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Abstract

As the penetration rate of the Electric Vehicles (EV) increases, their uncontrolled
charging could cause undervoltages and network congestions in the electric network.
To mitigate these impacts, the controlled charging of the EVs has been investi-
gated by earlier publications. However, the controlled charging cannot be easily
implemented as it involves multiple stakeholders having individual interests. The
project

”
SIEM: Systemintegration Elektromobilität“ funded by the Federal Ministry

for Economic Affairs and Energy in Germany is carried out at Fraunhofer IWES,
Kassel to investigate the EV charging strategies in order to avoid the aforementioned
electric network impacts caused by increased EV charging.

In this thesis, a new realistic charging strategy that accounts for the different
stakeholder requirements is developed. In the new charging strategy, the Distribu-
tion System Operator (DSO) and the charging service provider are treated as sepa-
rate entities. The DSO will not be burdened by the EV information and the charging
service provider is aware only of the EV locations in the electric network. Further-
more, an uncontrolled charging scenario and three existing charging strategies are
derived from the earlier publications. They are used to compare and evaluate the
new charging strategy. The simulations are carried out in a MATLAB-Simulink en-
vironment. The simulation model consists a realistic electric network model and an
EV model equipped with synthetically generated household load profiles and realis-
tic EV user behaviors. The EV user behaviors are derived from the surveyed dataset
collected by the project

”
Mobility in Germany 2008“ commissioned by the Federal

Ministry for Transport, Building and Urban development of Germany. Moreover, to
enable the on-line simulations, the strategies are implemented using moving window
optimization and the electric network model is simulated by a real-time transient
stability simulator named ePHASORsim, developed by Opal-RT.

The results indicate that the new charging strategy can result in considerable
charging cost savings for the EV users in comparison with the uncontrolled charging
scenario. Also the network losses, and the costs of the network losses are consid-
erably reduced by the new charging strategy. In comparison with the uncontrolled
charging scenario, the main competing strategy, which combines the DSO and the
charging service provider into one entity results in higher network loss reductions
than the new charging strategy. However, the new charging strategy results in higher
charging cost reductions. Also in many cases, the costs for the network losses are
comparable to the main competing strategy. Additionally, the multi charging ser-
vice provider scenarios are simulated by having the new charging strategy always
as the second strategy. In comparison to the charging strategies which have more
emphasis on electric network constraints, the combination with the new charging
strategy produces lesser reduction in network losses. However, the corresponding
costs for the network losses are smaller. Also in these combinations, the new charg-
ing strategy reduce the total charging costs and charging interruptions. The results
indicate the new charging strategy has potential for further development.

Key words— electric vehicle, charging, scheduling, optimisation.
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Chapter 1

Introduction

As part of the German energy transition
”
Energiewende“ the transportation sector

is moving towards sustainable mobility. In Germany, the transportation sector con-
tribute approximately one fifth of CO2 emissions [1], while EU wide it is responsible
for a quarter of total emissions. In both cases, the transportation sector is almost
entirely dependent on conventional energy. In reducing the transportation sector’s
emissions, Electric Vehicles (EV) are an important part of the solution. They can
mitigate the tail pipe emissions, are quieter and also three times more energy effi-
cient when compared with vehicles powered by internal combustion engines [2]. This
has been noted in Germany’s short-term 2020 and long-term 2050 agendas, which
set targets for increasing renewable energy (RE) production and energy efficiency
for emission reductions. These undertakings bring power systems into the center
of the energy transition. On the one hand it has to be able to integrate the new
varying sources of decentralized energy and on the other hand, accommodate the
increasing demand introduced by the increasing penetration rate of EVs.

1.1 Motivation

Due to increasing penetration rate of EVs, the local electric networks are most
likely to be affected. These possible effects have been broadly investigated by recent
publications. Authors of [3–5] display that even at low penetration rates EV charging
could cause congestions and undervoltages in the electric network. Also the concerns
over EV charging increasing the electric network losses and causing accelerated aging
of the distribution transformer are addressed in [6–10]. In this new situation, the old

”
fit-and-forget“ approach implies that the DSOs must upgrade the existing electric
networks to withstand the new, continuously increasing demand. This would mean
heavy investments for the DSOs [11–13].

Therefore most of the aforementioned studies propose an alternative approach
to mitigate the EV charging impacts. By charging the EV batteries in a controlled
manner, the heavily congested peak load times and undervoltages can be avoided
[6–10]. As the EV charger technology for Vehicle-to-Grid (V2G)1 becomes more
common, the batteries could be utilized as short term energy storage. This short
term energy storage could be used by the DSO for e.g. to reduce the electric network
congestion caused by the conventional loads [14]. Enabling controlled charging could
also help maximize the integration of the decentralized energy generation by RE [15].

However, the controlled EV charging cannot be easily implemented as it involves
multiple stakeholders each having their own interests. The first stakeholders can

1(V2G) is a term of technology that enables the EV batteries to not only be charged but also
to discharge the electricity to the electric network.
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Introduction

be identified as the EV owners, addressed from now on as
”
EV users“. EV users

want to charge their EVs as fast as possible in order to have them ready for use
again. The second stakeholders are identified as the charging service providers,
addressed from now on as

”
EV fleet aggregators“. The EV fleet aggregators aim to

minimize the charging costs for the EV users as well as to maximize their own profit
by optimizing the electricity procurement times. However the EV fleet aggregators
may have access to large EV fleets, which provides certain control potential. The
third stakeholders are the DSOs whose responsibility and interest is to maintain
the electric networks operational with high efficiency. Therefore, common rules are
needed to enable the real implementation of controlled charging. In Germany, such
a rule set is proposed by [16] as

”
traffic light concept“.

The report [16] specifies that
”
the aim of the traffic light concept is to define the

sharing of functions between the regulated and the non-regulated area in terms of
the control of suppliers and consumers so as to ensure permanent system stability
and a free market for smart products“. The traffic light concept further specifies
that, the DSOs’ responsibility is to determine the current and forecast condition
of their electric network areas by three traffic light phases:

”
green“,

”
amber“ and

”
red“.

The green phase indicates that the electric network operates under normal con-
ditions. In green phase, the EV charging by EV fleet aggregators, are done purely
on market basis. In the amber phase the DSOs are interacting with the market
participants to avoid the electric network limit violations, e.g. electric network con-
gestions or undervoltages. The red phase means that the electric network’s stability
is severely threatened and all the electric network operations are strictly decided
by the DSOs. This information is continuously updated for the authorized market
participants to handle their business accordingly and, if possible, offer services for
the DSOs to reduce electric network limit violations [16]. These ideas, presented by
the traffic light concept, can be taken as guidelines for developing future charging
strategies for realistic implementation. Therefore this thesis focuses on developing
a new charging strategy, which distinguishes the different entities and their respon-
sibilities.

1.2 State of the Art in EV Charging Strategies

The earlier publications, regarding EV charging strategies, can be sorted into groups
based on the emphases upon the aforementioned stakeholders. The first group gath-
ers the publications emphasizing the EV fleet aggregator’s interests. Publications
from this group share a common objective, which is to minimize the energy procure-
ment cost for charging EVs. In [17–20] authors propose to achieve the minimum
charging costs by optimizing the EV charging power and time according to cost
signal which ultimately results in globally flattened load profile. In addition to cost
minimization, authors in [21–23] propose to utilize V2G to provide ancillary service
for the DSO to enable congestion management.

The Second group emphasizes the DSO’s interests. Also publications from this
group share a common objective, which is to mitigate the EV charging impacts on
the electric network. Authors in [24] aim to maximize the energy delivered to the

2
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EVs while accounting for electric network current and voltage limits. Papers [25, 26]
aim to minimize the electric network losses caused by the EV charging by optimizing
the charging times and powers. Authors in [27, 28] propose EV charging control to
be performed with valley filling and load shifting objectives subjected to EV battery
energy constraints.

The third group, however, more clearly accounts for all of the different interests
presented by the stakeholders. For this thesis the third group provides the most
important insights. Therefore many of the publications from this group are briefly
reviewed and subsequently the adopted ideas from these publications are presented.

Authors of [29] propose an iterative charging scheduling method which separates
different stakeholders as individual entities. The charging strategy relies on con-
tinuous information exchange between the EV fleet aggregator, who is in charge
of the EV charging scheduling, and the DSO, who verifies the schedules or relays
constraints for the EV fleet aggregator. All stakeholder requirements are taken into
consideration by passing around schedule suggestions and constraint signals between
the two entities until an all constraints fulfilling solution is found. Different meth-
ods to specify electric network constraints are compared and their corresponding
performance analyzed. The charging schedules and charging power rates are solved
by iterative quadratic programming with cost minimization objective.

Charging strategy for three phase system is implemented in [30]. The scheduling
is performed based on cost objective subjected to electric network specific con-
straints. The charging schedules and charging power rates are optimized by solving
linear programming problems inside one entity combining all the interests. The
charging strategy utilizes load flow calculations for the electric network constraints.
In the strategy implementation, a moving window optimization is used to enable
the on-line simulations.

Paper [31] presents a charging strategy that also separates different stakeholders
as individual entities. In this charging strategy, the charging scheduling entity has
complete knowledge of the electric network sensitivities and conventional loads. The
EV fleet aggregator collects and forecasts the details of the EV demands and avail-
abilities, which are submitted to the scheduling entity. The scheduling entity defines
the charging schedules and power rates by linear optimization. The optimization
is done based on charging cost minimization subjected to electric network and EV
related constraints. After the schedules have been optimized, they are sent back to
the EV fleet aggregator who executes the EV charging. Also this paper uses the
moving window implementation for their charging strategy.

Study [32] investigates the impacts of strictly cost based charging on the Danish
electric network and proposes an alternative approach based on power capacity
availability. The authors point out that the strictly cost based charging would in
fact have an adverse effect on the electric network. The alternative approach utilizes
the DSO as a charging scheduling entity that could optimize the charging schedules
and power rates based on costs while taking into account the substation transformer
capacity limits.

Paper [28] presents a charging strategy that aims for load shifting and valley
filling. They compare how different charging power rates effect their charging strat-
egy’s capability to flatten the global load profile. They demonstrate through a case

3
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study how their charging strategy can result in completely flat load profile in the
United Kingdom with a certain charging power rate and a certain EV penetration
rate.

Authors of [33] propose that the Use-of-System tariffs could be implemented to
influence the cost based charging. They demonstrate through a case study that
the

”
capacity prices are an efficient instrument to account for local electric network

situations in the charging schedules“. Also the EV fleet aggregators profit was
guaranteed.

Based on the literature review, common ground with the earlier publications can
be found. The similarities between the existing charging strategies and the most
applicable ideas adopted for this thesis can be summarized as follows.

1. Most of the reviewed publications consider the charging cost minimization
as primary objective and this is also adopted for this thesis. Paper [28] has
an objective function that aims for peak shifting and load valley filling. This
objective is adopted for one of the charging strategies used for the comparison.

2. Authors of [29–31] utilize the load flow equations for minimum voltage and
maximum current constraint calculations. This is found to be an important
and a reliable method to estimate the future line currents and node voltages.
Thus it is also used in this thesis.

3. Papers [29, 30, 32] use realistic electric network models with statistical load
profiles. Authors of [29, 31] model the EVs with dynamic behavior based on
the state of battery energy. A realistic electric network model, an EV model
and a few data sets are also used in this work to study the electric network
impacts and performance of the new charging strategy.

4. Authors of [30, 31] implement their strategies using moving window optimiza-
tion. Both studies show that the moving window optimization proves to be a
reliable method even when a certain percentage of forecast errors are applied
in the used data. The same implementation is also utilized in this thesis as it
provides a robust method for various different objectives [30], and most impor-
tantly it enables the on-line simulations. By on-line simulations the dynamic
behavior of the models can be used by the new charging strategy.

1.3 Problem Formulation

To develop a realistic charging strategy, the EV fleet aggregator and the DSO need
to be separated as individual entities. Their communication needs to be arranged
in a manner which does not require considerable amount of communication itera-
tions and still enables flexibility for both entities. The EV charging needs to be
arranged in a manner that all the different stakeholder requirements are addressed.
Therefore, in this thesis the EV charging scheduling poses the main problem. The
only control variable to solve this problem is a discrete charging time. Each of the
EVs, introduced to the electric network, needs to be scheduled in a way that a cost
minimization objective is achieved. In the scheduling process the following points
should be accounted for:

4



Introduction

1. Electric network power, current and voltage limits

2. Household load profiles

3. Electricity prices

4. EV availability

5. EV demand based on the realistic EV model

6. Continuous EV charging

Based on these specifications, the new charging strategy is developed in chapter 2.

1.4 Thesis Objectives

The main objective of this thesis is to develop and test a new charging strategy for
realistic implementation. The second objective is to analyze the performance of the
new charging strategy by comparing it against a Uncontrolled Charging Scenario
(UCS) and three existing charging strategies, which are derived from the earlier
publications. In addition, the third objective is to investigate and compare the
effects of two EV fleet aggregators, which are equipped with two different charging
strategies, on the electric network.

In this thesis the DSO and the EV fleet aggregator are separated and their
communication is carried out by technical signals issued by the DSO. In a single EV
fleet aggregator simulations, this communication does not require iteration. These
technical signals distinguish feeder wise and global wise power capacities available
after the household loads have been accounted for.

1.5 Thesis Scope

This thesis mainly concentrates on developing and testing a new charging strategy.
The proposed charging strategy is described and compared against existing charging
strategies. The performance is assessed in terms of aforementioned stakeholder
interests. The focus is on EV charging scheduling, which is done by different charging
strategies. All of the charging strategies are assuming perfect forecasts for the used
data. In this work the EVs are considered to be charged at home with the rated
power of the charger. Both, the V2G capability and the EV battery’s aging are not
investigated. Also the influence of increased EV charging during night time on the
global electricity price development is not investigated.

1.6 Justification

When considering the guidelines received by the traffic light concept and the realistic
implementation of the controlled charging, some shortcomings can be found from
the earlier publications reviewed in section 1.2. Based on the proposal in [31], the
scheduling entity has clearly the role of the DSO as it has the complete knowledge
of the electric network line currents, node voltages as well as the forecasts for the
conventional loads. The EV fleet aggregator’s role is merely to provide the EV energy
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demand forecasts and to execute the plans received from the scheduling entity. In
a similar manner, authors of [32] propose that the DSO acts as a scheduling entity
who collates the information regarding the EV availability and the demand from
individual EV users. After the scheduling process, the DSO submits the schedules
for the individual EVs.

From the charging decision making point of view these aforementioned approaches
are similar to [30] whose charging strategy clearly combines the EV fleet aggregator
and the DSO into one. Paper [29] on the other hand emphasizes a more acute di-
vision in the roles as it uses the DSO to verify the schedules made by the EV fleet
aggregator. In case electric network congestion or undervoltages occur, the schedules
are solved iteratively which in reality might take a long time. The decision making
duration was not discussed as this charging strategy was not developed for on-line
simulations. In this thesis the DSO and EV fleet aggregator are considered as com-
pletely individual entities with their own responsibilities and limited communication
to save time in the charging scheduling.

Moreover, the approach differences between the earlier publications and this
thesis are apparent. Study [33] presents a market based approach for the DSO to
interact with the EV fleet aggregator. However, in this thesis the interaction is
to be handled by a technical signal. In this fashion, authors of [32] propose that
the global power capacity for EV charging is calculated by the DSO based on the
EV availability and the demand. However, this thesis distinguishes feeder wise and
global wise power capacities, which are calculated after the household loads have
been accounted for.

Also the differences in the charging strategy implementations are clear. Authors
of [29–31] implement only one charging strategy while [32] implements two charging
strategies and compare their impacts on the electric network. None of the reviewed
publications implement and compare four different charging strategies along with
the UCS.

Furthermore, none of the reviewed publications investigate and compare the
effects of two EV fleet aggregator, equipped with two different charging strategies,
on the electric network.

1.7 Outline of the Thesis

The new charging strategy and the existing charging strategies are developed and
formulated as optimization problems in chapter 2. It also develops the implementa-
tion for multiple EV fleet aggregators and introduces the optimization environment.
The developed charging strategies are implemented into a simulation system, which
is introduced in chapter 3. In the same chapter, the used simulation models and
the used data are presented. The case studies for the simulations are presented and
results analyzed in chapter 4. Finally chapter 5 summarizes the work carried out as
part of this thesis and presents the conclusions of the new charging strategy. Lastly,
it gives proposals for future research.
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Chapter 2

Charging Scheduling Strategies

In this chapter, the existing strategies and the new charging strategy are developed.
In all of the charging strategies, the EV fleet’s charging is scheduled by optimizing
the binary matrix x 1, as introduced in section 1.3. The EV users prefer charg-
ing without interruption and this is realized in the UCS. To respect the EV users
preferences for the continuous charging, all of the strategies are equipped with dual
objective functions. The secondary objective specifies that the charging should be
done continuously once it has started.

However, the primary objectives and the rest of the input information vary de-
pending on the strategy. These different strategies are introduced in their indi-
vidual sections where their related mathematical optimization problems are also
formulated. Subsequently the optimization environment is presented and the mov-
ing window implementation is introduced. All of the flowcharts, introduced for each
of the strategies, contain connection point indicators namely Start CS and End CS.
These are used to indicate each of the individually presented strategies as a small
part of the main algorithm introduced in section 3.5. In all of the flowcharts the
scheduling decision making entities are always surrounded surrounded with green
dashed lines. The

”
EV fleet charging schedules“ are referred from now on as

”
EV

schedules“.

2.1 Uncontrolled Charging Scenario (UCS)

The UCS describes the uncontrolled charging behavior of the EV users. All of the
EV users are expected to charge their EVs right away after their day’s activities so
that the EVs are with enough charge for the next day or for the next trip. The UCS
is expected to be the most expensive and it might also cause the largest charging
impacts on the electric network out of all charging strategies. These outcomes for the
UCS can be assumed based on the statistical mobility data and the used household
load profiles, presented in chapter 3.

2.2 Aggregator Based Strategy (ABS)

The ABS can be derived from the first group, presented in section 1.2, which gathers
the publication emphasizing the EV fleet aggregator’s interests. Figure 1 illustrates
the inputs and outputs for the ABS, which is the scheduling decision making en-
tity. Here the ABS optimizes the EV schedules with charging costs minimization as
primary objective, regardless of the electric network constraints.

1Throughout the thesis the boldfaced characters are used for vectors and matrices. In addition
the black-boarded characters specifies that they are in complex form, e.g. V for complex voltage,
and the italic characters signify that they are real scalars.
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ABS EV schedules
Price profile

EV user data

End
CS

Start
CS

Figure 1: Inputs and outputs for the ABS

Therefore the ABS is expected to attain the lowest charging costs out of all charg-
ing strategies. On the one hand, the ABS might work with a low EV penetration
rate in case the prices are low during night time when the household loads are also
low. On the other hand, the price profiles, as introduced in chapter 3, might have
low cost electricity during the other wise congested time. This could lead the ABS
causing further congestion in the electric network even with a low EV penetration
rate.

To use this strategy, the aforementioned objectives are formulated as dual ob-
jective function presented as follows:

x̂
=τ

= arg min
x∈{0,1}(n,τ)

f (x) s.t. Υ

f (x) =
∑

n∈N

∑

τ∈T

(Cτ · PEV · xn,τ ·∆τ + CP · |xn,τ − xn,τ−1|) ,
(2.2.1)

where

• Υ is a vector of EV user constraints;

• T is the set of time steps within an optimization window;

• N is the set of nodes with an EV connected;

• Cτ is the electricity price at time step τ ;

• PEV is the rated charging power for all the EVs;

• xn,τ is the charging schedule of the nth EV at time step τ (1 for charging, 0
for not charging);

• ∆τ is the length of a time step.

• CP is the constant cost penalty factor for the secondary objective;

The function of the CP is merely to encourage the optimizer (solver) to arrange the
charging in a continuous manner. The CP is not taken into consideration in the final
cost calculation for the EV fleet charging. To specify the constraints, the EV energy
demand EEV,n of the nth EV is calculated from the EV user data by:

EEV,n = γbatt · (SoCfull − SoCEV,n) , (2.2.2)

where the γbatt is the battery capacity, SoCfull is the state of charge for full
battery and SoCEV,n is the battery state of charge of the nth EV. The EV demand
is used to formulate the first constraint in (2.2.3), which specifies that by the end
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of the scheduling window, introduced in section 2.7, all of the EVs should be fully
charged.

Υ1 :
∑

τ∈T

(PEV · xn,τ ·∆τ) = EEV,n, n ∈ N . (2.2.3)

The EV user data is also used to derive the second constraint which is the EV
availability for the charging. It is considered as an equality constraint and can be
presented by:

Υ2 : xn,τ =

{

1 for EV is available for charging
0 for EV is not available for charging

, n ∈ N , τ ∈ T . (2.2.4)

The charging scheduling for a individual EV is only possible if the binary value
for a specific time slot is logical

”
true“ (1), meaning that the EV is available for

charging. The charging scheduling is not possible if the corresponding time slot is
logical

”
false“ (0), meaning that the EV is not available for charging. The constraints

(2.2.3) and (2.2.4) being collected symbolically in the vector Υ = [Υ1,Υ2] are also
used by all the other strategies and are referred there by the vector symbol Υ.

2.3 DSO Based Strategy (DBS)

The second group, presented in section 1.2, is used to formulate the DBS as it
gathers the publication emphasizing the DSO’s interests. The DBS is expected to
be by far the most electric network friendly strategy as its main objective is to shift
the load peaks and fill the load valleys. The inputs and outputs for the DBS, which
is here the scheduling decision making entity, are illustrated in Figure 2.

DBS EV schedulesLoad profiles
EV user data

Network data
End
CS

Start
CS

Figure 2: Inputs and outputs for the DBS

However, this strategy can be expected to be more expensive than the other three
strategies. Despite that fact, the DBS can offer a reference point for network losses,
as they are expected to be the smallest in this strategy. Paper [25] proves that the
load profile flattening has positive influence on network losses. Network losses could
be even reduced by the EV charging up to a certain extend. The primary objective
is taken from publication [28], and the whole objective function is formulated as
follows:

x̂
=τ

= arg min
x∈{0,1}(n,τ)

f (x) s.t. Θ,Υ

f (x) =
∑

τ∈T

∑

n∈N

∑

h∈H

[

(PEV · xn,τ +Phh,h,τ )
2 + PP · |xn,τ − xn,τ−1|

]

,
(2.3.1)
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where

• Θ is a vector of electric network constraints;

• H is the set of nodes with a household connected;

• Phh,h,τ is the power demand of the hth household at time step τ ;

• PP is the constant power penalty factor for the secondary objective.

Also here the PP is a factor addressed only for the solver. The network data and
the load profiles, presented in Figure 2, provide all the needed information for the
technical constraints. The technical constraints considered are the maximum total
load which is taken from the load profile as the maximum annual load Pmax , the
maximum currents Imax and the minimum and maximum voltages Vmin and Vmax .
They are applied as inequality constraints for each time step. The Equation (2.3.2)
defines that the summation of the total EV charging power and the total demand
of the household loads have to be equal to or lower than the admissible power limit.

Θ1 :
∑

n∈N

(PEV · xn,τ ·) +
∑

h∈H

(Phh,h,τ ) ≤ Pmax , τ ∈ T . (2.3.2)

The voltage and current constraints are formulated with the help of appendix A.
For the constraints, the voltage Vref,m of themth node and current Iref,l of the lth line
are calculated according to the given recommendations. They describe a constant
reference point for the voltage and current estimation. The voltage constraint can
be expressed as:

Θ2 :
Vmin ≤ |Vref,m +∆Vhh,h,τ +∆VEV,n,n · PEV · xn,τ | ≤ Vmax

m ∈ M , h ∈ H , τ ∈ T , n ∈ N
. (2.3.3)

The Equation (2.3.3) describes that all of the electric network voltages need to be
equal to or higher than the permissible Vmin and respectively equal to or lower than
Vmax . Here, M is the set of all nodes in the electric network. The ∆Vhh,h,τ stands
for voltage change by the hth household load at time step τ for every node voltage in
the electric network. The ∆VEV,n,n stands for the voltage sensitivity matrix, which
defines the voltage change by the nth EV charging for every node voltage in the
electric network. The last of the technical constraints prevents the overloading of
any of the electric network lines, and it can be formulated as:

Θ3 :
|Iref,l +∆Ihh,h,τ +∆IEV,n,n · PEV · xn,τ | ≤ Imax

l ∈ L, h ∈ H , τ ∈ T , n ∈ N
. (2.3.4)

Here L is the set of nodes where a line is ending. The ∆Ihh,h,τ stands for the
current change by the hth household load at time step τ for every line current in the
electric network. ∆IEV,n,n stands for the current sensitivity matrix, which defines
the current change by the nth EV charging for every line current in the electric
network. The constraints (2.3.2), (2.3.3) and (2.3.4) are combined symbolically in
the vector Θ = [Θ1,Θ2,Θ3].
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2.4 System Based Strategy (SBS)

The publications accounting for all the stakeholder interests are described to belong
in the third group in section 1.2. They are used to determine the SBS, which
combines the ABS and DBS into one. This is illustrated in Figure 3 by delivering
all the inputs to the SBS, which is here the scheduling decision making entity.

SBS EV schedulesPrice profile
EV user data

Load profiles End
CS

Start
CS

Network data

Figure 3: Inputs and outputs for the SBS

The SBS presents a compromise as it aims to minimize the charging costs while
satisfying the DSO’s requirements. On the one hand the SBS is expected to produce
worse results when compared with the ABS and DBS on their respective main
objectives. On the other hand it is the only one of the three strategies that can
produce results which satisfy all the stakeholder requirements. The SBS is the most
realistic of the three strategies and is therefore the main comparison point for the
new charging strategy. The SBS uses the objective function (2.2.1) from the ABS
and the constraints Υ and Θ similar to the DBS.

2.5 Communication Based Strategy (CBS)

The new charging strategy relies on completely individual entities and on their
limited communication as pointed out in section 1.4. Therefore it is referred to as
the Communication Based Strategy (CBS). It is expected to behave in a similar
manner as the SBS as it still aims to satisfy all the same stakeholder interest. Even
though the input information is the same, the EV scheduling process differs from
the SBS. The difference is illustrated in Figure 4 where the DSO is surrounded with
red dashed lines, while the EV fleet aggregator is the scheduling decision making
entity.

DSO

Calculate the 
power capacities

EV fleet 
aggregator

CBS

Price profile

EV user data

Load profiles

EV schedules

Capacity profiles End
CSStart

CS

Network data

Pf,τ and Ptot,τ

Figure 4: Inputs and outputs for the CBS
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Here the technical signals issued by the DSO contain power capacity profiles
for the fth individual feeder by Pf,τ and a global power capacity profile Ptot,τ

for a certain time horizon specifying each time step τ . These power capacities
are calculated based on the household load forecast. This arrangement separates
the DSO and EV fleet aggregator actions in a manner that the DSO will not be
burdened by the detailed information regarding the EVs. Moreover, this method of
communication does not require any iteration between the DSO and the EV fleet
aggregator.

The EV fleet aggregator, who is the scheduling entity, is not expected to have
any information concerning the electric network other than the EV locations in the
electric network. The knowledge for the EV locations in the electric network and
the power capacities are needed to avoid electric network limit violations. Otherwise
the charging decisions are optimized based on cost minimization.

The CBS has a slightly easier optimization problem than the SBS. The SBS has
to verify that the EV schedules are not causing voltage and current limit violations
in any of the electric network nodes and lines. The CBS on the other hand, manages
by taking care that the feeder and global power capacities are not exceeded. Thus
the CBS might result in a better solution on charging cost minimization.

However, should the DSO calculations for the power capacities be proven wrong,
it could lead to electric network limit violations. This could happen due to two
reasons. Firstly, due to inaccurate sampling used to generate the household load
profiles for the optimization process, described in chapter 4. Secondly, due to inac-
curacy in the line current and the node voltage estimation, presented in appendix A.
Underestimated household loads lead to too high power capacities for the EV fleet
aggregator. In case electric network limit violations occur, the sampling method
should be changed or the current and voltage estimation safety margin should be
increased.

2.5.1 DSO’s Power Capacity Calculations

To calculate the power capacities, the same technical limits are taken into considera-
tion as with the DBS. Accordingly, the maximum available power capacities without
violating the limits are calculated based on feeder currents and node voltages. The
voltage and current based calculations result in different power capacities. Thus
they are compared and the smaller value for each time step is used to formulate the
final power capacity profile Pf,τ . The global power capacity Ptot,τ is calculated in
an easier manner and it can be presented as follows:

Ptot,τ = Pmax −
∑

h∈H

(Phh,h,τ ) , τ ∈ T . (2.5.1)

These power capacities are considered as constraints by the EV fleet aggregator.

2.5.2 Scheduling by the EV Fleet Aggregator

The CBS attains the cost minimization objective function (2.2.1) as well as the
vector of constraints Υ from the ABS. However, the objective function is subjected
to two new constraints (2.5.2) and (2.5.3), which are gathered symbolically in the
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vector Γ = [Γ1,Γ2]. The first new constraint prevents the overloading of any of the
electric network’s main feeders and it is formulated as:

Γ1 :
∑

n∈Nf

(PEV · xn,τ ) ≤ Pf,τ , f ∈ F , τ ∈ T , (2.5.2)

The F is the set of main feeders in the electric network. The last new constraint
specifies that the total charging power of all EVs should be less than or equal to the
Ptot,τ and it is formulated as:

Γ2 :
∑

n∈N

(PEV · xn,τ ) ≤ Ptot,τ , τ ∈ T . (2.5.3)

2.5.3 Multi EV Fleet Aggregator Scenario

To develop the multi EV fleet aggregator scenario the role of electricity retailer is
taken as a guideline. Electricity retailers operate in the electric network without
specific network territories. This means that neighboring households may purchase
their electricity from different electricity retailers. The same idea is adapted for the
multi EV fleet aggregator scenario, meaning that EVs and their household locations
are randomly divided among the EV fleet aggregators. Figure 5 illustrates the inter-
action between the two EV fleet aggregators and the DSO with a simple flowchart.
A more detailed flowchart is provided in appendix B.

DSO

Agg2Surpluss capacities
or power requests

EV1 schedules and 
EV2 schedules

Capacity profiles

Price 
profile

EV2 user 
data

Agg1

Price 
profile

EV1 user 
data

Capacity profiles

CBS - multi aggregator

End
CS

Start
CS

Load profiles
Network data

Pf,τ and Ptot,τ Pf,τ and Ptot,τ

Figure 5: Flowchart of two EV fleet aggregators and DSO interaction

Moreover, to implement multiple EV fleet aggregators properly, the DSO divides
the power capacities among the EV fleet aggregators according to their size. Re-
duced power capacity might lead to a situation where the received power capacity
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is insufficient for charging. Therefore the communication between the DSO and
the EV fleet aggregator is relaxed to enable two way communication. However the
communication is facilitated in a manner that requires only one additional iteration
compared to the single EV fleet aggregator scenario.

The EV fleet aggregators try to optimize the EV schedules according to their
individual inputs. If the EV fleet aggregator fails in the charging scheduling due
to insufficient power capacity, it will issue a power request. The DSO may provide
extra power capacity only in case the second EV fleet aggregator has succeed in the
charging scheduling and submitted the surplus capacities to the DSO. In case both
EV fleet aggregators fail, the DSO can only re-send the old power capacities to the
EV fleet aggregators. After receiving the second power capacity profiles, the EV
fleet aggregator performs the charging scheduling optimization again. In the event
of a new failure, the final SoC target is reduced to the extent that the EV schedules
can be optimized.

2.6 Optimization Tool

In this thesis the CVX toolbox, a package for specifying and solving convex pro-
gramming problems [34], [35], is used to solve the different optimization problems.
The DBS is programmed as a constraint binary quadratic programming problem
whereas all of the other strategies are programmed as constrained binary linear pro-
gramming problems. To solve these problems, two different solvers, Mosek [36] and
Gurobi [37], are used because of their capability to solve binary problems. Their
usage is illustrated in Figure 6.

Solve problem
with Mosek

Success
No

Yes

Solve problem
with Gurobi

No

Yes

Optimization 
problem

EV schedules

Success T limit + 40 sek

Figure 6: Flow chart for the solver usage

This arrangement is needed because in linear optimization problems Gurobi is
faster than Mosek, however in quadratic optimization problems Mosek is faster.
The used binary variables complicates the optimization problems, therefore the time
limitation is added to guarantee that time spent in solving the problem is kept within
reason. The quadratic optimization problems are more exhaustive for the solvers
and that is why the additional time may be required.
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2.7 Moving Window Optimization

As mentioned in section 1.2, the strategies are implemented using moving window
optimization to enable the on-line simulations and to attain the dynamic behavior
of the simulation models. In the moving window optimization, the used strategy
requires forecast data for a fixed time horizon. The temporal behavior of a moving
window optimization is presented in Figure 7.
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τ = τ2
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τ3

τ3

τ1

τ1

τ2 τ3

Figure 7: Illustration of the moving window optimization

Based on the available information, the used strategy optimizes the EV sched-
ules for the current scheduling window. Even though the optimizer results in EV
schedules for several time-steps, only the decisions for the current step, which in Fig-
ure 7 is indicated in blue, is utilized. According to the EV schedules for the given
time-step, the EVs are charged in the simulation model and the received output
parameters are stored. As time progresses the scheduling process is repeated with
updated forecast data, and the latest simulation parameters. This results in new EV
schedules for the current time step. This enables flexibility on random EV arrivals
and mitigates the impacts of forecasting errors [38]. In all of the strategies, the EV
related information is received at the instant it becomes available for charging.
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Chapter 3

System Modeling

To test the developed charging strategy and study its effects on the electric network,
a simulation system model containing the realistic models for the electric network
and the EV are developed. A simplified illustration of the whole simulation system
is presented in Figure 8.

ePHASORsim

Household loads

Voltages

Voltages

CurrentsEV schedules

EV model
EV Pac, EV Qac

Electrical
network
model

SoCEV,n

Figure 8: Simulink model for the simulation system

These models are developed in the MATLAB/Simulink [39] environment with ad-
ditional toolbox provided by Opal-RT. This provides the ePHASORsim solver, which
enables the dynamic simulations of large scale power systems in Phasor mode [40].
ePHASORsim can simulate thousands of nodes, generators, transformers, transmis-
sion lines, loads and controllers. This tool enables the on-line mode tests for the
developed charging strategy. In this chapter the electric network model is described.
Subsequently the vectorized EV charging model, the applied data sources and the
work flow of the main algorithm are presented.

3.1 Electric Network Model

The used electric network model represents a typical suburban area in Germany.
It is the largest Low Voltage (LV) network generated in [41]. The details for this
synthetic electric network model are taken from the dissertation [42]. The topology
of the chosen electric network is presented in Figure 9.

This LV-network is equipped with a 630 kVA distribution transformer and it has
10 main feeders whose cables have a maximum current limit Imax = 284 A. The used
LV-network consist of 294 nodes where 146 households are located. These households
are randomly selected to accommodate an EV. The applied EV penetration rates
are 75%, which means that 110 of the households are accommodating an EV, and
100% which means that all of the households are accommodating an EV.
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Tapping

Figure 9: Topology of the used electric network [42].

3.2 EV Charging Model

The EVs can be modeled as systems composed of many dynamic dependencies.
The key components in the EV models are the charger and the battery. The EV
model used in this thesis is sourced from [10]. It consists of blocks for the driving
schedules, charger logic, converter losses and the battery model as presented in
Figure 10. The driving schedule block collects and passes on the data regarding the
EV ID, EV address and the EV demand DoDEV,n. The EV demand describes the
Depth of Discharge (DoD) of the nth EV. The EV ID specifies which of the EVs
are connected and the address specifies the household node for each EV. As soon
as an EV is connected to the electric network, the driving schedule block relays the
details for the charger logic block and updates the battery DoD information to the
battery model block.

2
1

EV Pac, EV Qac

Pac

Qac
Pdc

Converter Losses

EV ID, Addr.

Driving Schedule

EV schedules

Voltages

EV ID, Addr.

Charger Logic

2

1
Pdc

Battery Model

DoDEV,nDoDEV,n

SoCEV,n

SoCEV,n

SoCEV,n

Figure 10: Simulink model for the EV

The charger logic block receives data from four sources. The first input comes
from the battery model block, which continuously updates the charger logic block
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with the current SoCEV,n. The second input comes from the EV fleet aggregator
who submits the EV schedules. These schedules are directly used by the charger
logic block. The third input receives the current voltages from the electric network
model. The fourth input comes from the driving schedule block, and contains the
information explained earlier.

The charger’s main function is to convert the AC power into DC power, which
is required to charge the battery. The charger logic block processes the received
data and regulates the battery charging in a manner that the local network voltage
limits, set for each EV separately, are not violated. It also computes the appropriate
charging power rates as they are dependent on the batteries’ SoCEV,n levels as
explained by [10]. This phenomenon is explained in appendix C and is visualized
in Figure 32. The charger losses are calculated in the Converter losses block. The
remaining DC power is delivered to the battery model block until the SoCEV,n =
SoCfull = 0.9 is reached.

This EV model is tuned to present the charging behavior of Mitsubishi iMiEV
as part of this thesis. It is equipped with γbatt = 16, 5 kWh battery and the ap-
plied charging power is PEV = 3, 7 kW . The EV validation work is presented in
appendix C. Moreover, the capacitive characteristics and the temperature charac-
teristics of the battery are not considered in this model.

3.3 Driving Behavior of the EV Users

In this thesis, the surveyed dataset collected by the project
”
Mobility in Germany

2008“ [43] is used to generate the EV user behaviors. The mobility survey cov-
ers information for different weekdays, ways of transportation, journey lengths and
journey start & end point destinations. It was collected by interviewing people from
thousands of households in the year 2008. This data is sorted out to fulfill the below
mentioned requirements:

• Only passenger cars are considered

• Only home arriving journeys are considered

• Single journey length is less than 100 km

The wanted amount of EV user behaviors are randomly selected from the database
for each EV penetration rate respectively. The used data is assumed to be season
independent. As the EV model is chosen as Mitsubishi iMiEV, it is possible to
calculate the correct energy consumptions for each trip. The manufacturer [44]
informs that energy consumption for this model is Ekm = 0, 1 kWh/km. Accordingly
the function for energy demand can be formulated as follows:

DoDEV,n =
γbatt

σEV,n ∗ Ekm

, (3.3.1)

where DoDEV,n is calculated according to σEV,n which describes the distance driven
by nth EV.
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Figure 11: EV availability and demand on a Wednesday and a Saturday

Figure 11 represents the behavior of one EV on a Wednesday and a Saturday.
On a Wednesday it is available for charging on two time periods and for one time
period on Saturday. Correspondingly it has a different battery DoD for each avail-
ability periods respectively. As explained earlier, the data describes all the journeys
happening during the day. In case multiple journeys occur, the availability peri-
ods, which are less than two hours, are neglected for every simulation and for every
charging strategy to be consistent.

3.4 Household Load and Electricity Price Profiles

Each electric network has a certain type of demand (load) profile and is greatly
influenced by the type of customers. For simplification, only residential customers
are considered in this thesis. The dataset used in this work contains synthetically
generated load profiles of German households based on statistics. The dataset is
taken from the work [45]. The household load profiles for 146 households are picked
stochastically from the given dataset.

It is assumed that each household has a constant power factor of 0.9, which is
used to calculate the apparent power in the electric network. The used data has a
resolution of 1 minute, which defines the time resolution used in the simulations.
Figure 12 presents the cumulative household load profiles and the electricity price
profiles for the chosen days. The charging strategies are tested with a data for
Wednesday-Thursday and Saturday-Sunday time periods. Based on random selec-
tion the data is taken from the 16th week of the year 2013. Figure 12 describes the
used data covering a time period of 48 hours from the first day 00:00 o’clock till the
second day 23:59 o’clock. It is ensured that the EV availability time is covered as
the EV availability in most of the cases occurs over night, as illustrated in Figure 11.
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Figure 12: Aggregated household load and electricity price profiles on a Wednesday
and a Saturday

As the key objective of the developed charging strategy is to minimize the charg-
ing costs of the EV fleet, a proper price profile is needed. The price profiles are taken
from the European Power Exchange (EPEX) spot market database [46] which offer
historical data for intra-day price profiles in 15 minute resolution. The intra-day
price profiles are used because a perfect forecast is assumed. The received price
profiles are multiplied by 4 to account for the taxes and fees [47]. The resolution
of the given price profile defines the time step, introduced in section 2.7, which is
used in the optimization. According to the above description, one simulation step
is 15 minutes long and it is performed in 1 minute resolution.

3.5 Work Flow of the Main Algorithm

The test algorithm consisting both, charging strategies and system model, are pre-
sented by a flow chart in Figure 13. This specifies the different process phases and
specifies at which phase the charging strategies are used. The simulation system
in Simulink and the main algorithm in MATLAB uses a shared memory for the
individual processes. First the system is initialized where all the needed inputs are
prepared. As part of the initialization the simulation model is executed in order to
obtain the initial EV energy demands EEV,n for the optimization. Subsequently the
needed profiles are selected for the current simulation step and for the optimization
window. Then the EV information is investigated and in case none are available,
the charging scheduling phase is bypassed and the current time step is directly simu-
lated. The same is repeated for every simulation step, based on the latest simulation
parameters and information about the EVs.

In case at least one EV is available and in need of charging, the charging schedul-
ing algorithm is executed. The chosen charging strategy selects the needed input
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Figure 13: Flow chart of the simulation process

profiles as presented in chapter 2. After the scheduling process, the EV schedules
are updated for the current time step and used in the simulations as explained in
section 2.7. The main algorithm iterates until the end of the wanted time, which is
indicated by

”
TotStep“ in Figure 13.
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Chapter 4

Case Studies and Evaluation

In this part the simulation results by different case studies are presented and evalu-
ated. The aspects related to EV user’s comfort are analyzed in terms of the EV fleet
total charging cost, change of charging cost, net number of interruptions and the
time flexibility. The total charging costs are calculated for every strategy according
to the given electricity price profiles. The change of the charging costs are calculated
for both of the case studies in comparison to the results received by using the UCS
for the whole EV fleet. The change of the charging cost is measured in percentages.

Moreover, the charging is expected to be done without charging interruptions,
as explained in chapter 2. To evaluate how different strategies perform, the net
number of interruptions, occurring in the whole EV fleet charging, is calculated.
For this, the UCS is also used as reference point. In some cases the net number of
interruptions is negative. This indicates that the corresponding charging strategy
manages to charge some of the EVs, which have multiple journeys during the day,
in one charging session. It also means that these EVs have enough electricity in
the battery to perform the second journey and to be completely charged in a single
charging session. Furthermore, the time flexibility indicates the average amount of
time the EVs have after the charging is finished and before the following day’s first
journey. Even though the time flexibility was not addressed by any of the strategies,
it can be considered to increase the EV users’ comfort as they may start the following
journey earlier if needed. The time flexibility by the UCS is the longest, as the EVs
are charged immediately when they are availably for charging. Therefore the time
flexibility by the UCS is not considered in the evaluation.

Moreover, the results for the electric network impacts are analyzed in terms of
current limit violations, network loss change and cost of the network losses. The
current limit violations are measured from the first line of the most heavily loaded
feeder. The current limit violations are displayed by violation magnitude, measured
in percentages, and duration, measured in minutes. The change of network losses
are measured in percentages. In the network loss calculations the network losses,
caused by the Base load Scenario (BS), are subtracted from the results to attain and
compare only the network losses caused by the EV charging with different charging
strategies. After the base load subtraction, the network loss change percentages are
calculated in comparison to the UCS. Moreover, the different charging strategies are
considered to be accountable for the network losses they are causing. Therefore the
network loss costs are calculated according to the corresponding electricity prices.

None of the performed simulations violated the voltage limits, which are ±10% of
the nominal voltage. Thus the voltage values are neglected from all of the analysis.
Also the final SoCEV,n are neglected as all of the charging strategies managed to
charge the EVs till full battery before the following day’s first journey. The simula-
tion results displayed that none of the strategies violated the transformers maximum
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capacity, which is 630 kVA as introduced in section 3.1.

In addition, the following parameters and methods are selected and used con-
sistently throughout the simulations. The window size, for the moving window
optimization, is of 16 hours and it is taken from the paper [38]. It represents a
compromise value which provides reasonable results both with and without errors.
As the optimization step is 15 minutes, the used household load profiles need to be
compressed for the optimization process. The needed household load profiles are
generated by sampling the original 1 minute resolution profiles with 15 minute steps
for the needed optimization window size. This sampling causes a certain inaccu-
racy for the DBS, SBS and the CBS, which are using the household load profiles
to generate the constraints for the optimization process. Thus some current limit
violations may exist.

Moreover, the initial time limit for the solvers, introduced in section 2.6, is 10 sec-
onds. In case this time turns out to be insufficient, it is increased in 40 second steps
to the extend that a solution is found, as presented in Figure 6. The penalty factors,
introduced in chapter 2, are from the parameter study presented in appendix D. Ac-
cordingly the given factors are scaled to match the used simulation resolution. The
used penalty factors are PP = 0.0025 and CP = 0.05. Next the different case studies
are introduced, correspondingly the results are presented and analyzed.

4.1 Comparison of Single Charging Strategies

This section analyzes the results attained from the simulations performed by using
one charging strategy for the whole EV fleet. The results are presented by four
tables representing the different EV penetration rates and different simulation days
respectively. Each table presents simulation results for all of the charging strategies,
introduced in chapter 2.

4.1.1 Wednesday, 75 % EV Penetration Rate

In terms of EV user comfort, the simulation results in Table 4.1 indicate that the
CBS manages to reduce the total charging costs by 71.2%, which is 4.1% more than
the SBS and only 1.8% less than the ABS. Also the DBS manages to reduce the
total charging costs by 30.4%. However, the DBS results count 79 net interruptions,
which is almost one charging interruption for every EV. Whereas the CBS results
count minus 3 net interruptions and the SBS results count 16 net interruptions. In
terms of time flexibility, the DBS provides the least amount of time, while both the
CBS and SBS provide 3.4 hours, which is the most out of all charging strategies.

Moreover, in terms of electric network impacts the, results indicate that only the
DBS and the SBS manages to avoid the current limit violations, while surprisingly
the CBS is causing 1.3% current limit violation that last for 1 minute. However the
UCS and the ABS are causing more substantial current limit violations both in mag-
nitude and duration. Furthermore, the DBS provides 50% network loss reduction,
while the CBS reduces them only by 27.3%.

The network loss reduction by the CBS is on the one hand 7.7% more than by
the ABS, but on the other hand 8% less than by the SBS. When considering the
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Table 4.1: Simulation results on Wednesday with 75% EV penetration rate

Scenario: UCS ABS DBS SBS CBS

Total charging cost [e] 85.7 23.2 59.6 28.2 24.7
EV user Change of charging cost[%] 0 -73 -30.4 -67.1 -71.2
comfort Net number of interruptions 0 -13 79 16 -3

Time flexibility [h] 12.1 2.6 1.5 3.4 3.4

Maximum load [kVA] 346 427 287 287 287
Electrical Maximum current [A] 348 441 257 250 288
network Violation magnitude [%] 22.4 55.2 0.0 0.0 1.3
impacts Violation duration [min] 8 32 0 0 1

Change of network losses [%] 0.0 -19.6 -50.0 -35.3 -27.3
Cost of network losses [e] 8.0 1.6 3.1 1.6 1.6

 

 

 

 

 

 

BS
UCS
ABS
DBS
SBS
CBS
Imax

C
u
rr
en
ts

in
th
e

m
os
t
h
ea
v
il
y

lo
ad

ed
fe
ed

er
[A

]

Time of the day [h]

UCS
ABS
DBS
SBS
CBS

A
gg
re
ga
te
d

E
V

ch
ar
gi
n
g

p
ow

er
s
[k
W

]

Time of the day [h]

BS
UCS
ABS
DBS
SBS
CBS
Pmax

Wednesday with 75% EV penetration rate

A
gg
re
ga
te
d
lo
ad

s
at

th
e
d
is
tr
ib
u
ti
on

tr
an

sf
or
m
er

[k
V
A
]

Time of the day [h]

12 18 0 6 12

12 18 0 6 12

12 18 0 6 12

0

100

200

300

400

0

200

400

0

200

400

Figure 14: Wednesday, aggregated loads at the distribution transformer, aggregated
EV charging powers and currents in the most heavily loaded feeder with 75% EV
penetration rate

cost of network losses, the CBS comes out even with the SBS and ABS on 1.6 e,
while the DBS would cause 1.5 e and the UCS 6.4 e higher cost for the network
losses. Furthermore, Figure 14 presents the simulation results for the time when the
EVs are charging.
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Figure 14 indicates that the BS is already violating the Imax , which is the maxi-
mum current limit of the feeder cable. The Pmax is the maximum power limit used
by the DBS, SBS and the CBS. Moreover, this figure reveals the characteristics of
each charging strategy. By the UCS, a large number of EVs are charging at 18:00
o’clock when the evening peak load hours begin. This causes the larges current
limit violations in the UCS. On the other hand the SBS and the CBS are shifting
the charging to low cost charging time. They also avoid the large current limit vio-
lations. Also whereas the DBS aims for valley filling, the ABS is concentrating the
EV charging to 03:00 o’clock in the morning when the electricity price is clearly at
a low level, as presented in section 3.4 in Figure 12. This causes 55% current limit
violation which lasts for 32 minutes. The current limit violation in the CBS is not
visible, as the BS is also causing current limit violations around the same time. The
shapes of the aggregated EV charging powers remain similar as the EV penetration
increases.

4.1.2 Wednesday, 100 % EV Penetration Rate

The results in Table 4.2 indicate that the total charging cost reduction by the CBS
is still significant, even though it is 3.6% less than with 75% EV penetration rate.
Here the CBS reduces the total charging costs by 67.6% which is 5.3% less than the
ABS, yet still 7.1% more than the SBS. As mentioned in section 3.3, the EV user
behaviors are randomly selected for each EV penetration rate.

Table 4.2: Simulation results on Wednesday with 100% EV penetration rate

Scenario: UCS ABS DBS SBS CBS

Total charging cost [e] 105.1 28.5 67.3 41.5 34.1
EV user Change of charging cost[%] 0 -72.9 -36 -60.5 -67.6
comfort Net number of interruptions 0 -15 110 49 15

Time flexibility [h] 12.4 2.9 2.3 3.7 3.7

Maximum load [kVA] 353 538 287 287 287
Electrical Maximum current [A] 396 549 285 283 293
network Violation magnitude [%] 39.5 93.1 0.4 0.0 3.1
impacts Violation duration [min] 12 49 1 0 1

Change of network losses [%] 0.0 -3.7 -40.3 -33.9 -25.6
Cost of network losses [e] 9.6 2.2 3.7 2.4 2.2

The net number of interruptions indicates the EV user behavior differences. Now
also the CBS increases the net number of interruption to 15, while with 75% EV
penetration rate it was minus 3. However, the CBS still causes 34 interruptions less
than the SBS. On the time flexibility the CBS and the SBS provide 3.7 hour before
the following day’s first journey, which remains the most out of all strategies.

The increased EV penetration rate also causes clear changes to the electric net-
work impacts. Here only the SBS manages to avoid the current limit violations while
the DBS is causing a 0.4% current limit violation and the CBS is causing a 3.1%
violation, both lasting for 1 minute. However, the UCS and the ABS are further
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increasing the current limit violations both in magnitude and duration. Now the
violation magnitude by the ABS is 93.1% lasting for 49 minutes.

In the network losses, the CBS provides 25.6% reduction, which is 8.3% less than
the SBS and 14.7% less than the DBS. Even though in the network loss reduction
the CBS performed worse than the SBS, in the cost of network losses the CBS and
the ABS results in the smallest network loss costs of 2.2e, which is 0.2 e less than
the SBS.

4.1.3 Saturday, 75 % EV Penetration Rate

The Saturday’s EV energy demand is less than onWednesday. The results, presented
in Table 4.3, show that the total charging cost difference between the CBS and the
SBS is considerably less than in either of the scenarios on Wednesdays. The CBS
provides 62.6% total charging cost reduction which is only 1.9% more than SBS
but on the other hand only 2.2% less than ABS. Moreover, the CBS results in
minus 15 net interruptions, which is 2 less than the SBS, but 3 more than the ABS.
Surprisingly the SBS provides the largest time flexibility, which is 1.7 hours more
than the ABS, but only 0.4 hours more than the CBS and the DBS.

Table 4.3: Simulation results on Saturday with 75% EV penetration rate

Scenario: UCS ABS DBS SBS CBS

Total charging cost [e] 40.6 14.3 26.6 16.0 15.2
EV user Change of charging cost[%] 0 -64.8 -34.6 -60.7 -62.6
comfort Net number of interruptions 0 -18 43 -13 -15

Time flexibility [h] 18.0 4.0 5.3 5.7 5.3

Maximum load [kVA] 308 288 267 267 267
Electrical Maximum current [A] 324 307 216 207 251
network Violation magnitude [%] 14.1 8.2 0.0 0.0 0.0
impacts Violation duration [min] 1 26 0 0 0

Change of network losses [%] 0.0 -11.7 -44.8 -28.8 -20.1
Cost of network losses [e] 2.7 0.8 1.0 0.7 0.8

The results display that the maximum load by the households is less than on
Wednesday. Here the DBS, SBS and the CBS manages to avoid all the current limit
violations, which are occurring with the UCS and the ABS. The DBS still provides
the largest network loss reduction by 44.8%, while the CBS reduces them by 20.1%,
which is 8.7% less then SBS. However, when considering the costs of the network
losses, the ABS and the CBS are even on 0.8 e while the SBS results in 0.1e less,
and the DBS causes 0.2 e higher costs to the network losses.

Figure 15 displays that the BS is not causing any current limit violations. Even
though current limit violations occur with the UCS and the ABS, due to the same
reason as on Wednesday. However, they are not as severe as on Wednesday due
to the smaller EV energy demand. The difference between the EV user behavior
on Wednesday and on Saturday is considerable. On Wednesday the UCS clearly
concentrates the charging between 15:00 o’clock and 00:00 o’clock with a charging
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Figure 15: Saturday, aggregated loads at the distribution transformer, aggregated
EV charging powers and currents in the most heavily loaded feeder with 75% EV
penetration rate

peak at 18:00 o’clock, while on Saturday the charging starts already at 10:00 o’clock,
peaks at 14:00 o’clock and continues over midnight. The other strategies aims the
charging again to the night, where the load valley and electricity price valley exist.
As the EV penetration rate increases, the increased energy demand by the EVs is
elevating the aggregated EV charging power profiles accordingly. This means further
violation magnitude and duration increments by the UCS and the ABS.

4.1.4 Saturday, 100 % EV Penetration Rate

Here the different user behaviors can be once again noticed. The results in Table 4.4
indicate that the CBS reduces the total charging costs by 55.9% which is only
0.4% less than the ABS and 3.7% more than the SBS. When the net number of
interruptions is compared the ABS provides minus 20 net interruptions, while the
CBS results in minus 1 and the SBS results in 9 net interruptions. However on time
flexibility the CBS can provide only 6.5 hours, whereas the SBS provides 0.8 hours
more and the ABS provides 1 hour more.

Moreover, the results with 100% EV penetration rate increases the difference in
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Table 4.4: Simulation results on Saturday with 100% EV penetration rate

Scenario: UCS ABS DBS SBS CBS

Total charging cost [e] 61.1 26.7 43.7 29.2 26.9
EV user Change of charging cost[%] 0 -56.3 -28.5 -52.2 -55.9
comfort Net number of interruptions 0 -20 86 9 -1

Time flexibility [h] 17.9 7.5 5.7 7.3 6.5

Maximum load [kVA] 356 311 267 267 267
Electrical Maximum current [A] 374 323 275 234 272
network Violation magnitude [%] 31.8 13.8 0.0 0.0 0.0
impacts Violation duration [min] 5 48 0 0 0

Change of network losses [%] 0.0 -8.9 -36.4 -32.4 -25.6
Cost of network losses [e] 4.6 1.8 2.2 1.5 1.5

the electric network impacts between Wednesday and Saturday. On Wednesday the
ABS causes the largest current limit violations in magnitude and duration, however
on Saturday the UCS causes the largest current limit violations in magnitude while
the ABS still causes the longest violation in duration. Here again the DBS, SBS
and the CBS manage to avoid all the current limit violations. In the network losses
the CBS results in 25.6% reduction which is 6.8% less than the SBS. The cost of
network losses is the smallest by the CBS and the SBS, only 1.5 e, which is 0.3 e
less than by the ABS and 0.7e less than by the DBS.

4.1.5 Evaluation of Individual Charging Strategies

The results show that the developed charging strategy, the CBS, as well as the ex-
isting charging strategies, are behaving consistently. This is proven as the different
days have totally different price profiles, household load profiles and EV user be-
haviors. The results show also that the CBS can provide significant total charging
cost reductions in comparison to the UCS. The total charging cost reductions by the
CBS are almost as much as by the ABS. The difference between the CBS and the
charging cost wise

”
best case“ is in the range of 0.4% - 5.3%, while simultaneously

the CBS avoids significant current limit violations, which the ABS perpetrates. The
SBS results in 1.9% - 7.0% less charging cost reductions than the CBS, while avoid-
ing all the current limit violations. The DBS results in 27.4% - 40.8% less charging
cost reductions than the CBS. When considering the net number of interruptions
and the time flexibility for the EVs the CBS proves to perform well. In most cases
it manages to provide negative net interruptions and often offers one of the longest
time flexibilities for the EVs.

Considering the electric network impacts, surprisingly only the SBS manages to
perfectly avoid the current limit violations. However, the current limit violations
can be explained by the inaccurate sampling of the used household load data, as
explained earlier. The current limit violations with the DBS and the CBS could be
avoided by taking the maximum loads from each simulation step to form the final
household load profiles for the optimization process. In addition the current and
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the voltage estimation inaccuracy could be taken into account with a larger safety
margin. However, the DBS is the best strategy to provide network loss reductions.
The CBS reduces the network losses by 20.1% - 27.3% while SBS reduces them
with 6.8% - 8.7% more and the DBS with 10.8% - 24.8% more. However, the costs
of the network losses are, in most cases, the smallest with the CBS. This is due
to the fact that all of the network losses, the CBS causes, are concentrated to the
times when the electricity prices are low. Therefore, the cost of the network losses
would in fact increase the total charging cost difference between the CBS and other
charging strategies making the CBS even more attractive. All of the three strategies,
the DBS, SBS and the CBS, manage to avoid substantial current limit violations,
which occur by the UCS and the ABS. Especially the ABS can not be considered
realistically implementable, due to long lasting current limit violations of tens of
percentage points.

4.2 Multiple EV Fleet Aggregators With Different Strate-

gies

In this section, the simulation results acquired by sharing the EV fleet between two
EV fleet aggregators, are evaluated. The results are presented in four bar charts per
day. The results for the EV user comfort are presented in the 1st and 2nd charts and
the electric network impact related results in the 3rd and 4th charts. The differences
in charging cost, the net number of interruptions and the differences in network losses
are computed in comparison to the results acquired by using the UCS for the whole
EV fleet, as explained earlier. Each of the charts gather the different strategies into
groups according to the applied share of EVs for the

”
Aggregator 1“. The different

EV shares for the Aggregator 1 are 30%, 50%, 70% and 100% respectively. The
100% share repeats the results acquired by using single charging strategy for the
whole EV fleet and they are used for comparison. Moreover, these aforementioned
EV shares are forming different simulation scenarios named in Figure 16.

Aggregator 1 Aggregator 2

Strategies: UCS, ABS, DBS, SBS, CBS CBS

Scenario 1

Scenario 2

Scenario 2

Scenario 4

30%

30%

50%50%

70%

70%

100%

Figure 16: The share of EVs among the aggregators in different scenarios

It is also pointed out that the
”
Aggregator 2“ is always equipped with the CBS,

while the Aggregator 1 is equipped with different strategies. The applied charg-
ing strategy combinations for the simulations are UCS-CBS, ABS-CBS, DBS-CBS,
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SBS-CBS and CBS-CBS. Moreover, the presented results are summations of two in-
dividual EV fleet aggregators to compare their cumulative effects on the EV users’
comfort and on the electric network impacts. In the charts, the bright colored bars
represent the simulations performed with 75% EV penetration rate. The dark col-
ored bars, which are extending some of the bars, present the difference simulating
the same strategy combination with 100% EV penetration rate. Additionally, the
DBS and the SBS are taking part in the capacity sharing explained in section 2.5.3.
This is assumed because the DBS and the SBS also consider the electric network
constraints which needs to be shared when multiple EV fleet aggregators are sim-
ulated. Otherwise the constraints would not comply with the real situation in the
electric network, and electric network limit violations would be expected. Next, the
simulation results are presented for Wednesday, following with the corresponding
results for Saturday and finally the results are analyzed. Furthermore, the detailed
results are presented by tables in appendix E.

4.2.1 Wednesday, Multiple EV Fleet Aggregators

First the results for the total charging cost and for the change of charging costs are
presented in Figure 17.
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Figure 17: The total charging costs and the change percentage on Wednesday

The CBS manages to influence the UCS-CBS, DBS-CBS and the SBS-CBS com-
binations to reduce the total charging costs. In scenario 1 the influence of the CBS
is the largest as it has 70% of the EVs. When the share gets smaller the influence
decreases accordingly. However, in the ABS-CBS combination the influence of the
CBS is almost negligible, yet still negative. This happens because the ABS performs
better when it has all the EVs. Furthermore, the same influence of the CBS can be
seen in the net number of interruption and time flexibility introduced in Figure 18.
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Figure 18: The net number of interruption and the time flexibility on Wednesday

The results indicate that the CBS has a positive influence on the net number of
interruption, especially with 75% EV penetration rate. The results are negative in
scenario 1 with 75% EV penetration rate with every charging strategy combinations
except in the DBS-CBS. This happens because the DBS causes a considerable in-
crease in interruptions, that the CBS is not able to mitigate. However, with 100%
EV penetration rate the CBS increases the net number of interruptions in the UCS-
CBS and the ABS-CBS combinations, while mitigating it in the DBS-CBS and the
SBS-CBS combinations. As the share of EVs for the CBS gets smaller the positive
influence for the DBS-CBS and the SBS-CBS combinations decreases. However, the
CBS does not cause considerable changes to time flexibility in any of the charging
strategy combinations. Only in the DBS-CBS combination does time flexibility in-
crease to almost 3 hours in scenario 1, while in scenario 4, it is only 1.5 hours by
the DBS. Next, the simulation results for the current limit violation magnitude and
duration are presented in Figure 19.

In scenario 1 the CBS manages to mitigate the current limit violations happening
in the UCS-CBS and the ABS-CBS combinations. However, as the UCS and the
ABS gain a larger share of the EVs the current limit violations begin to increase.
The results show interestingly that the CBS-CBS combination is not causing any
current limit violations in scenario 1 and scenario 2. However, in scenario 3 the
current limit violation exists. Moreover, the results for the changes of the network
losses and the cost for the network losses are displayed in Figure 20.

In the DBS-CBS and the SBS-CBS combinations the network loss reductions
are smaller when the CBS has larger share of the EVs. However, in the UCS-
CBS and the ABS-CBS combinations the CBS manages to increase the network
loss reduction. In scenario 1 the UCS-CBS combination results in a network losses
reduction, which is higher than in the CBS in scenario 4. The same behavior is
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Figure 19: The current violation magnitude and duration on Wednesday
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Figure 20: The costs and the changes of network losses on Wednesday

repeated with 100% EV penetration rate described by the darker bars. Moreover,
the CBS reduces the cost for network losses in all charging strategy combinations,
utmost in the UCS-CBS combination.
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4.2.2 Saturday, Multiple EV Fleet Aggregators

The cost development in Figure 21 follows the same pattern seen in Wednesday’s
results. Surprisingly with 100% EV penetration rate the CBS manages to reduce
the total charging costs in all charging strategy combinations.
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Figure 21: The total charging costs and the change percentage on Saturday

The ABS-CBS combination reaches the lowest total charging costs in scenario 2
where the EVs are shared evenly between the strategies. The charging cost reduc-
tion by the ABS-CBS combination in scenario 2 is 2.4% more than by the ABS in
scenario 4. In scenario 1 the DBS-CBS combination almost reaches equally high
cost reduction as the CBS in scenario 4.

Moreover, the results in Figure 21 present the net number of interruptions and
time flexibility for Saturday. The ABS-CBS combination produce the smallest net
number of interruptions in scenario 3, even though in scenarios 1 and scenario 2 the
CBS is hindering the ABS ability to reduce charging interruptions. However, here
the UCS-CBS, DBS-CBS and the SBS-CBS combinations perform better than the
UCS, DBS and the SBS in scenario 4. However, in time flexibility the SBS-CBS
combination performs worse in scenario 1, scenario 2 and scenario 3 than the SBS
in scenario 4. This happens because the CBS provides less time flexibility than the
SBS when they are both compared in scenario 4. The same can be observed in the
ABS-CBS combination with 100% EV penetration rate.

Moreover, the CBS also manages to mitigate the current limit violations caused
in the UCS-CBS and the ABS-CBS combinations, as displayed in Figure 23. In the
ABS-CBS combination the current limit violations are totally avoided in scenario 1,
scenario 2 and scenario 3 with 75% EV penetration rate. However, as the EV
penetration rate increases the violations occur starting from scenario 1. In the
UCS-CBS combination the current limit violations are only avoided in scenario 1
with 100% EV penetration rate.
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Figure 22: The net number of interruption and the time flexibility on Saturday
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Figure 23: The current violation magnitude and duration on Saturday

The last results display the changes of network losses and the cost of the network
losses in Figure 24. The UCS-CBS combination reaches almost the same level in
the network loss reduction in scenario 1 as the SBS reaches in scenario 4. Also
the cost of network losses in scenario 1 by the UCS-CBS combination is almost the
same as the other combinations. Even though the network loss reductions are less in
the DBS-CBS combination than the DBS in scenario 4, the DBS-CBS combination
results in smaller or equal cost of network losses in scenario 1 and scenario 2 as the
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Figure 24: The costs and the changes of network losses on Saturday

CBS in scenario 4.

4.2.3 Evaluation of Multi Aggregator results

When considering the strengths of each individual strategy, they perform better
alone than when they are sharing the EVs with the CBS. In EV user comfort,
as a whole the CBS caused adverse effects in the ABS-CBS combination. This
could be expected based on the results received by the single charging strategies,
where the ABS performed better than the CBS in reducing the total charging costs
and providing negative net number of interruptions. However, the CBS managed
to increase the EV user comfort in the UCS-CBS, DBS-CBS and the SBS-CBS
combinations by reducing the total charging costs and by decreasing the net number
of interruptions.

The effects are similar when considering the effects to electric network impacts.
The CBS managed to mitigate the negative electric network impacts in the UCS-
CBS and the ABS-CBS combinations, but hindered the DBS’s ability to reduce the
network losses in the DBS-CBS combination. This was also expected as the DBS
performed better alone in network loss reduction than the CBS. However, the CBS
managed to reduce the costs of the network losses in almost all of the charging
strategy combinations and scenarios. This occurred because the CBS caused the
network losses when the electricity prices are low.

Furthermore, the result indicates that the dual EV fleet aggregator equipped
with CBS-CBS combination performs better than the single CBS in scenario 4.
This can be explained by the random assignment of the EVs for each EV fleet
aggregator and the used optimization environment. The difference is noticeable in
the net number of interruptions and higher charging cost reductions. As long as the
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”
difficult“ scheduling cases are allocated to the EV fleet aggregator which has the
smaller share of the EVs, the combined result is

”
ideal“. However, as the share of

EVs changes and ultimately comes to be optimized by only one EV fleet aggregator,
the found result’s can be seen to differ from the

”
ideal“. This is understandable as

the two EV fleet aggregators have twice as much time for their optimization problem
compared to one EV fleet aggregator, as introduced in section 2.5.3.

The results indicate that the UCS-CBS and the ABS-CBS combinations would
cause current limit violations to the electric network even in scenario 1, where only
30% of the EVs would be charged in either uncontrolled manner or purely based
on charging cost minimization. However, the DBS-CBS, SBS-CBS and the CBS-
CBS would be possible combinations as they avoid severe current limit violations.
However, the EVs which are not represented by the CBS or the SBS would be facing
high charging costs. Also they would be accountable for the higher cost of network
losses.
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Chapter 5

Summary, Conclusion and Future Research

5.1 Summary of the Work

First, the need for the controlled EV charging is explained. Moreover, the complexity
related to the realistic EV charging control implementation is introduced. Then
earlier publications are reviewed in order to acquire new ideas and to derive the
existing strategies to evaluate the new charging strategy. After which the related
problem for this thesis is stated, ideas to solve it presented and the differences to
earlier publications explained.

Furthermore, the existing strategies are introduced and the new charging strategy
is developed. For each strategy the expected behavior is discussed, main objective
function is defined and the related mathematical optimization problems are formu-
lated. In addition, the multi EV fleet aggregator implementation with relaxed DSO -
EV fleet aggregator communication is developed. Also the optimization environment
is presented and the moving window optimization is introduced.

Subsequently the test environment for the new charging strategy is developed.
The electric network model is simulated by ePHASORsim solver [40] enabling the
on-line simulations. The used model represents a German suburban LV-network for
which the details are taken from the dissertation [42]. Moreover, the vectorized EV
model, sourced from [10], is tuned to present the charging behavior of Mitsubishi
iMiEV. The data for EV user behavior is generated from a surveyed dataset collected
in [43]. The household load profiles are based on German statistics and received from
[45]. The historical intra-day price profiles are taken from the EPEX spot market
database [46]. Also the work flow of the main algorithm, explaining the simulation
and optimization steps, is presented.

Subsequently, the used parameter settings and methods for the simulation work
are presented. Then the performance of the new charging strategy is evaluated
based on various different simulation scenarios. Firstly, the simulation results are
presented and evaluated for single charging strategies for Wednesday and Saturday
with two different EV penetration rates respectively. Secondly, the results attained
by simulations with multiple EV fleet aggregators are presented and evaluated. On
the evaluation the focus is kept on EV users’ comfort and electric network impact
related aspects.

5.2 Conclusion

As shown in section 2.5, a new charging strategy for realistic implementation has
been developed. The EV users comfort and close to perfect electric network friend-
liness is demonstrated and evaluated on realistic simulation scenarios against three
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existing charging strategies and a uncontrolled charging scenario, compared in chap-
ter 4.

The results indicate that the new charging strategy can produce considerable
charging cost savings for the EV users in comparison to the uncontrolled charging.
The total charging costs saving by the new charging strategy are 55.9% - 71.2%,
which are 1.9% - 7.0% more than by the main competitor SBS. Even though, the
new charging strategy was found to cause higher network losses than the SBS, the
new charging strategy resulted in smaller costs for network losses.

In addition, multiple EV fleet aggregator scenarios were simulated by having the
new strategy always as the second strategy. The new charging strategy reduced the
total charging costs by 2.1% - 4.3% when combined with the SBS. Furthermore, the
new charging strategy was found to increase the network losses by 3% - 7% when
combined with the SBS. However, the corresponding costs for the network losses
were equal to or smaller than by the SBS in single strategy results.

The observed current limit violations by the new charging strategy and the DBS
were found to be caused by the sampling method used to generate household load
profiles for the optimization process. The simulations for the new charging strategy
were repeated for the single charging strategy scenarios where the current violations
existed. The new sampling method, discussed in section 4.1.5, provides results
where the current limit violations are avoided. The received results with 75% EV
penetration rate on Wednesday show 24.9 e total charging cost, which is 71% cost
reduction in comparison to the UCS. This result is only 0.2% less than the old one.
The cost of network losses by the new simulation are 1.6 e, which is the same as
by the old one. With 100% EV penetration rate the total charging cost is 35.1 e,
which means 66.6% cost reduction. The new result is 1.0% less than the old one.
The costs for network losses, however are 2.2 e, which is also the same than the old
one.

Furthermore, the new charging strategy was motivated by the traffic light con-
cept. The new charging strategy can be seen to work on range of the green phase and
the amber phase. As introduce in the traffic light concept, also in the new charging
strategy the DSO is determining the current and forecast condition of the electric
network. Here the conditions are specified by a technical signal. The results show
that the technical signal used for communication between the DSO and the EV fleet
aggregator is robust, to account for electric network limitations. On the other hand,
it gives the scheduling flexibility for the EV fleet aggregator to optimize the charging
profiles based on cost. In single charging strategy scenario, the used communication
works without iteration and when multiple EV fleet aggregator are involved, one
additional iteration is sufficient. As long as the forecast data is accurate for the
DSO to calculate the power capacity profiles, all the electric network violations can
be avoided. Moreover, the results indicate the new strategy has potential for further
development.

5.3 Future Research

In this thesis the performance of the new charging strategy is evaluated based on
various different simulation scenarios. However, there are still a few point which
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could not be covered due to the limited time available for this thesis. Therefore,
they could be addressed in future research:

• Enhance the DSO’s calculations to be updated during the operation to increase
the current and the voltage estimation safety margin in case further violations
occur.

• More comprehensive tests and evaluations should be performed in various re-
alistic electric network models

• The household load profiles should be taken from different seasons of the year

• Larger variety of different EV penetration rates should be used

• The V2G capability could be incorporated into the new charging strategy. In
addition to the capacity profiles, the DSO could also issue demand profiles and
a purchasing price profile. The demand profiles would include the feeder wise
demands in addition to the global demand profile. The purchasing price profile
specifies how much the DSO is willing to pay for the electricity fed back to
the electric network. Based on the demand and purchasing price profiles, the
EV fleet aggregator could perform the trade-off calculations. Based on these
calculations the V2G regulation would be performed. However, this would
require more assumptions related battery aging to find a proper tariff scheme
to motivate EV users into such arrangements.

• The communication signal between the DSO and the EV fleet aggregator could
be changed into a cost signal, which would be added into the price profile used
by the new charging strategy, as proposed by [33]. The Use-of-System tariff is
also proposed earlier for distributed generation by [48] and [49] and a similar
arrangement is proposed for other retail electricity customers by [50].
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Appendix A

Voltage and Current Estimation

To implement the new charging strategy in a reliable manner, the electric network
sensitivities, voltage changes and current congestion due to EV charging need to be
estimated. To estimate these variables a power system bus admittance matrix Ybus

and a Jacobian matrix J are examined. These matrices are used to estimate the node
voltages and the line currents based on a forecast household load data. To build
these matrices, a certain knowledge of the electric network is needed, i.e. network
topology, line impedances/admittances, nominal voltages and loads. Four different
constant comparison points are calculated from the used data, and the estimation
errors produced by them are analyzed. Based on the results, a reliable comparison
point is proposed. In the next part, the used data and the methods are explained
and results and recommendations are presented.

A.1 Data and Methods

The electric network model, introduced in section 3.1, is used to study and develop
the current and voltage estimation for the new charging strategy. Based on the
electric network details the Ybus and the J matrices are generated by MatPower[51].
The household load profile from the chosen Wednesday, introduced in section 3.4,
is used. From the given profile, 20 time steps, representing a 5 hour peak loading
time period from 15:00 till 20:00 with 15 minute resolution, are taken. MatPower
is used to calculate the accurate voltages and current flows in the electric network.
These results are used as

”
real measurement“ values against which the estimations

results are analyzed. To estimate the future voltages and currents in a consistent
manner, constant comparison values for the active power Pcomp and the reactive
power Qcomp are examined. They are used to calculate the active power difference
∆P and the reactive power difference ∆Q which are further used in the voltage and
current estimation. The equation to calculate the power differences can be derived
as ∆P = Phh,h,τ − Pcomp and ∆Q = Qhh,h,τ −Qcomp. The comparison point powers
are taken from the data as maximum load, mean load, median load, and zero load
case. The equation for the voltage estimation is as follows:

[

∆δ
∆V

]

= J
−1 ·

[

∆P
∆Q

]

=

[ ∂δ
∂P

∂δ
∂Q

∂V
∂P

∂V
∂Q

]

·

[

∆P
∆Q

]

, (A.1.1)

where J−1 is the inverse of the Jacobian matrix, and it is opened with its partial
derivatives on the right hand-side of the equation. From the voltage angle differ-
ence ∆δ and voltage magnitude difference ∆V, the complex form voltage ∆V is
formulated and used as shown in the following equation:

∆I = Ybus ·∆V, (A.1.2)
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Voltage and Current Estimation

where ∆I is the complex current difference. Four estimation runs are performed
and estimation values are stored and analyzed with reference to the real measure-
ment values.

A.2 Results

From the first estimation results it can be seen that depending on the comparison
point, the estimation results are different. Figure 25 show the results of the voltage
and current estimations.
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Figure 25: Voltage and current estimation

The estimation results are differ from each other because the load flow equations
are not solved iteratively in order to save time. When the forecast power values
differ a lot from the constant comparison point, the estimation results are inaccu-
rate. Despite of this, the voltage errors are negligible small. The maximum voltage
estimation error in all of the four cases is ± 0.07 %. However, the current estimation
is more inaccurate. The current estimation error for the zero load is +0% -5.5%, for
the median load +1.3% -5.0%, for the mean load +6.5% -4.3% and for the maxi-
mum load +50% -0%. The results in Figure 26 show that in maximum load case the
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estimated currents are always more than the real measured currents, except when
the comparison point is close to than of the forecast load. A vice versa effect is seen
for the zero load case currents.

A.3 Recommendations

Based on this study, the zero load case is proposed to be taken as a constant com-
parison point for the voltage and current estimation. It results an accuracy of
+0% -5.5% in the current and ± 0.07 % in the voltage estimations. Based on the
proposed constant comparison point, the reference voltage Vref,m and the reference
current Iref,l can be calculated. They are used for the voltage and current constraints
in equations (2.3.3) and (2.3.4). This is seen to be the most accurate of the studied
cases. It is recommended that the received error is compensated in the constraint
calculation to avoid current and voltage limit violations.
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Appendix B

Detailed Flowchart for Multi EV Fleet Aggregator

Scenario

DSO

Success
No YesPower 

requestSuccess
Yes

Capacity profiles

New capacity 
profiles

Solve optimization 
problem

Calculate the 
power capacities

Solve optimization 
problem

power capacities

Solve the 
optimization 
problem with

new capacities

Surplus
capacities

Surplus
capacities

Submit 
results

Submit 
results

Price 
profiledata

Price 
profile data

Load 
profiles

Network 
data

No Yes

Reduce final 
SoC target

Success

No

Solve the 
optimization 
problem with
new capacities

NoYes

Reduce final 
SoC target

Success

CBS � multi aggregator Start
CS

End
CS

EV1 user EV2 user

Re-calculate the

EV fleet 1 schedules EV fleet 2 schedules

EV fleet aggregator 1 EV fleet aggregator 2

Pf,τ and Ptot,τ

Pf,τ and Ptot,τ

Figure 27: Detailed Flowchart for Two Aggregator Scheme

48



Appendix C

EV Model Validation

In this part, the used EV charging model, introduced in section 3.2 is tuned to
reflect the charging behavior of Mitsubishi iMiEV.

C.1 Data

For the validation work, the iMiEV data-sheet [44] donates the needed specifications
for the battery model and the on-board charger. The used measurement data for the
specific EV battery and charger behavior is attained from the project:

”
Integrierte

Tests der (Fahr-) und Ladeeigenschaften von Elektrofahrzeugen“ conducted by Dipl.-
Ing. Johannes Prior at Fraunhofer IWES, Kassel. To simulate the individual battery
cell, the data from [52] is used. The publication presents detailed measurement
results for the

”
LEV50“ type battery cells, which are also used in Mitsubishi iMiEV.

This data is used to find the coefficient values for the on-board charger, for the
battery resistance and for the battery inner voltage source. Dr. Frank Marten
from Fraunhofer Iwes, Kassel preformed the earlier battery validation work and his
methods and documentation are used as a basis for the validation of the EV charging
model.

C.2 Methods

The charger logic block and the battery model block, introduced in section 3.2,
were developed to represent the dynamic and complex behavior of a real EV. In
the used EV model, the charger is mathematically modeled by using the 2nd order
polynomial function introduced by [53]. This function is formulated as:

PDC = −α1 + (1− α2) · PAC − α3 · PAC
2, (C.2.1)

where the DC power PDC is calculated by considering the AC power PAC as a
variable. The α1, α2 and α3 are the loss coefficients. The measurement data for
AC charging power between a range of 0.63 kW to 3.2 kW is used to calculate
the charger’s AC-DC power conversion losses. These values define the 2nd order
polynomial function, which is shown above. This is done in similar manner as in
Figure 30.

A simplified model of a charger and a battery is presented in Figure 28. The
battery is modeled as a circuit with a DC voltage source and a resistor connected in
series. They are both variable depending on the battery SoC. The current integration
method is used in this EV model to determine the SoC and it can be defined as:

SoC =

∫

IDC

βbatt
dt, (C.2.2)
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Figure 28: Schematic diagram of the EV charger and battery [10].

where the DC current IDC is accumulated over time in relation to the battery
capacity βbatt which is measured in ampere-hours [Ah]. The received SoC value
is used in the charging logic block to calculate the battery DC voltage with a 2nd
order polynomial function and it can presented as follows:

Ubatt = ξ ·
(

ζ1 + ζ2 · SoC + ζ3 · SoC
2
)

, (C.2.3)

where Ubatt is the internal battery voltage, ξ is the number of cells in series in the
battery and ζ1, ζ2 and ζ3 are the voltage coefficients. The battery’s inner resistance
is defined in the charging logic by a 6th order polynomial function which is:

Rbatt =

(

ξ

ρ

)

·
(

η1 + η2 · SoC + η3 · SoC
2 + η4 · SoC

3

+ η5 · SoC
4 + η6 · SoC

5 + η7 · SoC
6
)

, (C.2.4)

where Rbatt is the internal resistance of the battery, ρ is the number of cells
in parallel in the battery and η1 − η7 are the resistance coefficients. To tune the
coefficients in equations (C.2.3) and (C.2.4), the behavior of a single battery cell
needs to be replicated. To obtain the behavior of a single battery cell, the discharging
behavior of LEV50 cell on different discharging currents, presented in Figure 29, is
used.

The voltage values are visually estimated to calculate the resistance and the volt-
age averages, as presented in Table C.1. The resistance differences are calculated
according to different discharge currents as illustrated in Table C.1. From these
resistance differences, the average values are taken as function of SoC. Accordingly
the resistance coefficient values η1 − η7 are formulated. To calculate the voltage co-
efficient, the open circuit voltages are calculated for the corresponding battery SoC
rates. For this the summation of the estimated voltage and the voltage calculated
by the average resistance and the corresponding current is used. Accordingly aver-
age open voltages are calculated for the corresponding SoC rates. Moreover, curve
fitting, illustrated in Figure 30, is used to determine the 2nd order polynomials for
the voltage coefficients ζ1 − ζ3.

The values obtained by the calculations are nearly the same as the ones Dr.
Marten had in his validation work. Dr. Marten also mentioned in his work that
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Figure 29: LEV50 cell voltage values with different discharge currents [52].

Table C.1: Battery efficiency calculations

Figure 30: Battery inner voltage source coefficients by a 2nd order polynomial curve
fitting

even tough one single cell is well modeled it cannot be multiplied to present a
complete battery pack. The battery pack, consisting of multiple individual cells,
has its own characteristics, due to the fact that the cells are not perfectly identical.
Therefore, it is necessary to determine a scaling factor in order to better reproduce
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the accumulated behavior of the cells as a whole.

C.3 Parameter Fitting and Correction Factors

The battery capacity decreases as the battery ages. Paper [54] shows that the Li-ion
battery degradation can be linearly estimated till a certain degree as illustrated in
Figure 31. Authors in [54] also describe that the cell voltages start to drop in an
almost uniform way as the number of loading cycles increases. Some degradation
also occurs when the battery is kept without usage. The cell resistance increases
uniformly with different DoD percentages.

Figure 31: Battery degradation as a function of the loading cycles [54].

For example, if the battery has already 1000 charging cycles, the end capacity
drops with around 1,11 Ah compared to a battery which has only 500 charging
cycles. Motivated by [54], a correction factor for the battery capacity is additionally
implemented within the range of 27-45 Ah in order to model the degradation effect
of the battery. Therefore only the corresponding values, presented in Table C.1,
from the chosen range need to be altered stepwise. As the amount of loading cycles
is not known, an alternative approach is used. The battery degradation can also
be estimated by substituting the realized charging capacity from the new battery’s
maximum charging capacity. Even though the capacity of a new battery is 50 Ah,
it is assumed that the charger has an internal SoC limit to charge the battery only
until it reaches 90% SoC. Therefore, the real used capacity is only 45 Ah.

The realized charging capacity can be calculated by taking the battery’s maxi-
mum DC energy and dividing it by the battery’s maximum DC voltage. The realized
charging capacity is 44,437 Ah, which after substituting results in a battery degra-
dation of 0,563 Ah. As the charger parameters also influence the outcomes, it is seen
that the real charger is working at lower efficiency. Therefore a correction factor is
also added to the charger function. The measured DC power values are uniformly
multiplied by the correction factor, so that the new coefficient polynomials are calcu-
lated more accurately. Moreover, The li-ion battery has two charging periods in its
charging process, which are namely constant power and constant voltage charging.
The turning point of these two periods is defined by the maximum DC voltage of
the battery. To fit the turning point of the constant voltage charging and the con-
stant power charging range, correction factors are applied separately to the voltage
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and the resistance characteristics. These two factors are used to multiply the mean
resistance and voltage values accordingly. The multiplied mean values are used to
calculate the new η and the ζ for the battery model.

C.4 Results

For model validation, the measured AC voltage is used in the developed EV model
as an input. Output of the model, battery DC voltage, battery DC current and the
DC charging power are compared with the measurement data. To determine the
different correction factors which represent the non-ideal behavior of the measured
battery, the tuning process is done iteratively till it reaches a reasonable maximum
error. The original measurement data as well as the simulations resolution is chosen
as 1 second, but in order to mitigate the measurement noise, both of them are scaled
to 1 min resolution. As this does not entirely address the issue of highly fluctuating
measurement data, the end part of the charging process is ruled out from the error
calculation. The part used for error calculations starts from 35 min and ends at 328
min. The validation results are shown in Figure 32.

0 100 200 300 400
0

2

4

6

8

10

Time (min)

C
ur

re
nt

 (
A

)

 

 

Measurement Idc
Simulation Idc

0 100 200 300 400
0

100

200

300

400

Time (min)

V
ol

ta
ge

 (
V

)

 

 

Measurement Udc
Simulation Udc

Idc and Udc with 5 pol, 0.99 charger factor, 0.197 R factor and 1.034 V factor

Figure 32: Comparison of DC currents and voltages

The maximum relative error between the simulated and measured direct current
is 2,1% and for the voltage it is 1,0%. The parameters received from this tuning
work are implemented in the EV model to define the charging behavior.
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Appendix D

Penalty Factor’s Influence to the Primary Objec-

tive Function

The penalty factors CP and PP are studied to enhance the charging scheduling de-
cision making process. These penalty factors are used in the cost minimization
objective function (2.2.1) and in the valley filling and load shifting objective func-
tion (2.3.1) introduced in chapter 2. Small CP and PP cause the secondary objective
to lose its worth and the charging of one specific EV to happen with multiple inter-
ruptions. However, too large factors cause the solver to ignore the primary objective
function. To search proper values for these penalty factors, the ABS, DBS and the
SBS are used. Next, the data and methods are introduced. Subsequently the case
study and results are presented. Lastly, recommended solutions are provided.

D.1 Data and Methods

A trial and error method is used to map the region where both of the objective
functions are noticed by the solver and a more accurate study can be conducted.
The used data and the simulation environment are introduced in chapter 3. To
simplify and speed up the study, the EV model and grid simulations are bypassed.
The EV battery behavior is replicated with simple calculations. The simulation step
is 30 minutes and the optimization horizon is 14 hours. The used EV penetration
rate is 50%.

D.2 Results

The results are analyzed in terms of the apparent efficiency degradation in the
primary objective function and the amount of interruptions in the whole EV fleet
charging. The ABS and SBS results are evaluated based on charging cost changes
as the CP increases and on the number of interruptions in the EV charging. The
DBS results are evaluated based on the changes in the cumulative peak power cPEV,
occurring due to EV charging as the PP increases and on the number of interruptions
in the EV charging.

First, the CP in the ABS is chosen for inspection. The numerical results are
gathered in Table D.1 and for comparison, a scenario where the CP = 0 is also
presented. Here a variable step size is used in order to narrow down the amount of
simulation.

The Inter. in Table D.2 describes the total number of charging interruptions in
the charging of the whole EV fleet. Here, cost is the total charging cost of the EV
fleet in Euros (e). The zero case presents the largest amount of interrupted charging
incidences and the largest CP leads to a situation where all of the EVs are charged

54



Penalty Factor’s Influence to the Primary Objective Function

Table D.1: The CP influence in the ABS

CP 0 0.01 0.025 0.04 0.055 0.07 0.08 0.11 0.14 0.17 0.20

Inter. 64 47 15 3 0 0 0 0 0 0 0
Cost [e] 12.3 12.0 12.5 13.2 13.9 13.9 14.3 14.3 14.3 14.3 14.3

in a continuous manner. From these results it can be seen that for the specific day
and EV penetration rate considered, the CP = 0.055 could be chosen as it results
in zero interruptions and the total charging cost is only 16% higher compared to
CP = 0.01. Next, the SBS is studied with the same CP region as the ABS. The
results are presented in Table D.2.

Table D.2: The CP influence in the SBS

CP 0 0.01 0.025 0.04 0.055 0.07 0.08 0.11 0.14 0.17 0.20

Inter. 64 29 10 4 2 2 1 0 0 0 1
Cost [e] 13.2 13.4 13.9 14.3 14.7 14.7 14.8 15.0 15.0 15.1 15.1

Here the results follow the same pattern as in the ABS case, except that the
largest CP differs from its predecessors. It shows that one interruption occurs in
the charging. This can be explained by the nature of the optimization process and
the more constrained optimization problem the SBS presents. The results shows
that the first zero interruption case could be found at CP = 0.11 and at this value
the total charging cost is only 14% higher compared to the minimum cost case at
CP = 0.

Finally, the DBS and PP are taken into inspection. The suitable region for study
is between PP = 0.001 and PP = 0.01, with 0.001 steps. The results for the DBS
and PP are gathered in Table D.3.

Table D.3: The PP influence in the DBS

PP · 10e− 4 0 1 2 3 4 5 6 7 8 9 10

Inter. 59 21 8 4 3 3 2 1 1 1 0
cPEV [kVA] 128 108 114 110 118 114 126 130 130 141 137

In Table D.3, the cPEV is the maximum load of the aggregated load profile rep-
resenting the loading at the distribution transformer when the EVs are in charging.
The number of interruptions decreases rapidly till 3 but after this the PP needs to
increase till 0,01 before the solver is willing to charge all of the EVs without inter-
ruptions. Meanwhile, the cPEV value is increasing roughly 25% from minimum case
at PP = 0.001 till the zero case at PP = 0.01. After PP = 0.005, the cPEV begins
to increase considerably, which indicates that the primary objective is becoming
insignificant. To understand these changes better, the results are also inspected
visually from the charts presented in Figure 33.

In Figure 33 it can be observed that for PP = 0.01, the primary objective is
starting to suffer considerably. The PP = 0.005 shows only small change in the
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Figure 33: Aggregated powers by the DBS with different PP

cumulative charging profile. However, the results are assumed to be different when
the used price profile or the EV behavior changes. To account for these changes,
more exhaustive studies would be needed. However, as the focus of this work is not
in parameter optimization the attained results are considered to be satisfactory.

D.3 Recommendations

Based on this study, a CP of 0.1 is proposed to be used in the cost minimization
objective function (2.2.1). This value is a compromise value, by which close to zero
interruption can be assumed by both of the used strategies and the total charging
increment can be considered reasonable. A PP value of 0.005 represents a suitable
compromise value for the DBS and the valley filling and load shifting objective
function (2.3.1). As the DBS is more electric network oriented, 3 interruptions in
the whole EV fleet charging can be considered acceptable. With this penalty factor,
the primary objective function of the DBS is still working sufficiently because the
cPEV increased only by 6% compared to the minimum case. It is to be noted
that these suggested penalty factors are tuned for 30 minute simulation step and
the values for different simulation steps need to be multiplied with corresponding
factors. E.g. for 60 minute simulation intervals, the factors should be doubled and
for 15 minute intervals they should be halved.
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Appendix E

Simulation Results

Table E.1: Wednesday, Multi aggregator results 1 with 75% EV penetration rate

Wednesday, Aggregator 1 with 30% share of EVs on 75% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 44.3 24.1 32.1 25.9 24.7
Cost change [%] -48.3 -71.8 -62.6 -69.7 -71.2
Net interrupt. -12 -13 15 -11 -12
Flexibility [h] 6 3 3 3 3
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 287 302 287 287 287
Max current [A] 331.1 304.4 257.2 262.8 264.7
Viol. magn. [%] 16.6 7.2 0.0 0.0 0.0
Viol. dur. [min] 1 2 0 0 0
Loss change [%] -30.9 -27.7 -40.0 -32.0 -28.9
Cost of losses [e] 3.4 1.5 1.6 1.6 1.6

Wednesday, Aggregator 1 with 50% share of EVs on 75% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 55.3 24.1 38.9 26.0 24.9
Cost change [%] -35.4 -71.9 -54.6 -69.6 -70.9
Net interrupt. -10 -12 30 -1 -14
Flexibility [h] 8 3 2 3 3
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 301 341 287 287 287
Max current [A] 331.4 304.4 270.1 257.2 281.7
Viol. magn. [%] 16.7 7.2 0.0 0.0 0.0
Viol. dur. [min] 1 2 0 0 0
Loss change [%] -28.1 -27.1 -46.1 -32.6 -29.5
Cost of losses [e] 4.3 1.5 1.7 1.6 1.6
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Table E.2: Wednesday, Multi aggregator results 2 with 75% EV penetration rate

Wednesday, Aggregator 1 with 70% share of EVs on 75% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 67.0 23.9 46.9 26.2 24.8
Cost change [%] -21.8 -72.1 -45.2 -69.5 -71.0
Net interrupt. -8 -12 53 5 -8
Flexibility [h] 9 3 2 3 3
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 320 372 287 287 287
Max current [A] 331.4 360.8 270.1 275.1 287.6
Viol. magn. [%] 16.7 27.0 0.0 0.0 1.3
Viol. dur. [min] 1 27 0 0 1
Loss change [%] -21.2 -24.8 -49.8 -33.5 -28.9
Cost of losses [e] 5.7 1.5 2.1 1.6 1.6

Wednesday, Aggregator 1 with 100% share of EVs on 75% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 85.7 23.2 59.6 28.2 24.7
Cost change [%] 0.0 -73.0 -30.4 -67.1 -71.2
Net interrupt. 0 -13 79 16 -3
Flexibility [h] 12 3 2 3 3
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 346 427 287 287 287
Max current [A] 347.5 440.8 256.5 249.5 287.6
Viol. magn. [%] 22.4 55.2 0.0 0.0 1.3
Viol. dur. [min] 8 32 0 0 1
Loss change [%] 0.0 -19.6 -50.0 -35.3 -27.3
Cost of losses [e] 8.0 1.6 3.1 1.6 1.6
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Simulation Results

Table E.3: Wednesday, Multi aggregator results 1 with 100% EV penetration rate

Wednesday, Aggregator 1 with 30% share of EVs on 100% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 56.8 32.1 42.9 37.0 33.4
Cost change [%] -46.0 -69.5 -59.2 -64.8 -68.2
Net interrupt. 12 6 42 22 17
Flexibility [h] 6 3 3 3 3
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 287 354 287 287 287
Max current [A] 299.6 342.4 282.8 280.6 271.6
Viol. magn. [%] 5.5 20.6 0.0 0.0 0.0
Viol. dur. [min] 1 27 0 0 0
Loss change [%] -32.4 -21.7 -36.8 -31.2 -26.1
Cost of losses [e] 3.9 2.1 2.2 2.2 2.2

Wednesday, Aggregator 1 with 50% share of EVs on 100% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 69.4 31.5 53.9 37.6 33.9
Cost change [%] -34.0 -70.0 -48.7 -64.3 -67.8
Net interrupt. 0 -6 48 18 -5
Flexibility [h] 8 3 2 3 3
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 298 394 287 287 287
Max current [A] 347.9 390.5 259.8 259.8 271.6
Viol. magn. [%] 22.5 37.5 0.0 0.0 0.0
Viol. dur. [min] 2 33 0 0 0
Loss change [%] -29.1 -19.1 -42.9 -31.0 -27.0
Cost of losses [e] 5.2 2.1 2.6 2.3 2.2
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Simulation Results

Table E.4: Wednesday, Multi aggregator results 2 with 100% EV penetration rate

Wednesday, Aggregator 1 with 70% share of EVs on 100% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 83.2 30.8 59.6 38.3 34.4
Cost change [%] -20.8 -70.7 -43.3 -63.6 -67.3
Net interrupt. -2 -8 71 36 11
Flexibility [h] 10 3 3 3 4
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 316 444 287 287 287
Max current [A] 364.0 484.3 266.1 267.2 271.6
Viol. magn. [%] 28.2 70.5 0.0 0.0 0.0
Viol. dur. [min] 3 49 0 0 0
Loss change [%] -21.6 -15.8 -44.0 -33.3 -27.3
Cost of losses [e] 6.8 2.1 3.0 2.3 2.2

Wednesday, Aggregator 1 with 100% share of EVs on 100% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 105.1 28.5 67.3 41.5 34.1
Cost change [%] 0.0 -72.9 -36.0 -60.5 -67.6
Net interrupt. 0 -15 110 49 15
Flexibility [h] 12 3 2 4 4
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 353 538 287 287 287
Max current [A] 396.2 548.5 285.0 283.4 292.9
Viol. magn. [%] 39.5 93.1 0.4 0.0 3.1
Viol. dur. [min] 12 49 1 0 1
Loss change [%] 0.0 -3.7 -40.3 -33.9 -25.6
Cost of losses [e] 9.6 2.2 3.7 2.4 2.2
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Simulation Results

Table E.5: Saturday, Multi aggregator results 1 with 75% EV penetration rate

Saturday, Aggregator 1 with 30% share of EVs on 75% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 23.8 15.1 17.9 15.1 14.9
Cost change [%] -41.5 -62.9 -55.9 -62.9 -63.3
Net interrupt. -8 -15 12 -15 -13
Flexibility [h] 9 6 5 5 5
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 282 267 267 267 267
Max current [A] 298.2 266.7 186.6 234.7 224.6
Viol. magn. [%] 5.0 0.0 0.0 0.0 0.0
Viol. dur. [min] 1 0 0 0 0
Loss change [%] -25.4 -15.8 -37.4 -21.0 -22.3
Cost of losses [e] 1.3 0.8 0.7 0.8 0.8

Saturday, Aggregator 1 with 50% share of EVs on 75% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 29.5 14.4 20.1 15.4 14.5
Cost change [%] -27.5 -64.6 -50.6 -62.1 -64.2
Net interrupt. -7 -16 21 -18 -12
Flexibility [h] 11 5 4 5 4
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 301 276 267 267 267
Max current [A] 307.5 275.2 188.1 211.2 253.8
Viol. magn. [%] 8.3 0.0 0.0 0.0 0.0
Viol. dur. [min] 1 0 0 0 0
Loss change [%] -18.9 -13.5 -39.7 -27.3 -19.8
Cost of losses [e] 1.8 0.8 0.8 0.7 0.7
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Simulation Results

Table E.6: Saturday, Multi aggregator results 2 with 75% EV penetration rate

Saturday, Aggregator 1 with 70% share of EVs on 75% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 32.8 14.3 22.4 15.4 15.1
Cost change [%] -19.4 -64.7 -44.9 -62.2 -62.9
Net interrupt. -6 -18 36 -18 -17
Flexibility [h] 14 4 4 5 5
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 301 268 267 267 267
Max current [A] 314.3 259.2 237.4 222.4 240.4
Viol. magn. [%] 10.7 0.0 0.0 0.0 0.0
Viol. dur. [min] 1 0 0 0 0
Loss change [%] -17.0 -14.6 -39.4 -22.8 -18.6
Cost of losses [e] 2.0 0.8 0.9 0.8 0.8

Saturday, Aggregator 1 with 100% share of EVs on 75% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 40.6 14.3 26.6 16.0 15.2
Cost change [%] 0.0 -64.8 -34.6 -60.7 -62.6
Net interrupt. 0 -18 43 -13 -15
Flexibility [h] 18 4 5 6 5
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 308 288 267 267 267
Max current [A] 323.9 307.2 216.4 207.3 250.7
Viol. magn. [%] 14.1 8.2 0.0 0.0 0.0
Viol. dur. [min] 1 26 0 0 0
Loss change [%] 0.0 -11.7 -44.8 -28.8 -20.1
Cost of losses [e] 2.7 0.8 1.0 0.7 0.8
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Simulation Results

Table E.7: Saturday, Multi aggregator results 1 with 100% EV penetration rate

Saturday, Aggregator 1 with 30% share of EVs on 100% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 36.0 25.6 29.3 26.7 25.9
Cost change [%] -41.2 -58.2 -52.1 -56.3 -57.6
Net interrupt. -3 -13 17 -13 -15
Flexibility [h] 10 6 6 6 6
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 286 291 267 267 267
Max current [A] 282.0 288.6 240.1 224.6 227.5
Viol. magn. [%] 0.0 1.6 0.0 0.0 0.0
Viol. dur. [min] 0 2 0 0 0
Loss change [%] -31.7 -20.3 -33.5 -28.4 -25.2
Cost of losses [e] 1.9 1.5 1.4 1.4 1.4

Saturday, Aggregator 1 with 50% share of EVs on 100% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 42.4 25.3 33.3 27.1 26.3
Cost change [%] -30.6 -58.7 -45.5 -55.7 -57.0
Net interrupt. -6 -19 26 -14 -14
Flexibility [h] 12 6 5 6 6
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 301 321 267 267 267
Max current [A] 298.2 307.2 226.2 209.2 232.3
Viol. magn. [%] 5.0 8.2 0.0 0.0 0.0
Viol. dur. [min] 1 28 0 0 0
Loss change [%] -30.6 -19.7 -39.8 -30.1 -26.0
Cost of losses [e] 2.4 1.4 1.4 1.4 1.4
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Simulation Results

Table E.8: Saturday, Multi aggregator results 2 with 100% EV penetration rate

Saturday, Aggregator 1 with 70% share of EVs on 100% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 50.7 25.4 35.5 27.5 26.0
Cost change [%] -17.0 -58.5 -41.8 -55.0 -57.4
Net interrupt. -5 -24 50 -3 -1
Flexibility [h] 14 6 6 6 6
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 319 339 267 267 267
Max current [A] 341.9 350.8 268.7 240.2 258.0
Viol. magn. [%] 20.4 23.5 0.0 0.0 0.0
Viol. dur. [min] 3 46 0 0 0
Loss change [%] -26.2 -12.5 -34.4 -29.7 -25.7
Cost of losses [e] 3.0 1.5 1.7 1.4 1.4

Saturday, Aggregator 1 with 100% share of EVs on 100% EV penetration rate
Combination: UCS-CBS ABS-CBS DBS-CBS SBS-CBS CBS-CBS

Total cost [e] 61.1 26.7 43.7 29.2 26.9
Cost change [%] 0.0 -56.3 -28.5 -52.2 -55.9
Net interrupt. 0 -20 86 9 -1
Flexibility [h] 18 7 6 7 6
Min SoC 0.9 0.9 0.9 0.9 0.9

Max load [kVA] 356 311 267 267 267
Max current [A] 374.3 323.2 274.5 233.8 272.5
Viol. magn. [%] 31.8 13.8 0.0 0.0 0.0
Viol. dur. [min] 5 48 0 0 0
Loss change [%] 0.0 -8.9 -36.4 -32.4 -25.6
Cost of losses [e] 4.6 1.8 2.2 1.5 1.5
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