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Introduction 

 

The wireless solution is increasingly spreading as method of battery charging for 

Electric Vehicles (EVs). The standard technology of wireless EV battery charging is 

based on the Inductive Power Transfer (IPT) between two coupled coils, one 

connected to the electrical grid and the other one connected to the rechargeable 

battery. The IPT provides benefits in terms of safety and comfort, due to the absence 

of a plug-in operation: through IPT, the electrocution risk typically arising from 

power cords is avoided and the battery charging operation can automatically start. 

According to the state of the EV, there are mainly two types of IPT for the 

wireless charging: static IPT, when the vehicle is stationary and nobody is inside it 

(e.g. in a parking area); dynamic or quasi-dynamic IPT, when the vehicle is being 

used (e.g. while in motion or during the traffic red light). The wireless power transfer 

obviously represents the only solution for the  dynamic charging, since the wired 

connection would be impossible during the motion. 

In spite of the undeniable advantages brought by Inductive Power Transfer, the 

researchers have to deal with several issues in order to make this technology even 

more attractive for the EV market. 

First of all, an IPT system is inherently less efficient in terms of power transfer 

efficiency if compared to a conventional wire-based system. Indeed, due the 

magnetic coupling between the coils, there is an unavoidable minimum leakage 

magnetic field, leading to an energy loss. Furthermore, some technical aspects need 

to be taken into account in the practical implementation of an IPT system: for 

example, in order to obtain the maximum coupling, the misalignment between the 

coils must be as small as possible. As far as safety is concerned, even if the IPT 

allows to reduce the electrocution risk, some care is required regarding the magnetic 

field exposure. 

In addition to design-related issues, other important considerations should be 

made, such as costs, infrastructural implications, standardization and customer 

reception. 
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The inductive coupling can be also exploited for a reverse power flow, that is 

from the vehicle to the grid. The Vehicle-to-grid (V2G) is a wide-spread concept, 

belonging to the up-to-date idea of the active demand: in a smart electrical network, 

the consumer is able to become producer of energy. The wireless power transfer can 

represent a support to V2G, and therefore be a Bi-Directional Inductive Power 

Transfer (BDIPT). 

 

In Chapter I the main applications of wireless battery charging are addressed. All 

the possible power levels are considered, from the µW of Wireless Sensor Networks 

(WSN) to the hundreds of kW of Railway Applications, passing through the 

following applications: electric toothbrush, consumer electronic devices, household 

appliances and Electric Vehicles (EVs). A technical background on the IPT systems 

is provided, particularly focusing on the electronic and the magnetic design. After 

that, the IPT applied to EVs is discussed as far as general overview and state of the 

art are concerned: considerations on magnetic couplers, design methodologies, 

control strategies and safety issues are carried out. In the end, the main goals of the 

thesis are discussed. 

 

In Chapter II an IPT system for wireless E-bike battery charging is proposed. 

Special care is taken towards the design of the coupled coils and of the power 

electronics system. A 36 V LiFePO4 battery and an electrical power ranging from 

100 W to 250 W are considered. Simulations have been carried out through 

PowerSIM software. Issues such as bifurcation and skin effect are addressed as well. 

In addition to the system design, a typical Bi-Directional Inductive Power 

Transfer (BDIPT) system is deeply analyzed, in terms of power transfer and 

efficiency as function of specific control parameters, and an efficiency optimization 

algorithm is proposed. The mathematical analysis is validated through the electronic 

simulations. 

In place of the designed and assembled inductive coils, alternative solutions of 

inductive coupling are proposed. All these solutions feature an air gap between the 

coils and are sized according to the dimensions of a bicycle wheel. An investigation 

on these options, carried out through the COMSOL Multiphysics software, leads to 
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define the best solution in terms of efficiency and tolerance to misalignments. The 

comparison is made considering the accurate model of the whole system, including 

also the switching losses inside the electronic components. 

 

In Chapter III the experimental results are presented. The laboratory prototype 

building is based on the designed system, featuring a coupling solution with flat and 

circular coils. Component sizing and PCB layout design are thoroughly discussed. In 

the end, the experimental results in terms of system working and power transfer 

efficiency are provided. A magnetic characterization of the prototype is given as 

well, aiming at the evaluation of the distance from the system at which the magnetic 

field exposure guidelines, provided by the International Commission on Non-

Ionizing Radiation Protection (ICNIRP), are respected. The discussion about 

physiological compatibility of IPT systems is supported by magnetic simulations and 

measurements on the proposed system, for a 100 W power transfer. 
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Chapter I 

 

Wireless battery charging for Electric Vehicles: 

introduction and state of the art 

 

 

The wireless solution represents an ever-growing method of battery charging in 

several applications. The lack of wires is desirable whenever the power cable is 

inconvenient or even impossible to use. Wireless battery charging can be employed 

in different applications, ranging from the ultra-low power levels of the wireless 

sensors to the ultra-high power levels of the Railway Applications and passing 

through the following examples: electrical toothbrush [1], mobile phone [2], laptop 

[3], television [4], electric bicycle [5], electric car [6], electric bus [7]. 

 

 

I.1. Wireless charging for low-power applications 

 

The wireless battery charging for low-power devices ranges from ultra-low power 

applications, such as wireless sensors or implantable devices, to consumer electronic 

devices, such as smartphones or notebooks. The ultra-low power devices range from 

µW to mW power levels, whereas the power levels of the consumer electronic 

devices range from some W (e.g. mobile phones) to tens of W (e.g. laptops). 

 

I.1.1. Wireless Sensor Networks and biomedical applications 

 

In Wireless Sensor Networks (WSN) the use of wires for the power supplying is 

generally impossible, since the wireless sensors are inherently hard to reach from the 

human beings, like in meteorological data collecting or military applications. In 
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similar applications, the wireless solution represents the best option for both 

communications and power supplying. This application corresponds to ultra-low 

power levels, ranging from µW to mW. 

In [8–10], the following method of wireless battery charging for nodes of a WSN 

is proposed: a wireless charging vehicle (WCV) travels along a planned path inside 

the network and recharges the sensors, through an inductive power transfer link.  In 

[11] a power transfer inductive link is proposed to supply the batteries of the WSN 

nodes. The distance between the inductive coils is in the range (1÷10) mm. 

The use of the environmental energy harvesting in order to supply the sensors can 

be considered as a form of wireless battery charging: in [12] and [13] the batteries 

and the supercapacitors of sensor nodes are respectively supplied by radio-frequency 

waves and solar power. 

Wireless power transfer is also convenient in biomedical applications for the 

supply of implantable devices. In [14–18] several examples of wireless battery 

charging systems for implanted devices are proposed and investigated. 

 

I.1.2. Consumer electronic devices and household appliances 

 

The following range of power levels is represented by the electronic consumer 

devices, such as mobile phones and notebooks. For these applications, the power 

level range from some W to tens of W. The wireless battery charging for mobile 

phones is fully commercialized and standardized  [19]. 

This wireless charging is based on the Inductive Power Transfer (IPT) between two 

coupled coils: one of them is placed inside a pad and connected to the electrical grid, 

the other one is placed inside the device and connected to the electric battery. By 

positioning the mobile device upon the pad, the charging operation automatically 

starts through magnetic induction. A standard has been created by Wireless Power 

Consortium (WPC) to build a common platform that helps the compatibility between 

wireless charging stations and mobile devices. More than 200 companies have joined 

WPC [20].  
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 One of the most attractive benefits brought by wireless battery charging for 

consumer electronics is the opportunity to simultaneously charge different devices on 

the same pad, as suggested by Fig. I.1 [21]. 

 

 

Fig. I.1. Commercial example of a wireless multi-charging station [21] 

 

In [22] and [23] an innovative topology of power receiver of wireless battery 

charger for consumer devices is proposed. 

As far as household appliances are concerned, [24] provides an example of an IPT 

system for a 1 kW power level, considerable as the peak power for the low-power 

range. 

 

I.2. Wireless charging for Electric Vehicles 

 

If compared to the consumer electronic devices, the electric vehicles (EV) 

charging occurs at notably higher power levels, ranging from a few hundreds of W 

(as in the case of the E-bike) to several tens of  kW (as in the case of the electric 

buses). The Wireless Electric Vehicle Charging (WEVC) is still far from a full 

commercialization and standardization. Nevertheless, being implemented through 

Inductive Power Transfer (IPT) between two coupled coils, it provides benefits in 

terms of safety and comfort to all the users. 
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The EVs can be recharged or supplied by IPT exploiting mainly three alternative 

options [25]: static wireless charging, quasi-dynamic or dynamic wireless charging. 

The static IPT consists of the EV charging whenever the vehicle is stationary and 

nobody stays inside it, e.g. in the case of a parked car. In the quasi-dynamic IPT, the 

recharge occurs when the electric vehicle is stationary but someone is inside it, e.g. 

in the case of a cab at the traffic light intersections or a bus at the stop. The dynamic 

IPT consists in supplying the vehicle during its motion, e.g. in the case of a car 

running on a highway or of a moving train. 

An overview on research and applications about IPT-based wireless charging for 

some electric means of transportation will be given in the following. 

 

I.2.1. IPT for E-bike 

 

The Electric Bicycles (E-bikes) are light and compact vehicles, representing a 

potentially consistent category of transportation means in the current and future 

scenarios of a smart and green urban mobility. 

 Due to the generally frequent necessity of using E-bikes during a day and 

therefore recharging them, the wireless solution may be considered the most 

appropriate way of E-bike charging.  

E-bike wireless charging is based on IPT. Academic researchers and commercial 

operators have proposed different solutions, as far as the position of the coupled coils 

is concerned. For all the proposed solutions, the E-bike is supposed to be parked in 

order to have the charging operation. 

On the academic side, in [26] and [27] an investigation about different coupling 

solutions is carried out, all of them consisting of a magnetic coupler made of a 

transmitter buried underground and a receiver installed inside the bicycle kickstand. 

Different cases of kickstand are investigated as well. The distance between 

transmitter and receiver of the magnetic coupler is 2 cm. 

In [28], the bicycle coil is placed on the side of the front basket and the grid-

connected coil is installed next to a wall, both in a vertical position, as shown in Fig. 

I.2. The wireless charging operation occurs at a 5 cm distance between the coils. 
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Fig. I.2. E-bike wireless charging proposed in [28] 

 

On the commercial side, RRC wireless solutions installs the receiver part under 

the saddle of the bicycle, as highlighted in Fig. I.3, so that a mechanically movable 

coil is needed in the transmitter side in order to perfectly align both the sides [29].  

 

 

Fig. I.3. E-bike wireless charging proposed by RRC [29] 

 

SEW Eurodrive proposes to put the receiver coil inside the bicycle kickstand [30], 

as suggested by Fig. I.4. 
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Fig. I.4. E-bike wireless charging proposed by SEW Eurodrive [30] 

 

 

I.2.2. IPT for electric car 

 

Implemented through Inductive Power Transfer, the wireless charging for car 

drivers is convenient as far as safety and comfort are concerned: the user should not 

be worried about handling power cords, thus avoiding the electrocution risk, and 

could park the car in proper spaces, so that the charging operation can automatically 

start. The coils are generally placed in the following way: the one connected to the 

grid is placed on the ground and the other one, connected to the battery, is placed in 

the bottom of the vehicle chassis, as suggested by Fig. I.5 [31]. The minimum power 

level for electric car charging is generally 3 kW. 

 Different examples of commercial wireless charging stations for electric cars can 

be provided, since the EV companies are increasingly interested to this innovative 

charging technology. Among the car manufacturers, Toyota, Nissan, General Motors 

and Ford are some of the companies showing interest in the inductive charging 

method [32], [33]. 

Among the companies producing wireless charging systems for EVs, Evatran and 

HaloIPT  are leaders in providing and improving the inductive charging technology. 

Evatran has created the inducive charging system Plugless Power[34]. HaloIPT, one 

of which images of the inductive charger is shown in Fig. I.5, has been acquired by 



Chapter I – Wireless battery charging 
for Electric Vehicles: introduction and state of the art 

 

10 
 

Qualcomm [35]. The opportunity of a fast charging would make the IPT more 

attractive for EVs [36]. 

 

 

Fig. I.5. IPT-based wireless charging of an electric car [31] 

 

Furthermore, the scientific research is ever more focused on the investigation of 

different aspects related to the IPT for wireless electric car charging, which are 

reported in [6], [37–44] and in other scientific work that will be cited in the 

following of the thesis. 

In the realistic scenario of an ever-growing use of EVs, one the most interesting 

challenges is represented by the possibility of an “on-the-road” charging, meaning 

that the battery can be recharged while the car is used, as suggested by Fig. I.6. 

 

 

Fig. I.6. Inductively powered roadway [45] 
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The quasi-dynamic and the dynamic IPT represent an actual solution for the 

driving range extension of EVs [25]. Different works are reported on this in [46–49]. 

In [50] and [45] the opportunity of an inductive charging during the motion of the 

vehicle on highways is investigated.  

As suggested by Fig. I.6, in the dynamic charging a track is present inside the 

road, consisting of multiple transmitting coils, thus allowing the power transfer 

towards the receiving coil that is inside the car, whenever the receiving coil is 

aligned, during the motion, to any of the road coils. 

The inductive coupling between the electrical grid and the EV can be also 

exploited for a reverse power flow, that is from the vehicle to the grid. By exploiting 

reversible power electronics stages, the power is able to flow from the grid to the 

rechargeable battery and from the battery to the grid, according to the Vehicle-to-grid 

(V2G) idea. V2G is a wide-spread concept, belonging to the up-to-date idea of the 

active demand: in a smart electrical network, the consumer is able to become 

producer of energy. In the case of a surplus of energy stored in some devices of the 

grid, the power can flow towards other devices requiring energy. 

The wireless power transfer can represent a support to V2G, and therefore be a 

Bi-Directional Inductive Power Transfer (BDIPT). Several works are reported in the 

scientific literature regarding BDIPT [51–58]. 

 

I.2.3. IPT for electric buses and Railway Applications 

 

Electric buses and railway applications represent ultra-high power levels, from 

tens to hundreds of kW. 

In [59] a detailed review on wireless power transfer for Electric Transit 

Applications is provided.  The On-Line Electric Vehicle (OLEV) is one of the most 

advanced systems for inductive charging of electric vehicles in general and buses in 

particular [40]. In Fig. I.7. the typical system for the electric bus wireless charging is 

highlighted. 
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Fig. I.7. Inductive Power Transfer for electric bus charging 

 

In [60] a magnetic coupling structure for IPT applied to railways is proposed. In 

[61] a study aiming at the efficiency optimization of a Wireless Low Floor Tram 

(WTRAM) is carried out. Bombardier proposes advanced technological solution for 

the IPT to supply electric buses, trams and trains [62]. A draw of the Primove tram 

by Bombardier is shown in Fig. I.8. 

Studies have been carried out concerning the use of the Inductive Power Transfer 

for the supply of the maglev trains. One of the proposed systems is the Inductive 

Power Supply for the Transrapid [63]. 

 

 

Fig. I.8. Primove tram by Bombardier [62] 
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I.3. The IPT: system description 

 

In Fig. I.9 a typical schematic of an Inductive Power Transfer system is shown. 

The DC-DC stage is highlighted in the figure. For battery charging applications, the 

electrical power flows from the DC-link to the battery. 

 

 

Fig. I.9.  A typical schematic of an IPT system 

 

The inductive power transfer occurs between two magnetically coupled coils. 

Their self-inductances are L1 and L2; the mutual inductance is M. L1 and L2 

correspond respectively to the primary and the secondary coil. The primary-side DC 

voltage source is connected to the electrical grid; the secondary-side DC section is 

the load representing the battery to be charged. Since the power transfer between the 

coupled coils is in AC, two intermediate stages are needed: a DC-AC in the primary 

side and an AC-DC in the secondary side. 

Since the coils are loosely coupled, a reactive network is needed in order to 

maximize the power transfer efficiency and to optimize the power factor, if the 

system works at the resonance. This reactive network is named compensation circuit 

and includes two capacitors, one for each side. In the example of the figure, both the 

compensation capacitors C1 and C2 are connected in series with the primary and the 

secondary coils. 

The main parts of the IPT systems will be described in the following. 

 

I.3.1. Compensation network 

 

A reactive network is required in order to maximize the power transfer efficiency 

towards the load and the power factor towards the source. Since the reactive 
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elements needing to be compensated are the coupled inductors, the compensation 

elements are capacitors. According to Fig. I.9 the capacitor connected to the primary 

coil is the primary capacitor C1, whereas the capacitor connected to the secondary 

coil is the secondary capacitor C2. 

According to the type of connection between the coils and their compensation 

capacitors, four different compensation topologies are possible: series-series (SS), 

series-parallel (SP), parallel-series (PS) and parallel-parallel (PP). For each of these 

four solutions, the first word (letter) refers to the primary side, whereas the second 

word (letter) refers to the secondary side, as highlighted in Fig. I.10. Choosing a 

specific topology rather than another one depends on the specific application [64–

69].  

 

 

Fig. I.10. The four main compensation topologies  

 

The SS choice allows to select the compensation capacitances depending only on 

the self-inductances, no matter what the load and the magnetic coupling are. 

Therefore, in case of misalignments between the coil, the system keeps working 

under resonance in spite of the mutual inductance variations [70]. 

For these reasons, the SS topology turns out to be convenient for EV battery 

charging. Indeed, in IPT charging of vehicles, the perfect alignment between the 

coils just represents an ideal case and even small misalignments are unavoidable. 
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I.3.2. Power converters 

 

Due to the AC nature of the inductive coupling between the coils, the voltages 

across the primary and the secondary side are alternating. The power source is the 

electrical grid, whereas the power load is the rechargeable battery. Two power 

converters are required, one in the primary side and the other one in the secondary 

side. In the primary side a double stage is generally employed, resulting from the 

cascade of an AC-DC and a DC-AC (this DC-AC is the one highlighted in Fig. I.9). 

The goal of this double stage is to increase the power frequency from 50 Hz (or 60 

Hz) of the grid to tens of kHz of the IPT. In the secondary side an AC-DC stage is 

needed in order to supply the DC battery. Since the AC-DC stage in the primary side 

is quite standard, the scientific research generally focuses on the stage between the 

primary DC section and the secondary DC section. 

Different solutions have been investigated, concerning the primary DC-AC stage 

and the secondary AC-DC stage. As far as the secondary side is concerned, two 

possibilities have been mainly exploited to connect the secondary AC side to the DC 

battery: either a passive rectifier plus a DC-DC converter or an active AC-DC stage. 

  

I.3.2.1. DC-AC stage in the primary side 

 

The DC-AC stage in the primary side is supplied by the DC-link and produces the 

AC waveform useful to produce the alternating current flowing in the primary coil 

and inducing another current in the secondary coil, as shown in Fig. I.9. In the IPT 

applied to EV, the frequency of the power signal is some tens of kHz. 

Two alternative topologies are possible to implement the DC-AC stage: half-

bridge and full-bridge [70]. 

The half-bridge topology is shown in Fig. I.11. The produced square waveform V1 

ranges from (–Vdc/2) to (Vdc/2), being Vdc the DC supply voltage. The duty cycle of 

V1 corresponds to the duty cycle of the signal driving the two MOSFET gates: when 

the high-side MOS is on, the low-side is off and vice versa.  
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Fig. I.11. A half-bridge DC-AC in the primary side 

 

The full-bridge inverter is shown in Fig, I.12. For the full-bridge topology, the 

produced AC waveform V1 ranges from –Vdc to Vdc, being Vdc the DC supply 

voltage. Supposing a 50% duty-cycle square waveform V1 for both the half-bridge 

and the full-bridge, the voltage produced in the full-bridge is twice the corresponding 

half-bridge voltage. Therefore, to obtain the same power level, the current in the full-

bridge can be half of the one in the half-bridge. 

 

 

Fig. I.12. A full-bridge DC-AC in the primary side 

 

Due to its four active elements against the only two of the half-bridge, the full-

bridge topology is more complex to control: in the half-bridge, only one leg, made of 

the low-side MOS and the high-side MOS, needs to be driven; in the full-bridge, two 

legs require to be properly driven. The power flow in the full-bridge can be properly 

adjusted according to a phase-shift modulation: by controlling the phase difference 

between the two signals driving the two legs of the full-bridge, the power is 

regulated. 

 



Chapter I – Wireless battery charging 
for Electric Vehicles: introduction and state of the art 

 

17 
 

I.3.2.2. AC-DC stage in the secondary side 

 

In the secondary side, an AC-DC stage is required to convert the AC voltage 

arising from the inductive power transfer into a DC voltage useful to supply the 

battery. According to issues of efficiency and controllability, two alternative solution 

are usable for the AC-DC stage: a passive rectifier or an active rectifier.  

The passive rectifier typically consists of a conventional four-diode bridge which 

simply rectifies the AC signal arising from the magnetically coupled coils. 

Nevertheless, the produced DC voltage has to be processed in order to supply the 

rechargeable battery. Therefore, a DC-DC intermediate stage is required between the 

passive rectifier and the battery, so that the charging current can be properly 

controlled. This solution is shown in Fig. I.13. 

 

 

Fig. I.13. A passive rectifier and a DC-DC stage in the secondary side 

 

The drawback of having to use another stage can be avoided by employing an 

active AC-DC stage. The use of a conventional passive rectifier in the AC-DC stage 

is not convenient in terms of efficiency and controllability. As far as the efficiency is 

concerned, the use of active elements is convenient considering the ultra-low 

resistance of power MOSFETs. As far as the controllability is concerned, an active 

stage gives the opportunity to directly control the battery charging current, not 

requiring an additional DC-DC converter to supply the battery. 

In Fig. I.14 a 2-diode-2-MOS stage is shown. By controlling the phase difference 

between the signals applied on the MOSFETs, the amount of power flowing towards 

the battery is adjustable [71], [72]. 
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Fig. I.14. A 2-diodes-2-MOS AC-DC in the secondary side 

 

If an entirely active stage is employed, as shown in Fig. I.15, according to the 

phase difference between the secondary voltage and the primary voltage, the 

direction of the power flow is adjustable as well. Therefore, an entirely active stage 

may bring the possibility of a bi-directional power transfer [55], [73]. 

 

 

Fig. I.15. A full-bridge AC-DC in the secondary side 

 

 

I.3.3. Rechargeable battery 

 

Nowadays the lithium ion batteries represent the most widespread typology of 

battery, due to their high energy densities and long life-times. The lithium ion 

batteries well fit with several applications: portable electronics [74], electric vehicles 

[75], space and aircraft power systems [76], stationary power storage [77]. 

Among the lithium ion batteries, the Lithium Iron Phosphate (LiFePO4) ones 

represent an increasing option in the market, particularly for the EVs [78]. LiFePO4 

batteries feature high capacity and good stability on chemical and thermal 

characteristics. 
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In order to optimize the use of the batteries, a detailed battery model is often 

required. In  [79] and [80], a complete dynamic model of Li-ion batteries, including 

nonlinear equilibrium potentials, temperature-dependencies, thermal effects and 

response to transient power demand, is proposed. The model, validated through 

experimental tests, is useful for the optimization of the battery runtime. In [78], a 

dynamic model of a LiFePO4 battery is proposed, with particular consideration of the 

nonlinear capacity effects. 

For a proper management of the battery charging system, an accurate knowledge 

of the current state of charge (SOC) of the battery is needed. In [81] and [82], the 

authors propose an algorithm for the SOC estimation, according to the nonlinear 

relationship between the state of charge and the open-circuit voltage of the battery. 

A typical charge profile of a Li-ion battery cell is shown in Fig. I.16 [79]. There 

are mainly two charging modes: constant current mode and constant voltage mode. 

During the constant current mode, the current is kept fixed at a reference value, while 

the voltage increases up to a maximum value; then, the constant voltage mode starts, 

and the voltage is kept fixed at the maximum value, while the current decays to zero. 

 

 

Fig. I.16. Typical charging characteristics of  a Li-ion cell [79] 
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I.4. IPT and EV applications 

 

The design of an Inductive Power Transfer system applied to an Electric Vehicle 

is considerably complex since several aspects need to be taken into account. Firstly, 

an IPT system is made of different electric subsystems requiring to be properly 

designed and controlled: in the design of the magnetic coupler some care has to be 

addressed to coupling efficiency, possible misalignments between the coils, weight 

and bulk; to regulate the amount and the direction of the power flow, the power 

electronics stages have to be properly controlled. Secondly, the implications arising 

from the installation and working of an IPT system are diverse: costs, infrastructural 

works, customer satisfaction, magnetic field exposure and other issues require 

careful considerations. 

In [83] a critical review of the recent progress in wireless power transfer systems 

and applications is carried out, whereas in [84] an overview of the main IPT 

technologies for EV battery charging is provided. 

In the following, the main aspects related to analysis, design and realization of 

IPT systems for EVs will be reported, with a reference to the state of the art. 

 

I.4.1. Analysis and design of IPT systems 

 

For an optimal design, the working principles of different types and topologies of 

IPT systems should be deeply understood first, independently of applications and 

power levels. The scientific literature focuses particularly on the maximum 

efficiency conditions, since the power transfer efficiency is a significant quality 

index for an IPT system. 

In [85] a study on the efficiency maximization, by regulating different parameters 

such as frequency and mutual inductance, is carried out. An investigation on the 

relationship between optimal air gap and coil geometry is made as well. 

In [86] a method for the efficiency optimization of a series loaded series resonant 

converter for contactless power transfer systems is suggested, particularly focusing 

on the regulation of different physical parameters (e.g. transformer ratio, 
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characteristic impedance, operation frequency) and on the investigation of the effects 

produced by changing the physical separation between both halves of the 

ferromagnetic core. 

The connection between input impedance and maximum transferred power is 

analyzed in [87], with an experimental validation on two layer square coils. 

In [66] and [65] the conditions for the efficiency optimization are evaluated in 

series-series (SS) and series-parallel (SP) compensation topologies. 

The impedance matching problem for IPT systems is investigated in [88], [89]. 

The bifurcation phenomenon is analyzed in [90–92]. A control oriented to the 

zero phase angle between input voltage and current should be implemented in order 

to minimize the VA ratings and therefore power losses and costs. A detailed analysis 

is carried out with respect to all the possible reactive compensation topologies. 

In some cases, such as in Railway Applications, the maximum power transfer is 

more significant than the maximum efficiency. In [93] the optimal switching 

frequency for the power transfer is gained: this frequency is different from the 

resonant frequency, corresponding to the maximum efficiency. 

 

I.4.2. Magnetic couplers and design methodologies 

 

In the literature, several IPT structures for kWatt automotive applications are 

tested in order to evaluate magnetic coupling and feasibility. Most of investigated 

structures include ferrite in order to optimize the power conversion efficiency. Ferrite 

is yet unfavorable if lightweight power pads are desired. A trade-off between 

coupling efficiency and weight usually arises. The coupling efficiency is mainly 

affected by misalignments between the transmitter and receiver coils. For IPT 

purposes, innovative geometries and core structures are investigated to further reduce 

the dependence of the power conversion efficiency on misalignments.  

In [94] and [95] a circular planar structure with ferrite bars is tested for a 2 kW 

Inductive Power Transfer. Two identical power pads are employed. Ferrite bars are 

placed in a radial disposition. The ferrite disk is sliced into bars to reduce the total 

weight. IPT occurs by means of a current across a planar coil winding placed upon 

the ferrite bars and following their circular disposition. A single-sided coil winding is 



Chapter I – Wireless battery charging 
for Electric Vehicles: introduction and state of the art 

 

22 
 

used for each of the power pads. The lack of robustness against misalignment in the 

lateral direction, due to a considerable reduction of magnetic coupling factor for the 

single-sided configuration, is the main drawback of the specific planar structure. The 

structure is shown in Fig. I.17. 

 

 

Fig. I.17. Exploded view of an IPT circular pad with ferrite bars and single-sided winding [95] 

 

In [96], the so-called “FluxPipe” magnetic structure consisting of a rectangular 

planar ferrite core for each power pad is proposed. The coil winding is rolled around 

the core. Therefore, the winding is “double-sided”. This structure features a more 

compact size and higher performances than the planar one, due to higher tolerance to 

lateral misalignments. A photograph of the structure is shown in Fig. I.18. 

 

 

Fig. I.18. Photograph of the “FluxPipe”, showing the double-sided winding[96] 

 

A maximum 95% coupling efficiency is measured for a 1.5 kW output power and 

a 7 cm air gap. To lighten the whole structure, tests are also carried out after slicing 
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the core, thus building “split cores”. A negligible variation of magnetic coupling is 

measured, so that the “split-cores” can be employed for an efficient power transfer.  

In [39] and [97], the rectangular shape is modified to reduce the weight of the 

whole structure. A “H-shape” ferrite core is assembled. This structure, shown in Fig. 

I.19, features almost the same coupling efficiency in comparison with the 

“FluxPipe”, taking advantage from better misalignment-tolerance. Therefore, for 

electric cars, the H-shape structure represents a better compromise between weight, 

compactness, tolerance to lateral misalignment and efficiency. 

 

 

 

 

 

Fig. I.19. Photograph of the “H-shape” structure [39] 

 

 

 

 

Currently, the most attractive shape of magnetic coupler coils for IPT applied to 

EV wireless charging is the “Double D” (DD), described in [98] and [99] and 

employed in the works reported in [26] and [100]. In Fig. I.20 a model of the DD 

solution is shown. 
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Fig. I.20. Model of the DD coils [98] 

 

In [101] a coreless solution consisting of two circular coils is proposed for 

wireless EV charging: an investigation on the optimal size of both the coils is carried 

out, together with a study on the best compensation, which turns out to be the parallel 

one. An accurate model is built by acquiring the values of mutual inductance 

corresponding to the different considered dimensions and keeping the air gap length 

and the structure weight constant. The maximum obtained efficiency is 85% at 20 cm 

of air gap. 

Due to the considerable number of design parameters in the evaluation of a proper 

magnetic coupling structure, a systematic methodology for the magnetic design can 

be useful. In [24], a design methodology of magnetic couplers for IPT systems 

addressed to household appliances and applicable to EV is proposed. Several aspects 

are considered, such as the tolerance to misalignments and the air gap. By means of 

ferrite cores, a 90% efficiency at 1 cm of air gap and for 1 kW power level is gained. 

In [102], a method for the design of a coreless magnetic coupler with rectangular 

coils is proposed: a 82% efficiency is gained for a 15 cm air gap between the coils, 

considering a 2 kW prototype. In [100] a standardized magnetic coupler is proposed 

for wireless EV charging: different sizes of DD (Double D) pads are simulated for 

different types of use and vehicle. A 10 kW power level can be transferred to charge 

sedans and SUVs in garage, car-park and roadway locations, considering a 40 cm air 

gap and a maximum 20 cm horizontal misalignment. In [103] a genetic algorithm is 

proposed for design and optimization of the track layout of coils for IPT. In [69] a 

system design methodology is proposed, with particular focus on compensation, 

stability and control considerations.  
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I.4.3. Control strategies  

 

Several control strategies are proposed in literature, in order to properly regulate 

the IPT system dynamic response and the amount of power flow. In case of Bi-

Directional systems (BDIPT), the power flow direction needs to be regulated as well. 

A general investigation on stability and control of IPT systems for an extended range 

of power levels (up to 150 kW) is carried out in [104]. In [58] a dynamic control 

algorithm is provided for a BDIPT system. 

In [105] and [106] a comparison between different control strategies for IPT 

systems is carried out, oriented to high power levels (e.g. EVs) and low power levels 

(e.g. mobile phones) respectively. In [105] three control methods are mainly 

compared: phase shift control, frequency control and dual control. The voltage 

control is not considered due to the requirement of a further power stage, that is a 

DC-DC converter between the grid side and the primary coil side. The dual control, 

consisting in a combination of phase shift and frequency control, is proven to be the 

most convenient in terms of efficiency, stress on the electronic components and 

controllability. 

In [106] four control methods are compared: voltage control, frequency control, 

duty cycle control and phase shift control. The voltage control is not convenient, 

requiring a double converter stage. Among the other control strategies, the phase 

shift control is proven, both from simulations and experimental tests, to be the most 

convenient as far as costs and stability are concerned. Furthermore, it is compliant 

with the Qi standard by Wireless Power Consortium, concerning low power devices 

[20]. 

An alternative and reliable control method is the power-frequency strategy. In 

[51] and [55] the relationship between operating frequency and transferred power is 

exploited to regulate and limit the amount and the direction of the power flow, even 

if in order to guarantee the maximum efficiency, the system should be kept at the 

resonant frequency. This control strategy is validated on a 2 kW prototype of BDIPT 

system. No dedicated communication link is needed. In Fig. I.21 the power-

frequency characteristic of a typical BDIPT system is shown, where fo is the resonant 

frequency. Based on this, the power-frequency control is developed. The sensitivity 
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of the power-frequency relationship with respect to the variation of the component 

values is evaluated in [52].  

A widely spread control strategy applied to IPT systems, particularly for EV 

charging and Bi-Directional power transfer, is the phase shift control. The phase shift 

control consists in the regulation of the power flow amount and direction through 

some control parameters corresponding to phase angles. In [54] and [107] the phase 

difference between the fundamental harmonics of primary and secondary voltages is 

kept at 90° in order to have maximum power factor and maximum efficiency. 

 

Fig. I.21. Typical Power-Frequency characteristic of a BDIPT system [51] 

 

According to the phase sign, whether the phase angle is +90° or -90°, the direction 

of the power flow is different, meaning that the power flows from the grid to the 

battery or from the battery to the grid. Instead, the power flow amount is regulated 

through the control of the phase angle between the legs of each power converter. In 

Fig. I.22 a typical block diagram of the phase shift control strategy is shown: α is the 

actual phase shift. 
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Fig. I.22. Simplified control strategy in a phase shift control [107] 

 

In [108] the phase shift control is applied to an IPT system without compensation 

network in the secondary side, so that the detuning of this side is unlikely. 

In [71] and [72] the phase shift control is exploited to control the power flow 

towards the battery of a 3 kW EV prototype, charged through IPT. The proposed 

topology is not usable for BDIPT. A dual-side control allows to improve efficiency 

and component stress with respect to a single-side control, especially for partial load 

conditions. Accurate considerations on operating frequency, hard-switching and soft-

switching working, technology of the power components, magnetic design and 

behavior for different air gaps are provided. For the section from the DC source to 

the battery, the peak efficiency is 95.8% at the minimum air gap of 10 cm. 

In [109–111] a control based only on the information arising from the primary 

side is proposed, in order to avoid the need of a communication link between the 

power transmitter and the power receiver. 

 

1.4.4. Safety considerations 

 

The analysis and the design of wireless battery chargers based on the IPT imply 

concern for the human safety. Three main sources of hazard should be considered: 

electrical shock, fire hazards and electromagnetic field exposure. 

Electrical shock and fire hazards are inherently due to the high voltages and 

currents in the primary and secondary coils if high power level systems are 

considered. Normal care should be taken in order to prevent these cases. 
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The Electromagnetic Field (EMF) exposure is a major concern for wireless 

charging, particularly in the case of wireless EV charging. In the IPT systems the 

operating frequencies generally are equal to tens of kHz, so that the radiation zone is 

the near field of the electromagnetic field [112]. In the near field region, the field is 

mainly magnetic. The electric fields are generally more dangerous for the human 

safety rather than the magnetic fields, so that the radiation produced by the wireless 

chargers is considered quite safe for the human body [113], [114]. 

Nevertheless, if the power levels are high, the EMF exposure has to be taken into 

account for a rigorous consideration of the safety implications. This is the reason 

why the magnetic field exposure is a major concern for the IPT wireless EV 

charging, where an accurate investigation on the field distribution should be carried 

out. Considering the typical case of an electric car wireless charging, for the people 

inside the vehicle there is not a strong radiation hazard, because of the metal 

shielding represented by the chassis. The most hazardous radiation zones are 

between the coils and around the coils. However, these areas are not always directly 

exposed to humans or animals. In spite of the larger distance from the magnetic 

coupler, another hazardous zone in need of consideration is the area around the car, 

because it exposes directly to the general public.  

There are mainly two international groups that set standards and guidelines 

concerning the human exposure to the electromagnetic fields: the International 

Committee on Electromagnetic Safety (ICES) [115] and the International 

Commission on Non-Ionizing Radiation Protection (ICNIRP) [116]. These 

guidelines deal with general public and occupationally exposed population. The 

standard by ICES also focuses on different parts of the human body in presenting its 

guidelines. 

Few simulation and experimental results have been presented in the scientific 

literature concerning the radiation produced by IPT-based wireless chargers. In [117] 

the magnetic coupling structure previously proposed in [92] is investigated also as 

far as the compliance with the ICNIRP exposure limits is concerned. The particular 

combination of cylindrical shape and ferrite disposition aims at containing most of 

the magnetic flux inside the coupling structure, so that the flux density decreases 

rapidly outside the charger. Nevertheless, experimental results concerning the 
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radiation are not provided in this work. Apart from the direct coupling to the body, 

sometimes an indirect coupling can occur as well. Examples of potential indirect 

coupling are the EMF coupling to medical implantable devices or the physical 

contact of the body with objects which are strongly exposed to the magnetic field 

[112]. 

 

 

In this Chapter the main applications of wireless battery charging have been 

addressed, considering the power levels ranging from the µW of Wireless Sensor 

Networks (WSN) to the hundreds of kW of Railway Applications, passing through 

the following applications: electric toothbrush, consumer electronic devices, 

household appliances and Electric Vehicles (EVs). A technical background on the 

Inductive Power Transfer systems has been given, particularly focusing on the 

electronic and the magnetic design. A general overview and the state of the art 

concerning the IPT applied to the EVs have been provided, considering magnetic 

couplers, design methodologies, control strategies and safety issues. 

In the next two Chapters the contribution of this thesis will be reported. The 

proposed work focuses mainly on the E-bike application. An IPT system for the 

wireless battery charging of an electric bicycle will be proposed, with particular 

attention on the magnetic and the electronic design issues. 

After that, an analytical study on a typical Bi-Directional IPT system will be 

provided. This work has contributed to deeply understand the power flow in a 

BDIPT system as function of different control parameters. The analytical results 

have been validated through electronic simulations.  

A control algorithm for the maximization of the power transfer efficiency will be 

proposed as well. This algorithm represents an original research contribution, since a 

power tracking method aiming at the efficiency optimization in IPT systems was not 

known in the scientific literature. 

Alternative solutions of inductive coupling will be investigated as well, according 

to a deep analysis through a 3D magnetic simulator. An optimal solution in terms of 

efficiency and tolerance to misalignments will be proposed as far as wireless E-bike 

battery charging is concerned. 



Chapter I – Wireless battery charging 
for Electric Vehicles: introduction and state of the art 

 

30 
 

The experimental results in terms of power transfer efficiency and magnetic 

characterization of the assembled prototype will be explained, focusing particularly 

on the coupling efficiency and on the physiological compatibility of the system.
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Chapter II 

 

Design of an IPT system for E-bike battery charging 

 

 

The Inductive Power Transfer (IPT) can be exploited for Electric Vehicle (EV) 

battery charging. The IPT consists of a wireless power flow between two 

magnetically coupled coils. Therefore, through IPT the battery charging can occur 

wirelessly. The lack of wires brings some benefits in terms of comfort and safety: the 

vehicle could be automatically charged without the need of a plug-in operation and 

no electrocution risk would involve the user. 

Depending on whether the vehicle is stationary or in motion, and whether the 

driver is inside the vehicle or not, there are three types of IPT-based battery charging: 

static, semi-dynamic and dynamic [25]. The static IPT occurs when the vehicle is 

stationary and nobody is inside it, i.e. during the parking time; the semi-dynamic IPT 

occurs when the vehicle is stationary and the driver is inside it, i.e. during the stop at 

traffic red lights for cars or during the bus stop for electric buses; the dynamic IPT 

occurs when the car is in motion, i.e. along motorways. 

Yet the dynamic wireless battery charging features some drawbacks. The motion 

of the vehicle implies a widespread infrastructure of power transmission buried 

inside the road in order to have adequate charging times and therefore for an efficient 

dynamic charging high costs are required.  

IPT is cheaper in static and semi-dynamic options, since the same charging time is 

covered by the use of a minor number of coils in comparison with the dynamic case, 

due to the stationary state of the vehicle. Static IPT is feasible for private EVs which 

could stay stationary for some hours, whereas semi-dynamic IPT is particularly 

appropriate for public electric means of transportations, such as cabs or buses, 

needing to continuously move across the day and therefore requiring frequent 

charging operations if a proper autonomy is wanted without increasing the battery 

size. 
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Considering that the wireless battery charging is inherently less efficient than the 

conventional wire-based battery charging, the benefits brought by the wireless 

method in terms of comfort and safety need to be notable in order to make the static 

IPT really attractive for EV battery charging. 

The frequent movements of a vehicle may require to charge its battery many times 

across the whole day. This particularly fits with the case of electric bicycles, being 

very smart and comfortable to be driven in the congested traffic, typical of the urban 

scenario. The bike is potentially an ideal means of transportation for frequent 

transfers throughout the day. Furthermore, the E-bike represents a smart, green and 

light solution of urban mobility. More and more people are supposed to be driving 

electric bicycles in the next future. IPT would therefore represent a brilliant solution 

of battery charging for parked E-bikes, due to different reasons. First of all, every 

time the cyclist parks the E-bike, it would be automatically recharged without the 

bothersome and potentially dangerous plug-in operation. Later, in case of 

multiparking areas for E-bikes, each bicycle could be recharged and no wire would 

be visible. 

In the next paragraphs an IPT system for E-bike wireless battery charging will be 

proposed. After a general description of a typical IPT system, the single subsystems 

will be described and the design criteria which have been followed for the proposed 

system will be explained. The here proposed IPT system aims at charging a 36 V 10 

Ah LiFePO4 battery. The maximum flowing power can range from 100 W to 250 W. 

The papers [118–121] have resulted from this work. 

 

 

II.1. Design of the IPT system 

 

In Fig. II.1 the DC-DC stage model of the proposed IPT system for wireless E-

bike battery charging is shown, recalling Fig. I.9. As far as the actual inductive 

power transfer is concerned, the self-inductances related to the coupled coils are L1 

and L2, whereas the mutual inductance is M. L1 and L2 correspond respectively to the 

primary and the secondary coil. The primary-side DC voltage source is connected to 
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the electrical grid; the secondary-side DC section is the load representing the battery 

to be charged.  

 

Fig. II.1. The functional model of the proposed IPT system 

 

A SS capacitive compensation is proposed, as highlighted by the figure, being 

both C1 and C2 connected in series with the coupled coils. This choice allows to 

select the compensation capacitances depending only on the self-inductances: this 

choice is therefore independent of the load and the magnetic coupling [70]. 

In addition to this, as explained in the following, the SS choice allows to easily 

manage the main battery charging mode, which is the constant current mode. 

For the electric car battery charging, the IPT usually consists of a transmitter coil 

placed on the road and a receiving coil placed on the bottom part of the chassis  [25], 

[39], [84]. 

As far as the E-bike IPT battery charging is concerned, the scientific literature 

provides few works [26–28]. The commercial actors provide few examples as well 

[29], [30]. In [27], [26] and [30], the receiving coil is mounted on the kickstand, 

whereas the transmitting coil is buried inside the pavement. In [28], the bicycle coil 

is placed on the side of the front basket and the grid-connected coil is installed next 

to a wall, both in a vertical position, as shown in Fig. I.2. The wireless charging 

operation occurs at a 5 cm distance between the coils. In [29], the receiver part is 

under the saddle of the bicycle, as highlighted in Fig. I.3. 

In the proposed E-bike wireless battery charging system, the supposed position for 

the receiver coil is on the bicycle front wheel, parallel to it. While the bicycle stands 

in public parking areas, the front wheel is supposed to be fixed to a support. The 

power transmitter could house inside this support. 

A compact solution of magnetic coupling is therefore well-suited for this 

application. A flat structure seems to be appropriate and a circular shape properly fits 

with the wheel. Ferromagnetic materials are generally exploited for EV wireless 
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charging in order to reduce the leakage magnetic flux, thus optimizing the power 

transfer efficiency even for large air gaps between the coils [94], [96–98], [100]. 

For the proposed E-bike IPT system no ferromagnetic material is employed, in 

order to obtain a light-weight, compact and cheap structure. 

In IPT systems for EV battery charging, the current trend is to build a large 

transmitter coil and a smaller receiver coil. The reduced size of the receiver coil is 

generally due to the space restrictions in a movable system like a vehicle. The larger 

size of the transmitter coil allows to produce high amounts of power, thus creating a 

more uniform magnetic field in the receiver region [122], [123]. Nevertheless, in the 

proposed system, primary and secondary coil windings have been chosen identical in 

order to minimize the total leakage flux. This represents the conventional solution for 

loosely coupled coils [24], [41]. In addition to this, due to its geometrical symmetry, 

this choice fits the possibility of a bi-directional power transfer. In a Bi-Directional 

IPT (BDIPT) system, the power can flow not only from the grid to the battery, but 

also in the opposite direction [57], [58]. 

In the BDIPT, the role of power transmitter or power receiver can be alternatively 

played by both the coils: in the grid-to-battery power flow the primary coil is the 

power transmitter and the secondary coil is the power receiver; in the battery-to-grid 

power flow the secondary coil is the power transmitter and the primary coil is the 

power receiver. The interchangeability of power transmitter and power receiver can 

be guaranteed by reversible DC-AC and AC-DC stages, being able to respectively 

convert into an AC-DC and a DC-AC in the transition from a grid-to-battery to a 

battery-to-grid power flow. 

The diameter of each coil has been chosen according to space constraints in the E-

bike wheel. The number of turns of each coil is oriented to a trade-off between 

different aspects: the coupling coefficient, the power losses due to the length of the 

wire, the skin effect, the bifurcation phenomena. This trade-off is well explained in 

[121]. 

In order to evaluate the electrical features of the coupled coils according to the 

number of turns, a magnetic field simulation has been implemented through a FEM 

2D software, that is a magnetic simulator based on Finite Element Method [124]. The 



Chapter II - Design of an IPT system 
for E-bike battery charging 

 

35 
 

3D problem has been converted into a 2D problem due to the cylindrical symmetry 

of the geometry. The symmetry axis passes through the centers of the circular coils. 

Each coil features a 15 cm outer diameter, and 9 turns of copper wire, with a 3 

mm section diameter. Considering a 3.5 mm space between the wire section centers 

of two consecutive turns, a 8.8 cm inner diameter results. A 3 cm air gap between the 

parallel windings is chosen as maximum value in order to test the coupling efficiency 

of the designed IPT system. In Fig. II.2 a 3D model of the proposed magnetic 

coupling structure is shown. 

 

 

Fig. II.2. 3D model of the proposed flat circular coils 

 

The features of the proposed coupling structure, concerning material and 

geometries, are summed up in Tab. II.1: ρCu and μr,Cu are the electric resistivity and the 

relative magnetic permeability of copper; d is the diameter of the wire section; l is 

the total length of the wire of each coil; dout is the outer diameter of the flat circular 

coil; N is the number of turns. 

The air gap is the separation between the coils. 
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TABLE II.1. 

CHARACTERISTICS OF THE PROPOSED COUPLING STRUCTURE 

Material Value 

ρCu 1.68·10
-8

 Ω·m 

μr,Cu ~1 

Wire geometry Value 

d 3 mm 

l 3.48 m 

Coil geometry Value 

dout 15 cm 

N 9 

maximum air gap 3 cm 

 

 

Fig. II.3 shows the simulation file, in the vertical section view, which completely 

describes the problem due to the axisymmetric shape of the object. The colors refer 

to different values of the resulting magnetic field in the region around the coils. 

Through a post-processing operation, the magnetic features of the coupled coils have 

been calculated by the simulator. Magnetostatic simulations have been performed, 

supposing that the magnetic parameters are frequency-independent if a (0÷150) kHz 

frequency range is considered, since 150 kHz is the maximum value of the IPT 

system frequency that has been considered.  

 

 

Fig. II.3. Magnetic flux density simulation results arising from the 2D model 

of the proposed coupling structure 
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The magnetic field has been produced by injecting a 26 A current into the upper 

coil, referring to the figure. 

In order to obtain the primary self-inductance L1, the flux of this magnetic field 

through the surface of the same coil has been considered, and the secondary self-

inductance L2 is supposed to be the same since the coils are identical. The common 

value of the self-inductances is represented by L. To obtain the mutual inductance M, 

the flux of the magnetic field through the surface of the lower coil, referring to the 

figure, has been considered. The electric model features of the magnetic coupling 

structure, as obtained from FEMM analysis by setting a 3 cm air gap, are listed in 

Tab. II.2. k is the coupling coefficient of the magnetic structure. The relationship 

between mutual and self-inductances is given by:  

 

kLLLkM  21                                                 (II.1) 

 

TABLE II.2. 

ELECTRIC CHARACTERIZATION OF THE PROPOSED COUPLING STRUCTURE 

Element Value 

L1 = L2 = L 13 µH 

M 4.9 µH 

k 0.377 

Rdc 8.2 mΩ 

 

 

Rdc is the DC resistance of each coil, arising from the copper resistivity ρCu, the 

length l and the section area A (corresponding to the area of a circle whose diameter 

is 3 mm), according to the second Ohm law, that is the following: 

 

 A

l
R Cu

ohm





                                                         (II.2) 

 

In Fig. II.4  the simulation model of the proposed IPT system is shown. 
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Fig. II.4. Simulation model of the IPT system, created through PowerSIM software [125] 

 

The DC-AC in the transmitter side is implemented through a half-bridge topology 

(MOSFETs M1-M2); the AC-DC in the receiver side is a conventional four diode 

rectifier. The electric model parameters of the coupled coils arise from the electric 

characterization summed up in Tab. II.2. A 2 A current generator works as load of 

the system, emulating the battery charging current. The compensation series 

capacitors have a 220 nF value, arising from the choice of a working frequency close 

to 100 kHz. Being this system designed for an experimental test, commercial values 

of capacitance have been chosen. The actual frequency is therefore 94.1 kHz, arising 

from the following expressions:  

 

22

2

11

1

2

1

2

1

CL
f

CL
f









                                                    (II.3) 

 

 

f1 and f2 are respectively primary and secondary resonant frequencies, which shall 

be equal to each other if the double goal of maximum power factor and maximum 

power transfer has to be achieved. Therefore, since identical planar coils are 

designed, identical values of C1 and C2 are obtained.  

The design specifications are reported in Tab. II.3. 
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TABLE II.3. 

DESIGN SPECIFICATIONS 

Specification Value 

Rated Load Power 96W 

Nominal DC bus voltage 48V 

Rated current 2A 

Operating frequency 94.1kHz 

 

 

II.2. Bi-Directional Inductive Power Transfer (BDIPT) 

 

IPT well fits with the idea of a “Bi-Directional” power transfer, meaning that the 

power is able to flow from the grid to the load or, alternatively, from the load to other 

users of the grid. A Bi-Directional Inductive Power Transfer (BDIPT) system is 

therefore exploitable to accomplish the Vehicle-To-Grid (V2G) concept, consisting 

in the possibility to use the EV battery as storage element for other users of the grid 

or other vehicles as well, in the scenario of a multi-parking area. The V2G idea 

belongs to the philosophy of the active demand, where the user plays the double role 

of consumer and producer of electrical energy. 

In Fig. II.5 the model of a BDIPT system is shown. 

 

 

Fig. II.5. Model of a BDIPT system 

 

The compensation capacitive topology is the one proposed for the assembled 

prototype, that is series-series (SS). R1 and R2 represent the power losses in the 

primary and secondary side respectively. The DC-AC stage from Vdc to the primary 
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side and the AC-DC stage from the secondary side to Vbatt are two reversible 

rectifiers: the primary full-bridge converter (S1-S2-S3-S4) producing the AC 

waveform V1 and the secondary full-bridge converter (M1-M2-M3-M4) producing 

the AC waveform V2. Depending on the phase delay between V1 and V2, the power 

flow direction can be determined. If a power transfer aiming at the battery charging 

is desired, a phase lead of V2 with respect to V1 shall occur. If maximum power 

factor is desired, the phase lead is set at 90°. In the following, a detailed 

mathematical analysis of this BDIPT circuit, concerning the power flow and its 

dependence on several parameters, will be carried out. 

 

II.2.1. Mathematical analysis of the system power flow 

 

In order to control the amount and the direction of the power flowing in the 

BDIPT system, a circuital analysis has been carried out. A computational support has 

been provided by the software MATLAB Simulink [126]. Arising from the schematic 

in Fig. II.5, a simplified model can be built, as shown in Fig. II.6.  

 

 

Fig. II.6. The IPT system with the AC waveforms V1 and V2 in evidence 

 

The AC voltage sources represent the primary and secondary waveforms 

produced by the DC-AC stage and the AC-DC stage respectively, according to Fig. 

II.1.  

From the circuit shown in Fig. II.6, the following system of phasorial equations 

arises: 
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In the simple case of two square waveforms at the primary and the secondary full-

bridges and considering V1 and V2 as the amplitudes of the phase-modulated 

voltages in the primary and in the secondary side respectively, the amplitudes of their 

fundamental harmonics are 1

4
V


   and  2

4
V


 . Therefore, the RMS values are 1

22
V


 

and 2

22
V


 respectively. Subsequently the phasors linked to V1 and V2, considering 

that φ1 and φ2 are their phases, with respect to a zero phase reference phasor, are 

given by: 
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                                      (II.5) 

 

The phase delay φD is defined as the phase difference between V2 and V1, whereas 

the phase shift φS is defined as the phase difference between the signals applied to 

the two legs of the full-bridge converter. Therefore, this expression arises for the 

phase delay: 

 

12  D                                                         (II.6) 

 

The real power on the primary and secondary sides are: 
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From (II.4), the phasor of the primary current arises: 
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The conjugate phasor of the primary current is therefore: 
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According to (II.5), (II.7) and (II.9), the real power on the primary side is: 
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From (II.4), the phasor of the secondary current arises: 
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The conjugate phasor of the secondary current is therefore: 
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According to (II.5), (II.7) and (II.12), the real power on the secondary side is: 
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The actual RMS of the primary and secondary waveforms are linked to the DC 

voltages V1 and V2 according to their values of phase shift, φs1 and φs2, referring 

respectively to the primary and to the secondary full-bridge: 
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Replacing (II.14) in (II.10) and (II.13), the real powers are obtained: 
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This circuital analysis has been validated through power electronics simulations 

[125]. 

[127] and [128] have resulted from this work, including also an efficiency 

optimization algorithm which will be explained in the following.  

 

II.2.2. Investigation on alternative coupling solutions 

 

In order to improve the efficiency and the tolerance to potential misalignments 

between the coils, different magnetic coupling structures have been compared to the 

assembled one. The characterization of the inductive coupling solutions, aiming at 

evaluating their influence on the whole IPT system, has been carried out trough 3D 

magnetic simulations. [129] has resulted from this work of investigation. 

The investigation has been made taking into account the system of Fig. II.5, so 

that a Bi-Directional power transfer is possible. The equations (II.15) have been 

considered for the estimation of the system efficiency. A 90° phase delay φD has been 

chosen. The considered values of supply voltage Vdc in the primary side and battery 

voltage Vbatt in the secondary side are given in Tab. II.4. 

 

TABLE II.4. 

DC VOLTAGES IN THE INVESTIGATED SYSTEM 

DC supply voltage Value 

Vdc 24 V 

Battery voltage Value 

Vbatt 36 V 

 

Different structures of inductive coupling are investigated in terms of system 

efficiency and tolerance to misalignments. The goal is to find the best solution in 

compliance with an E-bike wireless battery charging system. The investigated 

solutions consist of two flat winding coils; each of them features a copper wire, with 

a 3 mm diameter section. The pitch between two consecutive turns is 3.5 mm. 
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The proposed structures imply two identical coils, thus minimizing the total 

leakage flux and well fitting the case of a bi-directional power transfer. No 

ferromagnetic material is used in order to lighten the weight of the structure, taking 

into account the E-bike application. As for the previously proposed structure, one 

coil is supposed to be placed upon a wheel of the bicycle; the other one is supposed 

to be placed on the support holding up this wheel during the parking time. 

The equivalent electric model concerning each investigated option is gained after 

several magnetic field simulations. The software COMSOL Multiphysics has been 

used as modeling and simulation tool working in a 3D geometry [130]. Different 

distances and misalignments between the primary and the secondary coil have been 

taken into account to obtain thorough models in terms of self-inductances and mutual 

inductance. 

The first option to be considered consists of two circular coils. This solution is 

applied on the actually assembled prototype of E-bike wireless charger. The 3D 

model of this option has been already shown in Fig. II.2. Each coil consists of a flat 

helix winding, featuring 9 turns and a 15 cm outer diameter.  

As for the next considered options, the coils lie on the x-y plane, whereas the 

distance between them belongs to the z axis.  

The other investigated solutions are based on the DD shape [98]: each coil is 

made of two square parts, the so-called “D”, which are connected in series. The 

result is that there is a continuous magnetic flux loop inside the structure including 

the two DD coils. This should create a structure inherently tolerant to misalignments 

between the two coils. The longest dimension is kept under 30 cm in order to well fit 

the size of a bicycle wheel. Fig. II.7 shows the 3D model of the DD option. The 

whole winding coil consists of two “D-shaped” parts. Each “D” is a flat square 

winding made of 9 turns. In compliance with the size of a bicycle wheel, for the 

proposed option three different sizes are tested. Keeping the shape and the 

proportions of the whole structure for each coil, the length of the shortest side 

belonging to the smallest square (labeled “s” in the figure) is modified according to 

the following three values: 4 cm, 5 cm, 6 cm. The corresponding values of the 

longest size, that is the side along the y axis, are the following ones: 21 cm, 23 cm, 

25 cm. For each proposed option, the magnetic field simulations are carried out 
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considering different distances and misalignments between the two coils. The air gap 

between the coils ranges from 1 cm to 3 cm on the z axis, whereas the misalignment 

on the x-y plane ranges from 0 to 2 cm for each of the two axes. 

 

 

(a) 

 

(b) 

Fig. II.7. (a) 3D view of the DD coils; (b) x-y plane view of the DD coils 

 



Chapter II - Design of an IPT system 
for E-bike battery charging 

 

47 
 

The results in terms of self-inductance L and mutual inductance M of the 

investigated structures, as obtained from post-processing elaboration, are gained. 

In Tab. II.5 the self-inductances L, the lengths l of each coil and the 

corresponding resistances Rohm are reported. 

Each Rohm is gained according to the second Ohm law, that is (II.2), concerning a 

copper conductor whose length is l, whose section area is A and whose resistivity is 

ρCu, that is 1.68·10
-8

 Ω·m. 

The section area corresponds to the area of a circle whose diameter is 3 mm. 

In Fig. II.8 the results in terms of mutual inductance are plotted with respect to the 

distance on the z axis and to the misalignment between the coils in the x-y plane. 

Yellow, blue and red colors correspond to an air gap width of 1 cm, 2 cm and 3 cm 

respectively. 

For each color, the graduating shading refers to the changes of M with respect to 

the misalignment in the x-y plane, as highlighted by the color legends.  

 

 

 

TABLE II.5. 

FEATURES OF THE SINGLE COILS 

Parameter circular coils 
DD coils 

(s = 4 cm) 

DD coils 

(s = 5 cm) 

DD coils 

(s = 6 cm) 

L [µH] 13 20.69 24.56 29.47 

l [m] 3.4 6.01 6.8 7.59 

Rohm [mΩ] 8.1 14.3 16.2 18 
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(a) 

 

 

(b) 
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(c) 

 

(d) 

Fig. II.8. Mutual inductance M versus misalignments in the x-y plane for three different 

values of air gap in the z axis (yellow: 1 cm; blue: 2 cm; red: 3 cm) and for the 4 different structures: 

(a) circular coils; (b) DD coils (s=4 cm); (c) DD coils (s=5 cm); (d) DD coils (s=6 cm) 

 

From an accurate analysis of the data, the best option in terms of tolerance to 

misalignments is the last one, that is represented by the DD coils with s = 6 cm. 

Indeed, for this option, the variation of M along both the x and y axes is comparable 
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to the circular coils, and focusing only on the y axis, it turns out to be nearly null, as 

shown from Tab. II.6. 

For each structure the percent variations of M are reported, concerning the 

maximal tested misalignments (2 cm) on the x and the y axes with respect to the 

perfect alignment (x = 0 ; y = 0). 

The proposed options of inductive coupling structure are evaluated in terms of 

efficiency, considering different values of air gap width between the coils, and the 

system operating frequency is chosen accordingly. In the expressions (II.15) the 

terms R1 and R2 represent the primary and secondary power losses, including both 

the coil conduction losses and the MOSFETs conduction and switching losses. 

Supposing to use litz wires to build the inductively coupled coils, the skin effect can 

be neglected, so that the only contribution to the coil losses is the ohmic one, 

represented by Rohm. Therefore, the term Rohm is included inside R1 and R2.  

 

 

TABLE II.6. 

PERCENT VARIATIONS OF M VERSUS THE MISALIGNMENTS 

M var_% 

circular coils 

x = 2 cm 

y = 0 cm 

x = 0 cm 

y = 2 cm 

x = 2 cm 

y = 2cm 

z = 1 cm 5.63 5.39 10.47 

z = 2 cm 5.21 4.92 9.91 

z  = 3 cm 4.74 4.55 9.22 

M var_% 

DD coils 

(s = 4 cm) 

x = 2 cm 

y = 0 cm 

x = 0 cm 

y = 2 cm 

x = 2 cm 

y = 2cm 

z = 1 cm 8.77 5.35 13.66 

z = 2 cm 7.73 5.85 13.89 

z  = 3 cm 9.59 6.37 14.14 

M var_% 

DD coils 

(s = 5 cm) 

x = 2 cm 

y = 0 cm 

x = 0 cm 

y = 2 cm 

x = 2 cm 

y = 2cm 

z = 1 cm 7.32 5.54 13.38 

z = 2 cm 7.01 4.6 11.72 

z  = 3 cm 6.43 4.31 11.87 

M var_% x = 2 cm x = 0 cm x = 2 cm 
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DD coils 

(s = 6 cm) 

y = 0 cm y = 2 cm y = 2cm 

z = 1 cm 6.33 5.54 11.19 

z = 2 cm 7.18 2.75 9.12 

z  = 3 cm 6.67 1.79 7.36 

 

 

 

The efficiency of the system  is plotted versus the frequency and shown in Fig. 

II.9, for the following values of the distance between the coils respectively: 1 cm, 2 

cm, 3 cm. No misalignment in the x-y plane is considered at this stage.  

 

 

(a) 

 

(b) 
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(c) 

Fig. II.9. Efficiency versus frequency for three values of air gap width between the two coils: 

(a) 1 cm; (b) 2 cm; (c) 3 cm 

 

The value of 30 kHz represents a good choice for the operating frequency, since at 

this frequency the 4 investigated structures roughly show the maximum efficiency. 

Therefore, the compensation capacitors shall be sized according to this frequency. 

The last term of comparison among the investigated options concerns the effect on 

the power efficiency of the misalignment between the primary coil, connected to the 

grid, and the secondary coil, connected to the E-bike battery. Supposing that the 

primary coil lies on the support holding the bicycle up during the parking time and 

that the secondary coil lies on the front wheel of the bicycle, parallel to the primary, 

there could be a not perfect alignment between the coils with respect to a plane 

which is parallel to them (corresponding to the x-y plane), so that an investigation of 

the effects of this misalignment on the wireless power transfer efficiency can be 

useful. Fig. II.10 show the system efficiency, at the frequency of 30 kHz, with 

respect to the mutual inductance M. 

The figures refer to different air gap widths: 1 cm, 2 cm and 3 cm respectively. 

For each figure, the efficiency is plotted with respect to four different discrete M 

slots. Each slot concerns each of the four investigated structures of inductive 

coupling and corresponds to the range of possible misalignments on the x-y plane, 

from 0 to 2 cm for both the axes. The behavior of M as function of the misalignments 

has been highlighted in Fig. II.8. 
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(a) 

 

(b) 

 

(c) 

Fig. II.10. Efficiency versus the mutual inductance M,  for three values of air gap width 

between the two coils: (a) 1 cm; (b) 2 cm; (c) 3 cm 
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As shown by the figures, the DD coils feature, especially for the highest distances 

between the coils, excellent tolerance to the misalignments in terms of effect on the 

system efficiency. Among the investigated DD coils, particularly the largest solution 

turns out to be extremely tolerant to the x-y misalignments.  

 

II.3. Control 

 

A control action is required on the IPT system in order to regulate the power flow 

towards the E-bike battery. Although the control can be implemented in different 

ways according to the peculiar topologies that are employed, the common goal is to 

produce the desired output at the battery section. 

As explained in Chapter I, the main stages of a typical lithium ion battery are the 

constant current stage and the constant voltage stage. The control action is therefore 

dependent on the specific stage of the battery charging process. 

During the constant current stage, the goal is to keep the battery current fixed at a 

certain value, whereas during the constant voltage stage, the battery voltage needs to 

be kept fixed at a certain value. The compensation topology of the proposed IPT 

system is series-series (SS). The output of the SS topology is roughly equivalent to a 

current source at the resonant frequency, so that in this case the control is more easily 

effective during the constant current stage [70].  If a proper frequency is chosen as 

the system operating frequency, the SS output is equivalent to a voltage source, so 

that at this frequency the constant voltage stage is more easily controllable [70].  

 

II.3.1. Algorithm for the efficiency optimization 

 

According to Fig. II.5 and to the values in Tab. II.4, the efficiency of the system 

has been studied as function of the phase control parameters, aiming at the 

implementation of an algorithm for the efficiency optimization. This work has been 

reported in [127] and [128]. 

The power efficiency is defined as: 
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The projections of the power efficiency η onto the (φS1 - φS2) plane are displayed 

in Fig. II.11 and Fig. II.12, according to (II.15) and (II.16). The contour lines of the 

battery power P2 are shown as well, according to (II.15).  Each contour line 

represents a constant power locus. The displayed contour lines represent power 

levels up to 200 W in Fig. II.11 and up to 160 W in Fig. II.12.  

By representing different cases of resistances R1 and R2, the figures show that the 

maximum efficiency point for a specific power level is dependent upon the 

resistances. R1 and R2 are the equivalent resistances at the primary and at the 

secondary side. 

Due to the dependence of the maximum efficiency on the specific system, 

featuring power losses which are not easy to be accurately calculated, an “on-line” 

algorithm aiming at the maximum efficiency point is proposed in order to lock the 

maximum efficiency point. 

 

 

Fig. II.11. Color field referred to efficiency η and contour lines referred to power P2 expressed 

in Watt, as functions of primary phase shift φS1 and secondary phase shift φS2: 

R1 = R2= 0.125 Ω 
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Fig. II.12.Color field referred to efficiency η and contour lines referred to power P2 expressed in 

Watt, as functions of primary phase shift φS1 and secondary phase shift φS2: 

R1 = 0.425 Ω; R2 = 0.125 Ω 

 

This is an actual power tracking algorithm, based on a perturbation of two control 

variables, until the point of maximum efficiency is achieved and locked for the 

required power level. The algorithm is based on an actual “perturb and observe” 

method, as shown in Fig. II.13. 

 

 

Fig. II.13. Power tracking algorithm for the maximization of the efficiency 



Chapter II - Design of an IPT system 
for E-bike battery charging 

 

57 
 

 

 Periodically, the first variable is incremented step-by-step. When the required 

power level is sampled, the first variable is kept constant, while the other one is 

varied by a step. After that, the first variable is incremented again step-by-step, until 

the required power level is reached. Every time the power level is achieved, the 

efficiency is registered, until the maximum efficiency level is reached on that power 

level curve. After every step, it is necessary to wait a period of time in order to 

sample and hold the current power level, so that the system can have enough time to 

reach the steady state. The sample period is chosen equal to 10 ms, whereas the 

waiting time after every step is 7.5 ms. The algorithm has been implemented through 

simulations, carried out by PowerSIM [125]. The two control variables are the phase 

delay φD  and the phase shift φS concerning the phase difference between V2 and V1 

and the full-bridge phase shift in the system of Fig. II.14, where a half-bridge 

transmitter is used. Even if the maximum efficiency occurs for φD equal to 90°, thus 

making a 2-variable algorithm useless, the correctness of the implemented algorithm 

has been validated through the comparison between the simulation results and the 

analytical model in terms of maximum efficiency level and maximum efficiency 

point. Fig. II.15 shows the valuable waveforms of the power tracking algorithm: 

phase delay, phase shift and Vsample, which is the voltage obtained by sensing, 

sampling and holding the battery current. 

 

 

 

Fig. II.14. Model of an IPT system with a half-bridge in the primary side and 

a full-bridge in the secondary side 
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Fig. II.15. Phase shift, phase delay and Vsample during the power tracking algorithm 

for efficiency optimization 

 

Every 10 ms the phase shift is incremented by 9°, whereas the phase delay is 

incremented by 5° every time the required power level is reached. By reducing the 

angle steps for the two control variables, the algorithm would be more precise, 

tending to the actual power curve in the (φD – φS) plane. In this specific example the 

phase shift starts to be spanned from 0° and the phase delay from 80°.The figure 

shows that the maximum efficiency is locked, at a 90° phase delay, coherently with 

the analytical results. The reference battery current is 5 A. 

 

 

In this Chapter an IPT system for E-bike battery charging has been proposed. The 

power level ranges from 100 W to 250 W and the considered load is a 36 V 10 Ah 

LiFePO4 battery.  

After a detailed description of the magnetic and electronic design procedure, an 

alternative IPT system, useful for a Bi-Directional power transfer, has been analyzed. 

The power and the efficiency as functions of some control parameters, such as the 

phase delay and the phase shift, have been gained. The mathematical model has been 

validated through electronic simulations. 
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Based on this mathematical study, an algorithm for the efficiency optimization has 

been proposed and the simulation results have been shown in order to demonstrate its 

correctness and validity. 

Alternative options of inductively coupled coils have been investigated and 

compared to the assembled coils, in order to evaluate the best solution as far as 

system efficiency and tolerance to misalignments between the coils are concerned.  

The investigation has been carried out through a 3D magnetic simulator and 

different cases of air gap width between the coils have been considered as well. 

In Chapter III the experimental prototype will be shown. The results in terms of 

power efficiency and magnetic flux density in the region surrounding the working 

system will be provided. 
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Chapter III 

 

Experimental prototype and measurements 

 

 

A laboratory prototype of an IPT system has been assembled, according to the 

schematic shown in Fig. III.1.  

 

 

Fig. III.1. Schematic of the assembled IPT prototype 

 

Vdc represents the DC output of the grid-connected AC-DC stage. The load 

resistance RL represents the input of the battery charging control network. In the 

power transmitter side, the DC-AC is implemented through a half-bridge inverter, 

including the nMOS M1 and M2. In the power receiver subsystem, a conventional 

four-diode rectifier is employed (D1-D2-D3-D4). In order to reduce power losses, 

Schottky diodes are used. The IPT is modelled by L1, L2 and M. L1 and L2 are the 

primary and the secondary self-inductances respectively; M is the mutual inductance, 

linked to the self-inductances and the coupling coefficient k according to (II.1); C1 

and C2 are the series capacitors of the compensation topology, required to maximize 

the amount of transferred power and to minimize the reactive power drawn by the 

electrical grid.  
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System working, power transfer efficiency and produced magnetic field of the 

assembled prototype have been evaluated according to different operating conditions, 

as explained in the next paragraphs. 

 

 

III.1. Practical implementation 

 

For the designed IPT system a laboratory prototype has been assembled and 

several experimental tests have been carried out to test the proper working and to 

measure the power efficiency and the produced magnetic field. The application target 

for this prototype corresponds to a (100÷250) W power range, useful for the charging 

of an electric bicycle battery. In the next subparagraphs, the different parts of the 

assembled IPT prototype will be described. 

 

III.1.1. Winding coils 

 

The Inductive Power Transfer is implemented through the magnetic coupling 

between two coils. For the experimental prototype, two circular coils have been used, 

whose features are listed in Tab. II.1 and Tab. II.2 and again reported in Tab. III.1 

and Tab. III.2: 

 

TABLE III.1. 

CHARACTERISTICS OF THE PROPOSED COUPLING STRUCTURE 

Material Value 

ρCu 1.68·10
-8

 Ω·m 

μr,Cu ~1 

Wire geometry Value 

d 3 mm 

l 3.48 m 

Coil geometry Value 

dout 15 cm 

N 9 

maximum air gap 3 cm 
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TABLE III.2. 

ELECTRIC CHARACTERIZATION OF THE PROPOSED COUPLING STRUCTURE 

Element Value 

L1 = L2 = L 13 µH 

M 4.9 µH 

k 0.377 

Rdc 8.2 mΩ 

 

 

The realized coils are shown in Fig. III.2. 

 

 

Fig. III.2. Photograph of the assembled coils 

 

 

III.1.2. Compensation capacitances 

 

The series capacitances C1 and C2 are practically implemented through two sets of 

capacitors. Each set includes nine capacitors, in order to reduce voltage and current 

across the single components, considering that the system potentially works at the 

resonant frequency. For each set, the 9 capacitors consist of three groups of parallel-

connected capacitors; these three groups are series-connected. 

As explained in Chapter II, the chosen theoretical resonant frequency is 100 kHz. 

According to the 100 kHz resonant frequency and the 13 µH self-inductances, the 
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compensation capacitors C1 and C2 should be equal to 194.8 nF, arising from (II.3). 

Considering that the closest commercial value for capacitances is 220 nF, the real 

resonant frequency is exactly equal to 94.1kHz, according to (II.3) and considering 

both the primary and secondary resonant frequencies equal to the operation resonant 

frequency. 

In order to obtain a total capacitance of 220 nF for each set, each of the 9 

capacitances has to be equal to 220 nF as well. The following capacitors have been 

selected for the assembled prototype [131]: 

 power transmitter stage:  

capacitance: 220 nF; max voltage: 1250 V; producer: Epcos; 

 power receiver stage: 

capacitance: 220 nF; max voltage: 630 V; producer: Epcos. 

 

III.1.3. Power electronics 

 

For the realization of the experimental prototype, the power electronics 

components in both the transmitter and the receiver stage have been accurately 

chosen, according to the simulation model whose schematic is shown in Fig. III.1. 

The schematic shown in Fig. III.3 describes the actual components in the 

transmitter stage of the prototype.  

 

 

Fig. III.3. Schematic of the realized transmitter board 
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The half-bridge (nMOS Q1-Q2) is shown together with the electronic network 

useful for the active elements driving, which has not been given in detail in the 

simulation model of Fig. III.1.  

The half-bridge control network consists of a MOSFET driver and of a bootstrap 

circuit. According to Fig. III.3, the driver is the component FAN7393A, by Fairchild 

Semiconductor [132]. The pin configuration is shown as well. The driver is used to 

produce the proper amounts of gate currents to switch both the MOSFETs Q1 and 

Q2, according to a square wave input signal applied to the pin IN. The bootstrap 

network, consisting of the resistor RBOOT and of the diode DBOOT, is a passive circuit 

useful to turn correctly on the high-side MOS (Q1), whose source potential is 

floating. 

The components in the transmitter stage are the following: 

 half-bridge driver: FAN7393A, Fairchild Semiconductor; 

 nMOSFETs in half-bridge configuration (Q1-Q2): STB120NF10T4,  

STMicroelectronics [133]; 

 boostrap diode (DBOOT): VS-11DQ09, Schottky, 1.1 A, 90 V, Vishay [134]; 

 bootstrap resistor (RBOOT): 2.2 Ω, 5%, 3 W, Vishay; 

 bootstrap capacitor (CBOOT): 0.47 µF, 50 V, Panasonic [135]; 

 capacitor in parallel with the VIN half-bridge supply (CIN): 6.8 mF, 100 V, 

Panasonic; 

 capacitor in parallel with the VDD bootstrap circuit supply (CDD,IN): 0.47 µF, 

50 V, Panasonic; 

 resistors in series with the MOS gates (R1-R2):  10 Ω, 5%, 3 W, Vishay; 

 diodes in parallel with the resistor R1 and R2 (D1D2): VS-11DQ09, Schottky, 

1.1 A, 90 V, Vishay; 

 diodes in parallel with the MOSFETs (DQ1-DQ2): SS3H9, Schottky, 3 A, 90 

V, Vishay. 

In the receiver stage, a conventional 4-diode rectifier has been assembled. The 

diodes and the capacitors at the rectifier output are the following: 

 diodes: SS3H9, Schottky, 3 A, 90 V, Vishay; 

 capacitors: 10 µF, 100 V, Epcos. 
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III.2. Layout design 

 

The layouts of the printed circuit boards for the transmitter stage and for the 

receiver stage have been designed through the software [136]. 

In the Fig. III.4 and Fig. III.5 the transmitter stage layout and the receiver stage 

layout are respectively shown. The red areas refer to the top part, whereas the blue 

areas refer to the bottom part of the printed circuit boards. 

 

 

Fig. III.4. Layout of the power transmitter board  

 

 

Fig. III.5. Layout of the power receiver board 
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III.3. Experimental setup 

 

In Fig. III.6 the prototype of the designed IPT system for E-bike battery charging 

is shown. For the assembled system several experimental tests have been carried out 

to test the proper working and to measure the power efficiency and the magnetic 

field. Power transmitter side and power receiver side are built on the printed circuit 

boards on the left and on the right of the figure respectively, and they are 

respectively connected to the primary coil and to the secondary coil. 

 

 

Fig. III.6. The assembled prototype of the proposed IPT system 

 

A test bench has been set up at its schematic representation is shown in Fig. III.7. 

In addition to the electronic boards, the bench is composed by the following 

components: 

 a DC voltage source, which is used to supply the half-bridge and the 

MOSFET drivers of the transmitter board; 

 a function generator which is used to produce the AC waveform driving the 

MOSFETS, in order to power the primary coil; 

 an electrical load, representing RL according to Fig. III.1 and  consisting in an 

electronic load or in a rheostat, depending on the type of measurements; 
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 a measuring system composed by two voltmeters connected to the terminals 

of the coils and two current probes, used for the current measurement of both 

coils; 

 a power scope, which is used for the real-time waveform detection and 

measurement of the main electrical quantities involved in the proposed 

system; 

 a magnetic probe for the magnetic field characterization of the system.  

 

 

 

 

Fig. III.7. Schematic representation of the whole test bench 

 

 

III.4. Electrical measurements 

 

The measurements have been done setting a 2 A electronic load and in open-loop 

configuration. The proper working of the system, evaluated at the resonance 

frequency, is highlighted by the similarity between the waveforms resulting from the 

experimental tests and the ones resulting from the simulation tests. As envisioned in 

the design phase, a 3 cm air gap between transmitter and receiver coils has been set. 

Fig. III.8 displays the waveforms referring to voltage and current under resonance 

on primary and secondary sides, for a 24.2 V supply. 
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Fig. III.8. Waveforms of voltage and current measured under resonance 

 

Horizontal axis is set with a 5 µs/div time division. C1 and C3 channels display 

the measured voltages with a 20V/div voltage division, whereas C2 and C4 display 

the currents with a 10A/div current division. C1 refers to the primary voltage, V1 

(that is the voltage of the phase node in the half-bridge); C3 refers to the secondary 

voltage, V2 (that is the voltage at the input of the rectifier). C2 refers to the primary 

current, I1; C4 refers to the secondary current, I2. 

After that, different measurements at different working conditions have been 

made. 

Post-processing calculations referring to real input and output powers of the 

magnetic coupling network, referenced as P1 and P2 respectively, and to the 

coupling efficiency ηcoup, referenced as P3, have been made by the oscilloscope. The 

real primary power is the real power associated to the product between V1and I1, 

while the real secondary power is the real power corresponding to the product 

between V2 and I2. The coupling efficiency is the P2/P1 ratio, whereas the overall 

efficiency is the Pout/Pin ratio, where Pout is the power on the load and Pin is the source 

power. Therefore, the following expressions arise: 
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 Fig. III.9 shows both input and output AC power curves (that are P1 and P2) 

versus frequency under a 20 V primary supply Vdc. The maximum measured power 

in this operating conditions is equal to 91 W. The  gained experimental data about 

the power efficiency have been collected into two graphics: the first one by fixing the 

supply voltage and varying the operating frequency; the second one by fixing the 

operating frequency and varying the supply voltage. 

 

 

Fig. III.9. Measured input and output AC power versus operating frequency 

under a 20 V primary supply 

 

In Fig. III.10 the first set of data is shown. Both coupling and overall efficiency 

curves versus operating frequency are displayed, as obtained from experimental data. 

The experimental measurements have been performed with a 2 kHz frequency step 

and the acquired data points have been plotted through a third degree polynomial 

fitting. 
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Fig. III.10. Experimental efficiency curves versus operating frequency 

under a 20 V supply voltage 

 

Considering the rectifier power losses, the overall efficiency is obviously less than 

the coupling efficiency. The coupling efficiency increases in the starting part of the 

(80÷130) kHz range whereas it keeps constant for the highest frequencies, due to the 

increasing skin effect contribution. The overall efficiency decreases for the highest 

frequencies due to the increasing switching losses inside the rectifier. A 94% 

maximum coupling efficiency is experimentally measured for a 17 W power transfer 

at 124 kHz. The maximum overall efficiency is obtained at 104 kHz, and for this 

frequency Fig. III.11 shows the second set of data, referring to the measured 

coupling efficiency by varying the supply voltage.  

 

 

Fig. III.11. Coupling efficiency curve versus load power at 104 kHz 
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By increasing the supply voltage, the efficiency decreases due to the coil 

conduction losses because of the increase in current. At a supply voltage of 46 V, the 

output DC power is the desired one, that is 96 W. For this power, the coupling 

efficiency is 79%. 

 

III.5. Magnetic measurements 

 

A magnetic characterization of the region surrounding the working system has 

been carried out, through the measurement of the magnetic flux density in different 

points and for three different values of distance between the coils: 1 cm, 2 cm and 3 

cm. The goal of the magnetic measurements has mainly been the evaluation of the 

conditions for which the guidelines concerning the exposure of the human body to 

the electromagnetic fields are satisfied, with respect to the proposed IPT system. 

[137] has resulted from this work, described in the following. 

 

III.5.1. Physiological compatibility of the IPT for E-bikes 

 

Although the wireless battery charging provides benefits in terms of human 

safety, not implying electrocution risks arising from the plug-in operation, some 

concern should be addressed to the magnetic field exposure due to the IPT-based 

operation. In scientific literature, although few works report the simulation results 

concerning the magnetic field distribution in wireless charging of electric cars and 

bicycles, no experimental result has been reported yet [27]. 

Accurate considerations on the potential risks arising from the magnetic field in a 

wireless charger for electric vehicles strongly depend on the typology of the 

investigated vehicles. For instance, the electric car and the E-bike represent two 

inherently different case studies as far as an IPT-based wireless battery charging is 

concerned. In the case of the car, the metal chassis of the vehicle protects the 

passengers from the magnetic field exposure. Most of the magnetic energy is 

contained inside the narrow gap between the road and the car, where the transmitter 

and the receiver coil are respectively placed [94]. In spite of the high power levels 

involved, the wireless charging operation turns out to be quite safe. 
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Due to the lower power levels, the magnetic fields produced by IPT are supposed 

to be weaker in the E-bike case in comparison with the car case. Nevertheless, the 

human exposure to the magnetic field is potentially more likely, as the cyclist is not 

protected by a chassis like in the case of the car. Furthermore, supposing a scenario 

where different electric bicycles are parked next to the sidewalk and being 

inductively charged, the pedestrians or other cyclists could be exposed to the 

magnetic radiation. To evaluate the effect of the produced magnetic field on the 

human body, the guidelines of ICNIRP have been considered. In Fig. III.12 the 

ICNIRP guidelines concerning the general public exposure are highlighted [116]. 

 

 

 

Fig. III.12. ICNIRP guidelines concerning the general public exposure:  

the limit for the magnetic flux density is highlighted for the IPT frequencies 

 

In order to investigate the distribution and the strength of the magnetic field and to 

understand the safety distance from the charging system, several simulations and 

experimental tests have been carried out. The tested object is represented by the 

assembled prototype of IPT system for E-bike charging, consisting of the two flat 

and circular coils as the main part as far as magnetic field production is concerned. In 

Tab. III.3 the electrical features of the IPT system are provided for the magnetic 

characterization of the system. 

RL has been implemented by a rheostat. A 100 W load power has been chosen. 
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TABLE III.3. 

ELECTRICAL FEATURES OF THE IPT PROTOTYPE 

FOR THE MAGNETIC FIELD ESTIMATION 

Element Value 

L1 = L2 = L 13 µH 

 

M (air gap) 

9.6 µH (1 cm) 

6.6 µH (2 cm) 

4.9 µH (3 cm) 

C1 = C2 = C 220 nF 

RL 7 Ω 

 

 

According to ICNIRP guidelines, as shown by Fig. III.12, the rms value of 

magnetic flux density |Brms| which should be considered as the maximum limit for 

general public exposure is 27 µT at the frequency of 94.1 kHz. Since both the 

magnetic simulation tool and the measuring instrument provide peak values, the 

reference limit, according to ICNIRP, is 38 µT according to the following 

expression: 

 

||2|| rmsBB                                                    (III.2)  

 

where |B| is the peak value of the magnetic flux density. 

 

 

III.5.1.1. Magnetic simulations 

 

Simulation tests in order to obtain the magnetic flux density around the proposed 

coupling structure have been carried out through a 2D FEM-based software [124]. 

Fig. III.13 refer to three different values of width of the air gap between the 

transmitter coil and the receiver coil: 1 cm, 2 cm and 3 cm. The figures show a cross 

section of the structure. The left edge of the image corresponds to the axis of the 

imaginary cylinder whose bases are the circular planes belonging to the coils. 
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According to a 100 W power on the load resistor, the currents flowing on the primary 

and the secondary self-inductances have been evaluated through a power electronics 

simulation software [125] and simulated on the coils in the FEM software. The 

resulting magnetic flux density is higlighted in the figures. 

 

 

(a) 

 

(b) 



Chapter III – Experimental prototype and measurements 

 

75 
 

 

 

(c)  

Fig. III.13. Magnetic flux density resulting from simulations: 

(a) air gap = 1 cm; (b) air gap = 2 cm; (c ) air gap = 3 cm 

 

 

According to the color key, the region where the magnitude of the magnetic flux 

density is higher than the ICNIRP limit of 38 µT corresponds to the first color 

starting from the top of the legend. Further from the coils, the magnetic field is 

lower. In Tab. III.4 nine points where the simulated magnetic flux density is equal to 

the ICNIRP limit are highlighted. 

With reference to the figures, for each value of air gap the distances from the 

center of the system are given for the following directions: right, up, down. 

In Tab. III.5, the value of the simulated magnetic flux density is given for each of 

the four points A, B, C and D, as higlighted in the figures. Each of A, B and C 

corresponds to a distance of 15 cm from the center D for each of the three directions. 
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TABLE III.4. 

POINTS WHERE SIMULATED |B| = 38 µT 

Air gap 
Distance from the center [cm] 

right up down 

1 cm 13.4 14.2 14.5 

2 cm 13.8 14.6 15.4 

3 cm 14.3 15.7 17.5 

 

 

TABLE III.5. 

SIMULATED |B| AT 4 DIFFERENT POINTS 

Air gap 
|B |[µT] 

A B C D 

1 cm 25.5 32.3 35.2 654 

2 cm 29.7 32 42.7 741 

3 cm 33 42.7 57 807.5 

 

 

As shown by the tabs, at 20 cm from the center of the system the simulated 

magnetic field, for a 100 W load power, is compliant with the guidelines of ICNIRP. 

 

III.5.1.2. Magnetic measurements 

 

Fig. III.14 shows a 3D model of the coils. The three Cartesian axes are 

highlighted in order to give a reference concerning the points where the 

measurements have been actually taken. 

In Tab. III.6  the values of magnetic flux density, arising from the experimental 

measurements, are provided. 

With reference to Fig. III.14, the points of measurements are on the axes passing 

through the center (0,0,0). For example, with an air gap of 1 cm, at 15 cm from the 

center on the x axis, the measured |B| is 21.4 µT. In parentheses the corresponding 

points in the magnetic simulations are given, if existing. 
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Fig. III.14. A 3D model of the proposed coils 

 

 

TABLE III.6. 

MEASURED |B| AT DIFFERENT POINTS 

 

Air gap 

|B |[µT] 

x [cm] y [cm] z [cm] (x,y,z) 

15 -15 
15 

(A) 

-15 

(B) 

15 

(C) 

(0,0,0) 

(D) 

1 cm 21.4 34.6 33.4 45.1 55.5 169.5 

2 cm 35.4 50 31.9 63.7 74.8 942.3 

3 cm 31.9 40.2 40.2 61.5 70.7 1021.4 

 

 

As shown by the table, most of the points featuring values higher than the limit of 

38 µT belong to the z axis. This reflects the data collected in Tab. III.4, where the up 

and down points show the highest values of distance, and in Tab. III.5, where the 

corresponding points B and C feature the highest values of magnetic flux density. 

Apart from the point D, which is not of concern for the goal of this paper, the 

difference between the experimental and the simulation data is in the range (20-

30)%, which is acceptable considering the not perfect simulation model of the system 

and all the unavoidable sources of uncertainty of measurement. Therefore, a safety 

distance of 25 cm from the center is suggested for the proposed system. 
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In this Chapter a detailed description of the assembled IPT system has been 

provided and the experimental results have been discussed. For a 96 W power level, 

the coupling efficiency is 79%. 

After the report of the results in terms of coupling and overall efficiency for 

different operation conditions, a magnetic characterization of the system has been 

carried out, through magnetic simulations and measurements.  

If the center of the proposed IPT system placed upon the E-bike wheel is 

considered, a minimum 25 cm safety distance is suggested in order to respect the 

ICNIRP guidelines in terms of magnetic field exposure. 



 

79 
 

Conclusions 

 

This thesis has dealt with Wireless Charging Systems for Electric Vehicle 

Batteries.  

An Inductive Power Transfer (IPT) system for an E-bike battery charging has 

been designed and assembled. The target is a 36 V 10 Ah LiFePO4 battery and the 

power level ranges from 100 W to 250 W. 

After the magnetic design of the IPT coils, the electric model of the coupling 

structure has been gained and acquired from an electronic simulation tool, in order to 

complete the design of the whole system. 

A series-series (SS) compensation topology has been chosen for the capacitive 

network that has been connected to the coupled coils. In the assembled open-loop 

prototype, a half-bridge converter in the transmitter side and a four-diode rectifier in 

the receiver side have been designed. 

From the experimental results, a 79 % coupling efficiency for an about 100 W 

level arises. 

A magnetic characterization of the region surrounding the assembled prototype 

has been made as well. According to the magnetic field exposure guidelines, by 

ICNIRP, a minimum 25 cm distance from the center of the system is suggested as 

safety distance. 

After the experimental measurements on the power efficiency, alternative 

solutions of power electronics and coupling structures have been investigated. 

A Bi-Directional IPT system has been analyzed and an algorithm for its efficiency 

optimization has been proposed. Mathematical analysis has been validated through 

power electronics simulations.  

For this system, an investigation has been carried out on different magnetic 

coupling structures, all compliant with an E-bike wheel, and the best option in terms 

of system efficiency and tolerance to lateral misalignments has been defined. The 

investigation has been made according to the results of 3D magnetic simulations and 

their elaboration. 

The work of this thesis has been published in [118–121], [127–129], [137]. 
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