V to 

3.875 V and 3.0 V respectively (as indicated in Figure 9) according to the 

range of the available training data. For the same reason, the 2.5-2.4 V 

capacity was estimated for the HEV battery cell in Paper V although the 
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real standard test was a constant current discharge at approximately 2 C 

from 2.8 to 1.8 V. 

 

Figure 9 Measured voltage of a BEV battery cell during a standard capacity test at 

20 oC (full constant current discharge with C/3-rate). 

The determination of resistance and capacity from estimated voltage 

responses, i.e. the so-called virtual standard tests, gave access to 

estimations of resistance and capacity for a battery under operation 

without actually performing a real standard test. The accuracy of these 

resistance and capacity estimations based on the virtual tests was 

evaluated when an experimental validation (real test) was available. For 

that purpose, the relative error (RE, Equation 5) of the estimations of 

resistance, resistance contributions, and/or partial capacity was consulted. 

If many estimations were performed, e.g. for varying operating conditions 

(SOC, temperature, time), the root-mean square percentage error 

(RMSPE, Equation 6) or average RE were given.  

Capacity and resistance are essential battery properties that degrade with 

time and usage, which makes them important SOH indicators. In the thesis 

studies based on the BEV data, it has been looked at snapshots of these 

SOH indicators at one moment in time. For the PHEV and HEV data 

(Paper I and V), however, the development of resistance/capacity of the 

respective battery was actually followed over time. 
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Results and discussion 

The results and discussion chapter summarizes the main results of this 

thesis spanning the whole spectrum from battery data collection and 

statistics to the developed SOH estimation method and its vehicle 

application scenario. The core results are the support vector machine-

based battery models whose voltage estimation performance during virtual 

driving and standard tests is presented as well as their SOH indicator 

estimation capability and briefly their computational performance. Results 

from the alternative battery modeling method system identification are 

also shortly stated. 

Analysis of battery data collection 

This section starts out with an example of collected battery data in order to 

give insight into issues that were found to be important for battery data 

collection. An extract of the results from the laboratory testing of the BEV 

battery cell are shown in Figure 10. The shown recordings at 20 oC for 

current, voltage, and temperature encompass a sequence of two capacity 

tests, four 35 A pulse tests at different SOC, and finally four BEV current 

profile tests at the same SOC levels.  

As this example is taken from laboratory measurements, the accuracy of 

the measured signals current, voltage, and temperature is good. Under on-

board conditions the quality of the monitored signals is generally not as 

good as a consequence of less accurate measuring equipment and less 

control over the operating conditions. This can be observed e.g. for the 

voltage measurement in the HEV field study where small jumps of the size 

of ~ 0.01 V occur as can be seen in Figure 18. 

In the experimental procedure in Figure 10, rest periods are integrated in 

order to allow the BEV cell to relax before each test. For example, after the 

one-hour rests subsequent to a full discharge, the OCV still increases 

marginally as Figure 10b reveals. Such slow dynamics are typical for 

energy-optimized batteries as commercial BEV cells. This behavior is in 

contrast to commercial power-optimized HEV cells as used in the HEV 

study where the OCV can already after a few tens of seconds of rest be used 

for OCV measurements for SOC estimation purposes (see Paper V). 
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Figure 10 Example of data collection results from the tested BEV battery cell. 

Measured (a) current, (b) voltage, and (c) temperature during standard 

performance and current profile tests of the BEV battery cell at 20 oC.  
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Battery temperature measurements are an intricate topic. Ordinarily, only 

temperature measurements from sensors on the battery cell surface are 

available. As can be observed in Figure 10c for different positions on the 

tested BEV battery cell’s surface, already the surface of a single battery cell 

can show temperature gradients although the temperature increases 

during the applied current profile are very moderate (~2 oC). The 

temperature inside a battery cell is often unknown as temperature sensors 

inside a cell are problematic. One tries therefore to access estimations of 

the inner battery temperature via models 85. Thermal battery models can 

also be consulted in order to understand time shifts which can be observed 

between processes happening in the cell and the manifestation in a 

measured surface temperature decrease or increase (see Figure 10c in 

relation to Figure 10a and b).  

When instead of a single cell a battery pack composed of hundreds of cells 

is to be monitored, the amount of data to possibly collect is huge. 

Commonly it is focused on a reasonable amount of data, e.g. temperature 

sensors only on module level, but still single cell voltages for safety reasons. 

The temperature distribution issues mentioned above are obviously more 

severe for full battery packs than single cells 86, necessitating battery 

management strategies for cell balancing and climate control.  

Battery data statistics 

The characteristics of battery behavior under PHEV, BEV, and HEV 

operation were investigated with the help of statistics. To exemplify, a 

comparison between typical PHEV, BEV, and HEV operation is discussed. 

From the battery’s perspective, the operation time at a current is 

important. Figure 11 compares therefore the operating time at different C-

rates for typical PHEV, BEV, and HEV current profiles from Figure 2, 

Figure 3, and Figure 5. The current from these profiles is given on cell level 

normalized against cell capacity (see Table 2 for specified capacities). The 

BEV and HEV battery currents are already on cell level whereas the PHEV 

battery pack current and capacity need to be divided by two (96S-2P 

configured battery pack i.e. two strings of 96 cells in series connected in 

parallel). 
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Figure 11 Operating time at C-rate levels (intervals of 0.2 C) for the respective 

example operating profile from the PHEV, BEV, and HEV test (based on the current 

profiles from Figure 2, Figure 3, and Figure 5).  

The distribution of C-rates in Figure 11 illustrates the significant 

differences between BEV, HEV, and PHEV battery usage. Naturally, the 

time share between charge and discharge differs for the three applications 

with HEV showing a more balanced division than the BEV and PHEV 

batteries that are mostly discharged during the driving cycles. The BEV 

battery delivers low discharge rates a major part of the operating time 

whereas the HEV battery is operated a considerable amount of time both 

at high charge and discharge rates. As Table 4 clarifies with maximum and 

mean C-rate values extracted from Figure 11, the PHEV values lie 

inbetween the BEV and HEV values.  

From a comparison between the actually occurring C-rates in these typical 

operating profiles with the specified maximum continuous charge and 

discharge current rates (Table 2), it can be concluded that the used 

batteries are oversized in some respects for their respective application. 

Especially the charge rates hardly reach up to the specified maximum 

continuous charge current rates which are lower than the maximum peak 

rates.  
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Table 4 Maximum and mean discharge and charge rates for the C-rate distribution 

for the studied PHEV, BEV and HEV batteries from Figure 11. 

Battery type 
Discharge rate / C Charge rate / C 

Maximum Mean Maximum Mean 

PHEV 7.5 1.8 -2.5 -0.7 

BEV 3.4 0.5 -1.1 -0.3 

HEV 33.2 2.0 -23.1 -9.6 

 

Another important characteristic of a current profile are the current 

dynamics. The frequency content of the three example current profiles 

differs a lot. In comparison, the frequency content of the BEV current is 

dominated by low frequencies. The frequencies of the PHEV and HEV 

current are higher (see Figure 2, Figure 3, and Figure 5).  

Support vector machine-based battery model 

On the basis of the collected battery usage data, support vector machine-

based battery models were built in Papers I-III and V. 

In Paper I, SVM models were derived from PHEV battery field data. Figure 

12 visualizes the hyperplane resulting from training a SVM with voltage, 

current, and SOC data from a 23 min driving event in January 2010 with a 

battery pack temperature ranging from 20 to 29 oC. The overall trends are 

a voltage decrease with decreasing SOC and with increasing discharge 

currents, which is in accordance with fundamental battery characteristics.  

The model structure with SOC and current input and voltage output was 

expanded in the papers subsequent to Paper I, adding temperature and 

time dependence by appending temperature and current history variable 

inputs. 
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Figure 12 SVM-based battery model based on training data from a PHEV driving 

event in January 2010 87. 

Battery models of this type were derived with SVMlight 79, a SVM 

implementation in the programming language C. Within the scope of the 

SVM training, the dimensionality of the system is increased to a space 

where the system is linear with the help of a kernel trick. A number of other 

SVM parameters have to be chosen to solve the optimization problem 88. 

These SVM parameters were tuned with a grid search approach where the 

training runtime of SVMlight, the number of support vectors (SVs), the 

maximum relative error as well as the RMSPE served as assessment 

criteria 89,90. As a result from this investigation, a radial basis function 

kernel with kernel option γ=14 was selected. The soft-margin parameter 

C=1.0134 and the size of the ε-insensitive loss function ε=0.01 were 

chosen. The parameter tuning was done on the basis of the SVM test and 

model from Figure 13. In order to show that the suggested SOH indicator 

estimation method is applicable independently of the studied battery or 

application, the same set of SVM parameters was applied in Papers I-III 

and V. 
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Voltage estimation performance 

The derived SVM-based battery models as exemplified in Figure 12 were 

used to estimate the battery voltage for different test scenarios. Mainly in 

order to verify the model, the models were tested with data similar to the 

data it was trained with i.e. current, SOC, and possibly temperature and 

current history from other driving instances. The second type of test 

scenario were the so-called virtual standard tests where the SVM battery 

models are tested in order to gain information on the respective battery’s 

SOH. 

Driving data tests 

The driving data test in Figure 13 is the one which was used for SVM 

parameter tuning as mentioned in the previous section. The accurate 

voltage estimation of the SVM model for this driving data test is reflected 

in a maximum relative error of 1.4 % and a corresponding RMSPE of 

0.28 %. As the estimation was performed with a temperature-independent 

model it was important to find two driving instances for training and test 

with similar temperature level. 2-fold cross validation (switching of 

training and test data) gave slightly higher error values (max. RE=1.5 % 

and RMSPE=0.40 %) since the new test data exceeded the data range of 

the new training data. 

Figure 14 shows another driving data test for an example from the HEV 

field test. Here, the error values for the voltage estimation performance of 

the applied current history model are a maximum RE of 2.7 % and a 

RMSPE of 0.54 %. These values lie in the same order of magnitude as the 

previously derived estimation performance for the PHEV field test 

example. The error values are however slightly higher compared to the 

PHEV driving data test although a more elaborate model with current 

history was applied in contrast to the temperature-independent basic 

model. For better comparability to the PHEV test, the same HEV data 

driving test was therefore also performed with a basic model instead of a 

current history model yielding a maximum RE of 5.9 % and a RMSPE of 

0.68 % (results not shown). The higher voltage estimation errors of the 

HEV test example in comparison to the PHEV case can be due to a number 

of reasons. 
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Figure 13 (a) Estimated and measured PHEV battery pack voltage. The estimation 

is based on a SVM model from 25 min training data in April 2010. A 14 min PHEV 

driving event from March 2010 served as test data. (b) Relative error of the voltage 

estimation.  

The SVM parameters are for example not specifically tuned for this HEV 

driving event. Further on, higher current rates occur in the HEV profile 

than in the PHEV profile, which poses larger challenges on the non-linear 

estimation performance of the model. This fact can be investigated by 

comparing the appearance of high relative errors with the corresponding 

current in Figure 5. The corresponding SOC and temperature curves are 

also more eventful than for the PHEV data. 
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Figure 14 (a) Estimated and measured HEV battery cell voltage. The estimation is 

performed with a SVM-based current history model based on 2.75 h training data 

from the cycling period 2011-11-07 until 2011-11-30. 33 min driving data from the 

same cycling period served as test. (b) Relative error of the voltage estimation. 

Virtual standard tests 

After verifying battery models with driving data, it was proceeded to 

hypothetical test scenarios that correspond to standard performance tests 

in order to access capacity and resistance estimates.  

Figure 15 and Figure 17 give examples of such standard test scenarios as 

applied for the BEV battery cell. The validation i.e. the real standard tests 

for three types of pulse tests (Figure 15) and one capacity test (Figure 17) 

are overlaid with the corresponding virtual tests on basis of a number of  
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Figure 15 Measured and estimated voltage responses of a BEV battery cell during 

different standard tests (90 % SOC, 20 oC). (a) 35 A resistance test, (b) 50 A 

resistance test, (c) cycle test. The voltage estimations are from the basic model 

and the current history models “100sqrt” and “VE100sqrt”, see p. 31 for definitions. 
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different SVM-based battery models. The shown battery models are the 

basic model i.e. the model that relies on a current-SOC-temperature input 

for voltage estimation (in red), as well as two current history models that 

have an additional current history input variable. One of the current 

history models, which is named “100sqrt” (in green), integrates the current 

history input directly into the basic model whereas the other model 

“VE100sqrt” (in blue) applies a two-step voltage estimation where in a first 

step a basic model is used for voltage estimation followed by a second step 

that estimates the voltage estimation error (VE) of the first model with a 

“100sqrt” current history model. The denotation “100sqrt” indicates that 

the additional current history variable is a current moving average 

weighted with a reciprocal square root of time-weighing factor applied for 

a time window of 100 seconds. This weighing factor was shown to perform 

well out of a selection of several weighing functions that were investigated 

in Paper III. 

Both the basic and the current history models reproduce the general 

pattern of the measured voltage response of the battery to the sequences of 

current pulses and rests (Figure 15). The inaccuracy of the voltage 

estimations during the relatively high current charge pulses of 35 A and 

50 A demanded in the resistance tests can be explained by those current 

rates lying outside the data range of the BEV driving training data. 

Therefore, the following analysis will disregard this part of the test profile. 

A closer look at Figure 15 reveals the differences in estimation performance 

of the different displayed models. The basic model can neither capture the 

OCV levels before the current pulses accurately nor the dynamics of the 

battery voltage during pulses and the subsequent relaxation periods 

despite satisfactory voltage estimation performance figures with RMSPE 

around 0.5 % (Figure 16). The “100sqrt” current history model on the other 

hand can describe the trends during pulse and relaxation accurately 

although the initial voltage level is not correctly localized. Those 

improvements result in better RMSPE as Figure 16 shows. The current 

history model “VE100sqrt” eventually fulfills an accurate voltage 

estimation during all these situations, both during the initial OCV period, 

the current pulses, and the subsequent rest periods. These observations 

from Figure 15 apply to a varied extent for the three different studied 

current profiles. The voltage estimation of the “VE100sqrt” model during 

the 50 A resistance test is partwise almost indistinguishable from the 

measured voltage response with a RMSPE of 0.07 %. For the other tests, 
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the 35 A resistance test and the cycle test, the estimations are slightly 

inferior but still very accurate (see RMSPE in Figure 16). In summary, the 

estimations of this current history model are a large improvement from the 

basic model estimations.  

  

Figure 16 RMSPE of the voltage estimation of three SVM models during four virtual 

standard tests (see color code in the figure). See p. 31 for definitions of the basic 

model and the current history models “100sqrt” and “VE100sqrt”. 

The processes in the battery resulting in the voltage response (see 

introduction on p.3) can clarify the different models’ estimation 

performance. The dynamic voltage behavior is connected to the diffusion 

processes in the battery, which gain importance during long and high 

current pulses. Through the addition of a current history variable to the 

model input, this time dependence can be accounted for. The basic, static 

model, however, cannot capture those dynamic effects and thus the 

estimated voltage drop during the discharge current pulses is only a result 

from the linked SOC decrease.  

The estimation performance of the different models in the case of the 

virtual capacity test is displayed in Figure 17. As Figure 16 reveals, the basic 

model delivers already an accurate estimation with 0.2 % RMSPE. This 

value can be improved to 0.05 % by the “VE100sqrt” model although 

diffusion processes should not play a major role in low constant current 

situations. As already observed for the case of the resistance tests, the 

“VE100sqrt” current history model, however, substantially improves the 

estimation of the initial voltage value. 
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Figure 17 Measured and estimated voltage responses during a capacity test of a 

BEV battery cell at 20 oC. The voltage estimations are from the basic model and 

the current history models “100sqrt” and “VE100sqrt”.  

Moving from virtual standard tests for the BEV battery cell to another 

example, Figure 18 and Figure 19 show an example of estimation and 

validation results for standard pulse and capacity tests in the scope of the 

HEV field study.  

With respect to the potential computational restrictions of the intended 

on-board application of the suggested SOH indicator estimation method, 

the two-step voltage estimation models (“VE”-models) were disregarded in 

this study. The direct current history models (e.g. the “100sqrt”-model) 

provide, however, an accurate voltage estimation even during the 

extremely high current pulses of 20 C in the pulse test profile as Figure 18 

verifies. This is in contrast to the basic model, which also in this example 

reaches its limitations. The voltage estimation of the “100sqrt”-model is 

however precise in all situations from the location of the initial SOC level, 

via the instantaneous voltage drops when a current is applied, to the 

dynamic behavior during the high and low current pulses. For a discussion 

of the sloping voltage behavior during the relaxation periods, which is 

related to the current history’s time window of 100 s, please consult 

Paper V. 
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Figure 18 Measured and estimated (with basic and current history model) voltage 

responses of the HEV battery cell during the standard pulse test on 2011-11-29. 

The high current (20 C) and low current pulses at 50 % SOC are shown. 

In Figure 19 displaying the corresponding capacity test overlain with the 

voltage estimations from the current history and the basic model, it is 

obvious that the models estimate poorly outside the trained SOC. The two 

models estimate the voltage however accurately within the trained data 

range. This fact raises the question if there are meaningful figures-of-merit 

that can be defined for typical HEV operation, which is characterized by a 

narrow SOC operating window. For capacity determination, it is natural to 

change the cut-off voltages of the current integration and account for a 

partial capacity instead. This partial capacity will encompass the battery’s 

actual application, and if aging effects occur within the narrow SOC range 

they will be noticed. However, it is questionable to which extent such a 

partial capacity figure-of-merit can be used as an overall SOH indicator. 

Degradation that occurs in the beginning and end of the discharge curves 

cannot be followed, only capacity fade that is visible in the part of the 

discharge curve that is covered by training data can be detected. For the 

middle part of the discharge curve aging could be manifested by a general 

voltage drop or a change in the slope of the curve with time and usage 
64,91,92.  
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Figure 19 Measured and estimated (with basic and current history model) voltage 

responses of the HEV battery cell during the standard capacity test on 2011-11-29. 

A general issue with the virtual test approach is that the usage situations 

that the models are trained on are quite unlike the standard test situations. 

Very roughly it can be stated from a comparison of the presented standard 

tests in comparison to typical PHEV, BEV, and HEV operation as e.g. in 

Figure 11 that a standard capacity test with a constant low discharge 

current is rather representative in terms of current magnitude whereas 

constant currents are unusual in ordinary vehicle application. Standard 

pulse tests on the other hand are often composed of pulses of 

unrealistically long pulse length and high current magnitude. Anyway, the 

estimation quality derived with the battery models shows that meaningful 

results can be achieved. This circumstance gives, however, reason to 

reconsider the design of standard test situations that are far from the real 

usage. Today’s standard battery performance tests are certainly valid for 

‘extreme’ situations, but ideally, standard tests should account for typical 

driving as well as for extremes. A possible approach to tackle the different 

characteristics of driving and standard test cycles is thus the suggestion of 

new standard tests that are closer to the real operation. For that purpose, 

simple synthetic tests representative for real-life application from driving 

statistics could be created with the help of e.g. Markov chains 93. 
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Capacity and resistance estimation 

On the basis of the presented virtual and real test results, capacity and 

resistance data have been determined. In this section, results from the BEV 

battery data set, where a broad coverage of different operating conditions 

was available, are presented and discussed.  

The results from the 35 A resistance tests at five temperature levels for the 

BEV battery cell can be found in Figure 20. As elaborated in the section on 

capacity and resistance estimation in the methods chapter, the figure-of-

merit resistance as derived from a standard pulse test can be divided into 

two contributions. Both the instantaneous and the time-dependent voltage 

drop are shown in Figure 20.  

 

Figure 20 Instantaneous and time dependent voltage drop of a BEV battery cell for 

the temperature interval 0-40 oC at different SOC. Both measured and estimated 

(with the basic model: blue and red, with the current history model “VE100sqrt”: 

green) values are given for a 35 A discharge pulse over 10 s. 

Looking at the validation results separately first, the instantaneous voltage 

drop contribution (x) to the total resistance is only slightly influenced by 

different SOC levels for one temperature for this BEV battery cell. The 



37│ Results and discussion 

 

effect of temperature on the instantaneous voltage drop is more 

pronounced. Figure 21 points also out the temperature dependence for the 

case of the total resistance at 90 % SOC. Those observations are in 

accordance with experimental studies on battery cells with comparable 

chemistry 30. The time-dependent drop contribution (*) that is shown 

separately in Figure 20 accounts only for around 17 % of the total voltage 

drop for this cell and current pulse. It does not show a large SOC or 

temperature dependence. At 0 oC however the time-dependent voltage 

drop is significantly larger than at the other temperature levels and low 

SOC increases this trend. 

The estimations of the instantaneous voltage drop with the basic SVM-

based battery model (blue, □) are accurate for all studied temperatures 

apart from the 0 oC level, where the estimation significantly overestimates 

the voltage drop. At the other temperature levels, the estimations also show 

a slight overestimation in most cases whereas the best estimations are 

achieved at moderate temperatures and high to medium SOC. For the 

operating condition, where a current history model was evaluated, the 

estimation result is indicated in green (o). The current history model’s 

estimations are very precise both for the instantaneous voltage drop and 

particularly for the time-dependent voltage drop. As already mentioned in 

the previous section on virtual standard tests, the basic model cannot 

capture the time-dependent, diffusion-related voltage behavior during a 

long current pulse apart from the connected SOC decrease during a 

discharge pulse. Therefore, all time-dependent drop estimations of the 

basic model for the different temperatures end up at the same result 

(red, □). 

Figure 21 combines the two resistance contributions to a total 10 s 

discharge resistance for the case of the 90 % SOC level. There is an obvious 

gap between the measured resistances and the resistance values estimated 

with the basic model. This “gap” i.e. the diffusion resistance can be 

overcome by including current history in the battery model as the result at 

20 oC shows. The basic model delivers a resistance estimation of 4.26 mΩ 

for the measured 4.66 mΩ whereas the current history model reaches as 

close as 4.61 mΩ, i.e. a relative error of 1.1 %. 
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Figure 21 10 s discharge resistance of a BEV battery cell at different temperatures 

as derived from a 35 A discharge pulse at 90 % SOC. Both experimentally derived 

values and estimations from two battery models are given.  

 

Figure 22 4.1-3.0 V capacity of a BEV battery cell at different temperatures. Both 

the results from two measurements and the estimation with the basic model are 

given. 
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The experimental capacity test results for the BEV battery cell for two 

consecutive full discharge tests are shown in Figure 22. The capacity 

increases for increasing temperature as expected. The RMSPE of the basic 

model estimations is 0.63 %, i.e. an estimation very close to the laboratory 

results although even the measured results deviate significantly for the two 

measurements at least for the 0 oC temperature level. 

In the capacity figure, only the 4.1-3.o V partial capacity estimated by the 

basic model (Paper II) is shown as the current history model was used to 

only estimate the 4.1-3.875 V capacity at 20 oC (Paper III). The derived 4.1-

3.875 V capacity values were a measured value of 2.93 Ah, a basic model 

estimation of 3.02 Ah, and a “VE100sqrt”-model estimation of 2.96 Ah. 

The current history model actually achieves an even more improved 

capacity estimation (1 % RE) from the already good basic model estimation 

(3 % RE). 

Computational performance 

The suggested SOH estimation method poses a number of computational 

requirements. Firstly, a certain memory is needed in order to store driving 

data for SVM training. Then, the SVM training itself requires processing 

power, followed by the SVM tests. The SVM test results, i.e. the SOH 

indicators and probably even the SVM models i.e. the support vectors, have 

to be stored online in order to be available for future reference. 

The SVM training runtime is very dependent on the structure of the model 

and the number of examples in the training data. In an example from 

Paper I, a SVM training based on 1775 examples took 1.6 CPU-s and 

resulted in 339 support vectors. The computational performance results 

from Paper II reveal that for more expansive data sets of up to around 

880,000 examples, long training runtimes are needed (in the order of 105 

CPU-s). The number of SV on the other hand stays reasonably small even 

for these expansive data sets (~10,000 SVs). Generally, the SVM training 

time requirements grow not only with the number of examples, but also 

with the number of model variables. In Paper III it was however found that 

the inclusion of an additional model input (current history) can return 

faster training runtimes and reduced number of SVs for the resulting 

models. It was thus found to be meaningful to include current history even 

from the model complexity respect. 
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A way to minimize training runtime is to make a selection from the training 

data. The data selection should be based on matching the driving data to 

the intended virtual tests. This concept was verified in Paper II where it 

was shown that the estimation performance of resistance at a certain SOC 

was similar for models spanning the whole and only partial SOC ranges. 

The SOC level-limited models were however preferable in the respect of 

accumulated training runtime. 

The SOH estimation itself, i.e. the SVM tests are very fast for the test 

sequences applied in this thesis. The virtual tests are therefore found to be 

unrestrictedly suitable for online application. 

System identification battery model 

An alternative battery modeling approach has been evaluated. With the 

help of a system identification approach, dynamic battery models 

according to Equation 7 were built for data sets from the experimental 

study on the BEV battery cell (Paper IV). The model structure was based 

on a single input-output relationship between current and voltage with 

model parameters depending on the SOC and temperature conditions. This 

model structure was derived starting from an equivalent circuit model 

approximation, which was formulated as an ARX model, whose order has 

been adjusted. During the model derivation, the direct connection with the 

physical circuit elements was therefore lost indicating that the actual 

dynamic relations in the battery are more complex than the equivalent 

circuit model. The method estimates the dynamic voltage response for a 

current input at a SOC and temperature level. The initial OCV is to be 

incorporated in the model in the scope of future work. 

20 different models were created based on the available typical BEV 

operating current profiles for the studied SOC and temperature condition 

range. Figure 23 shows an example of a model estimating the dynamic 

voltage response for a 35 A pulse test. All models provide an accurate 

dynamic voltage estimation.  

The resistance estimations based on the derived models are good as well as 

Figure 24 illustrates for the case of the resistance estimations at 10 oC at 

the studied SOC levels. The resistance estimations at 10 oC can be obtained 

with an average RE of 2.1 %. These error values compare to the estimation  
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Figure 23 Measured and estimated (with a system identification approach) 

dynamic voltage (initial OCV not included) of a BEV battery cell during a 35 A pulse 

test at 50 % SOC and 10 oC. 

 

Figure 24 Real and estimated (with a system identification approach) values of 

10 s discharge resistance of a BEV battery cell at different SOC as derived from a 

35 A discharge pulse at 10 oC. 
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performance of the basic SVM model for the same resistance values at 10 oC 

with an average RE of 8.4 % (error values based on results as exemplified 

in Figure 21). Addition of current history to the basic SVM model, however, 

gave improved resistance estimation as the example of the resistance 

estimation at 90 % SOC and 20 oC by the current history model 

“VE100sqrt” shows which was achieved with a RE of 1.1 % (as mentioned 

above, Figure 21). 

An advantage with the system identification approach in comparison to the 

support vector machine approach is the possibility of estimating the 

uncertainty of the estimation result. The uncertainty of the derived 

resistance estimations can be derived by propagation from the uncertainty 

of the identified model parameters. Very narrow uncertainty intervals are 

obtained, about three orders of magnitude smaller than the range of the 

resistance values. Consequently, the derived models and their resistance 

estimations can be trusted.  

With respect to computational load in terms of on-board applicability, the 

resistance estimation with this method is very fast as it is only based on a 

linear identification. The parameters of the model are found by solving a 

simple linear least squares problem. 

Developed state-of-health estimation method 

In this final section of the results chapter, the developed SOH estimation 

method is described in the context of its intended application. Figure 25 

illustrates schematically how the method could work in vehicles. As an 

example, whenever an estimate of the battery’s health condition is desired, 

a sample from collected battery operating data e.g. for 30 min of preceding 

driving or for certain operating conditions such as current, SOC, or 

temperature levels is selected. The data sample is then used by the BMS to 

compute a battery model capturing the current characteristics of the 

battery system. Any data-driven battery modeling method such as SVM or 

system identification could be used in principle. In a next step, the battery 

model could be tested virtually with the desired virtual capacity or 

resistance test in order to access an up-to-date estimate of these SOH 

indicators. These estimates can then be used by the BMS in order to 

manage the battery (see Figure 25) and to update the battery’s SOH in 

relation to previously estimated capacity and resistance values. 
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Figure 25 Schematic overview of the developed SOH estimation method in a 

vehicle implementation scenario. As battery modeling approach, SVM-based 

battery models are shown. 

This approach could theoretically be used for all kinds of batteries in all 

kinds of applications and is not limited to the studied applications BEV, 

PHEV, and HEV. In the scope of this thesis, however, the SOH indicators 

have been followed with this method over one-year periods for the PHEV 

and the HEV field tests (Paper I, V). 

In the PHEV field test, which served as a proof-of-concept in the scope of 

this thesis, 10 s discharge resistances were estimated. The resistance 

estimations were based on virtual 65 A (0.26 C) discharge pulse tests at 

90 % SOC for PHEV battery data samples from each month of 2010. These 

estimations were performed with a temperature-independent basic SVM 

model i.e. the voltage estimation was only based on SOC and current as 

model input. The resistance estimation results for the chosen driving 

events over the one-year period are shown in Figure 26. As a result from 

the shifting temperature levels over the seasons, the obtained resistance 

estimates range from 98 to 185 mΩ. Figure 27 illustrates therefore the 

correlation of the derived resistance estimations with the average value of 

the battery pack temperature during the respective driving event. The  

 



Results and discussion│44 

 

 

Figure 26 Estimated 10 s discharge resistance of a PHEV battery pack as derived 

from virtual 65 A pulse tests on temperature-independent basic SVM models based 

on driving events from January to December 2010. 

 

Figure 27 Arrhenius plot of the 10 s discharge resistance of a PHEV battery pack 

(Figure 26) against average value of the battery pack temperature during the 

respective driving event. A linear trend line indicates the correlation between the 

two variables (R2=0.8524). 

correlation between these variables is quite strong (with coefficient of 

determination for the linear fit R2=0.8524) indicating that the observed 

variation in discharge resistance over the one-year period is mainly 

temperature-related. As temperature explains such a large part of the 

resistance estimation variations, it can be concluded that no significant 
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resistance increase due to battery aging has been taken place during the 

time period of the field study. This example of strong temperature 

dependence of the resistance illustrates the importance of an accurate 

temperature measurement for proper differentiation of temperature and 

degradation influences on the battery’s resistance 94.  

In contrast to the PHEV field study where the battery pack resistance was 

reported, the results from the HEV field study are on cell level. In a battery 

pack, the battery pack resistance is derived from the sum of the single cell 

resistances that are connected in series and the reciprocal sum of parallel 

connections. Wiring, contacts etc. have also an impact on the total battery 

pack resistance. The cell resistances for the PHEV battery pack consisting 

of 192 cells with a 96S-2P configuration should therefore approximately be 

in the order of magnitude of 2 to 4 mΩ for the considered temperature 

range according to, 

1

𝑅𝑝𝑎𝑐𝑘
=

1

96∙𝑅𝑐𝑒𝑙𝑙
+

1

96∙𝑅𝑐𝑒𝑙𝑙
,                                           (12) 

where Rpack is the battery pack resistance and Rcell the cell resistance. 

The resistance of the studied HEV cell happens to lie in the same order of 

magnitude although totally different conditions apply and the cells have 

different chemistries and specifications. The 18 s charge and discharge 

resistance is evaluated for the HEV cell from 20 C charge and discharge 

pulses at 50 % SOC at 25 oC. The measured and estimated charge and 

discharge resistances as well as partial capacities are summarized in Figure 

28 for the one-year field test period. The measured resistances and 

capacities do not show pronounced degradation trends during the test 

period. The observed variations can be explained with small differences in 

the standard test conditions such as temperature, pulse length, and current 

rate. Therefore, instead of reporting SOH percentages, only values of 

capacity and resistance are given. 

The resistances are estimated with the current history model “100sqrt” 

whereas the capacity is derived on the basis of the temperature-dependent 

basic model. From the accumulation of large capacity estimation errors of 

up to nearly 50 % from May to July 2012, a software problem could be 

detected where an erroneous capacity value was reported to the BMS. 

Apart from this software problem causing particularly high capacity 

estimation errors, the estimation errors are on a high level also the rest of  
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Figure 28 SOH indicator estimation results for the HEV field test at different dates 

during a 1-year period. Estimated (o) and measured (x) values (on the left) as well 

as relative error of the respective estimation (on the right) for (from top to bottom) 

18 s discharge resistance, 18 s charge resistance, and 2.4-2.5 V capacity. 
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the year with an average relative error of 16 %. Capacity estimation is a 

challenging task for data-driven battery models in HEV applications where 

the SOC operating window limits the available training data. In addition, 

the studied HEV cell is characterized by a very flat voltage curve making a 

correct SOC estimation difficult.  

The resistance estimations at 50 % SOC on the other hand worked out well 

as plenty of training data was available. The average error of the discharge 

resistance estimations in Figure 28 is 5.7 % and the charge resistance 

estimations can be estimated with an average relative error of 5.3 %. These 

estimation accuracies can be considered acceptable for on-board SOH 

indicator estimation. 

Although field data has been used in this thesis, the models and virtual 

tests have been computed offline subsequent to the field test periods on a 

conventional desktop computer so far. In order to demonstrate the SOH 

estimation approach for on-board application, the implementation of the 

SOH estimation method in a research concept vehicle has been conducted 

in cooperation with Integrated Transport Research Lab 95. In the scope of 

this Mechatronics student project, a suitable hardware platform with 

sensors, appropriate computational capabilities and CAN interface was 

selected as well as the software for the prototype battery management 

system was designed 96.  

As hardware platform BeagleBone black with an add-on printed circuit 

board was chosen. As software, a QNX real-time operating system with 

three daemons for collection, training, and calculation (virtual test) with 

CAN functionalities was used. The developed platform can sense current, 

temperature, and voltage, compute SOC, run SVM trainings and virtual 

resistance and capacity tests, and report SOH through the CAN interface. 

The definitive implementation in the scope of this project was, however, 

prevented by a short circuit in the voltage measuring module during the 

testing of the final prototype. 

To summarize, with the help of the suggested SOH indicator estimation 

method, estimates of inner battery properties that normally stay unknown 

in black box modeling can be accessed. Resistance and capacity estimates 

derived via the introduced virtual standard tests provide SOH indicators 

that conveniently can be compared to test results from established 

laboratory testing. 
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Conclusions 

A method for battery state-of-health (SOH) estimation on-board electric 

vehicles has been developed. The approach gives access to battery SOH 

indicators only based on data readily available from the battery 

management system (BMS) without any experimental preparation or need 

for preliminary battery information. This makes the method very versatile. 

Basically without changes to the model design, the method has therefore 

been conveniently applied to battery data from BEV, PHEV, and HEV 

operation i.e. a variety of different batteries, operating conditions, and 

usage patterns.  

In the scope of the thesis, recommendations for battery data collection 

have been compiled (e.g. the importance of sufficiently high logging 

frequencies) and issues of battery data collection have been pointed out 

(e.g. the difficulty of accessing valid temperature measurements). The 

collected battery data has been analyzed statistically highlighting the 

characteristics of BEV, HEV, and PHEV battery operation in terms of e.g. 

current rates, charge and discharge time share, and frequency of current 

pulses. The usage analysis has shown that all three studied batteries are 

oversized in respect to their typical operation, aging not considered. 

From on-board battery usage data, data-driven battery models were 

created. As data mining method, the established support vector machines 

(SVM) were chosen, which have not been previously applied for battery 

voltage and subsequent SOH estimation as in this project. This SVM 

method is found to be a powerful tool for handling large amounts of battery 

operating data at a reasonable computational load.  

The applicability of the SVM approach for the SOH estimation task was 

demonstrated. However, limitations with data-driven modeling 

techniques have also been identified e.g. the restriction of estimations to 

the training data range. Another traditional criticism of data-driven 

models, a high computational load, has however been shown to be 

manageable with appropriate data preparation and selection. Apart from 

the SVM-based battery models, another modeling approach, i.e. system 

identification, has been evaluated and found to be suitable since the 

method gives accurate resistance estimations and is fast and simple. 
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The derived SVM-based battery models have successfully been verified on 

driving data, where they have shown to describe the battery behavior 

accurately. Within this thesis work, several different model structures were 

evaluated whereas the most elaborated model architecture was a 

current/temperature/state-of-charge (SOC)/current history-input in 

order to predict the voltage output. The current history input is a new 

feature that is rarely found in data-driven battery models. This time-

dependent variable has been shown to be able to account for the effects of 

diffusion resistance on the battery voltage dynamics.  

Applying virtual tests that correspond to standard performance tests to the 

derived black-box battery models gave access to SOH indicator estimations 

such as capacity and internal resistance. This is a very convenient tool as 

virtual tests can be validated with established laboratory tests and the SOH 

estimations based on the virtual tests correspond to meaningful battery 

figures-of-merit as derived from real standard tests. The SOH indicators 

capacity and resistance have been followed over one-year time periods in 

order to demonstrate their feasibility for the SOH estimation task. 

The suggested method can be implemented into the battery management 

system of an electric vehicle in order to monitor the SOH of the traction 

battery from the measured signals voltage, current, and temperature, and 

the BMS’s SOC estimation.  
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