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SUMMARY 

 

  

 A plug-in hybrid electric vehicle (PHEV) is a vehicle powered by a combination 

of an internal combustion engine and an electric motor with a battery pack.  The battery 

pack can be charged by plugging the vehicle into the electric grid and from using excess 

engine power.  A PHEV allows for all electric operation for limited distances, while 

having the operation and range of a conventional hybrid electric vehicle on longer trips. 

 The purpose of this study was to develop a methodology for optimizing a PHEV 

design using minimum drivetrain cost as a figure of merit and determine the optimum 

designs for an all electric range (AER) of 10, 20, and 40 miles. Design parameters, 

electric motor size, engine size, battery type, and battery capacity, are optimized to 

determine the least cost design that meets a fixed set of vehicle performance constraints.  

The performance constraints are: 0-60 miles per hour (mph) acceleration time, 50-70 mph 

acceleration time, 0-30 mph acceleration time in electric only operation, top speed, and 

grade ability.  The design optimization was carried out for three different levels of all 

electric range between 10 and 40 miles. 

 Using Argonne National Laboratory’s Powertrain Systems Analysis Toolkit 

(PSAT), a base vehicle with characteristics resembling a mid-sized sedan is constructed, 

powertrain components are defined and scaled, and vehicles with different design 

parameters are simulated to determine their performance.  The costs of different PHEV 

components and present value of battery replacements over the vehicle’s life are used to 

determine the design’s drivetrain cost. 
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 The resulting optimum PHEV designs are simulated for fuel economy through 

PSAT and the social impact in terms of gasoline use reduction and carbon emissions 

reduction are quantified. 

 The overall least cost optimum results are vehicle designs using lead acid battery 

type.  The optimum vehicles have the minimum electric motor size that can meet the 0-30 

mph acceleration time in all electric operation.  For an AER of 40 miles, the optimum 

vehicle has a minimum engine size that is sufficient to meet the 0-60 mph acceleration 

performance constraint. For vehicle designs with an AER of 10 and 20 miles, the engine 

is sized to help with meeting the grade ability performance constraint.  The resulting 

optimum battery capacity in all cases of AER is the minimum battery capacity required 

for the AER. 

 The social impact in terms of gasoline use reduction and carbon emissions 

reduction was determined for the optimum PHEV designs.  The least cost PHEV10 

design has an EPA weighted electric operation fuel economy of .233 kWh/mi and a 

gasoline operation EPA weighted fuel economy of 58.1 mpg.   The PHEV20 and 

PHEV40 had similar but slightly lower fuel economies.  The PHEV10 shows a gasoline 

reduction of 63% of the average sedan in the current vehicle fleet, while the PHEV20 and 

PHEV40 show gasoline reductions of 70% and 80% respectively.  The PHEV10, 

PHEV20, and PHEV40 save 280, 312, and 356 gallons of gas respectively annually.  For 

carbon emissions, the PHEV10 provides a 53% reduction including electric power plant 

carbon emissions.  This translates to a reduction of 2,102 kg of CO2 emitted per year over 

the average sedan.  The PHEV20 has slightly more carbon emissions, only a 51% 
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reduction or 2,010 kg CO2 emissions saved annually.  The PHEV40 reduces carbon 

emissions by 1,844 kg CO2 per year which is a 47% reduction over the average sedan. 

 At $2.50 per gallon gasoline and 9 cents per kWh electricity, the PHEV designs 

save $643 to $696 in fuel costs annually over the average sedan meeting the 27.5 mpg 

CAFE standard. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

As fossil fuel energy sources become more and more scarce, technologies that 

show possible potential for decreasing energy use are being evaluated.  Since the 

transportation sector accounts for about two thirds of the gasoline consumption in the US, 

new transportation technologies are being looked at with increasing vigor.  One such new 

technology is plug-in hybrid electric vehicle technology. 

A plug-in hybrid electric vehicle (PHEV) is a vehicle powered by a combination 

of an internal combustion engine and an electric motor with a battery pack.  The battery 

pack can be charged by plugging the vehicle into the grid and from using excess engine 

power.  A PHEV allows for all electric operation for limited distances, while having the 

operation and range of a conventional hybrid electric vehicle on longer trips. 

PHEVs have significant potential to reduce oil consumption and greenhouse gas 

(GHG) emissions.  Using energy off the grid as a substitute for burning gasoline, PHEVs 

increase coal, natural gas, and nuclear energy use in power plants, but also increase our 

energy independence from oil.   

There are an increasing number of prototype vehicles being developed.  However, 

most of the prototype designs have been designed with the intent to prove the technology.  
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There have also been many examples of converting hybrid electric vehicles (HEVs) to 

PHEVs.  However, a methodical design optimization has not yet been published. 

 

1.2 Optimization Considerations 

A vehicle design optimization presents many complexities.  A vehicle presents a 

system of many components working together in very intricate ways.  The powertrain of 

a hybrid electric vehicle (HEV) is a link of an internal combustion (IC) engine, electric 

motor, transmission, wheels and axles, and battery pack.  Each component has several 

parameters and possible designs.  For example, a battery pack can have different 

capacities, chemistries, and voltages.  Varying a single parameter typically has an effect 

on the whole system design.  Also, compatibility between different components with 

varying parameters must be checked.  For example, it must be ensured that the battery 

pack has enough available power to supply the peak electric motor power and there must 

be a check to see if the transmission can withstand the torque from the motor and engine. 

Also, there must be a way of evaluating the effectiveness of any given design.  

The vehicle design must adhere to a set of performance constraints, such as 0-60 mile per 

hour (mph) acceleration time and grade-ability constraints.  Also, the vehicle design must 

be evaluated for cost to determine the minimum cost design.  There could be many other 

figures of merit besides lowest cost, such as minimum gasoline consumption, minimum 

weight, or best performance. 
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1.3 Past Work 

Much work has been done with HEV and PHEV technology in the past few years, 

however, HEV technology has been around over a century.  In 1905, an American 

engineer named H. Piper developed and patented a powertrain with an electric motor 

augmenting an engine that could accelerate a vehicle to a scorching 25 mph in a mere 10 

seconds1.  However, better engine technologies eliminated the need for electric 

augmentation and the idea of the HEV sat dormant for about 60 years. 

HEV interest was rekindled with the oil crisis in the early 1970’s.  The crisis led 

to funding and development of several experimental HEVs, but the development of the 

technology began to diminish as soon as oil became plentiful again. 

The next big step in HEV technology development came in 1993.  The federal 

government announced the creation of the Partnership for a New Generation of Vehicles 

(PNGV) consortium, consisting of the “Big 3” automakers: Ford, GM, and Chrysler, 

along with 350 smaller firms.  PNGV outlined very aggressive goals and called for the 

development of zero emission vehicles (ZEVs) using plug-in and hydrogen technologies. 

As a contrast to the PNGV objectives, development in Japan and Europe was 

more orientated towards developing modestly improved and more commercially viable 

charge sustaining HEV designs.  This type of development led to the first commercially 

successful HEVs, the Honda Insight and the Toyota Prius. 

Currently, conventional HEVs are gaining a greater share of the marketplace.  R. 

L. Polk analyst Ronnie Williams2 predicts that hybrid sales will top two million vehicles, 

over 10 percent of the market, in the next five years.  However, the recent attention being 
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paid to the energy crisis and oil peaking has caused a more detailed look at more 

extensive hybridization and at plug-in hybrids. 

University of California Davis, the Electric Power Research Institute (EPRI), 

Argonne National Laboratory (ANL), and CalCars are the current front runners in PHEV 

research.  UC Davis and CalCars have introduced many working prototypes and have 

demonstrated PHEVs’ ability to reduce oil consumption and GHG emissions.  

Meanwhile, Argonne National Laboratory has developed a flexible and comprehensive 

advanced vehicle simulator, Powertrain Systems Analysis Toolkit (PSAT) 3, which has 

allowed for the modeling and testing of hybrid, plug-in hybrid, and fuel cell vehicle 

designs without the need to construct and prototype.  EPRI has determined costs and 

impacts for PHEVs with different all electric ranges4 (AERs). 

Currently, with backing from such prominent figures as former CIA Director 

James Woolsey, PHEV research of some type is going on at many colleges, universities, 

laboratories, and in industry. 

 

1.4 Purpose 

The purpose of this study is to determine an optimum least cost PHEV design 

with base vehicle characteristics that meets a set of performance constraints.  Knowledge 

of this optimum design will allow for better accuracy when using PHEV characteristics in 

estimating future energy consumption, emissions, and social impacts. 

The vehicle design parameters engine size, electric motor size, battery pack 

capacity and battery types are optimized.  A base vehicle platform resembling the 

characteristics of a mid-sized sedan is used.  The least cost design that meets a set of 



 

 
5

performance parameters including 0-60 mph acceleration time, 50-70 mph acceleration 

time, 0-30 mph all electric acceleration time, sustained grade ability, and top speed, is 

determined for different values of all electric range.  The social impact of the optimum 

designs are evaluated in terms of reduced carbon emissions and gasoline consumption. 

The optimization construction and methodology is developed.  The resulting 

methodology can be adapted for different vehicle technologies and performance 

constraints. 
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CHAPTER 2 

 

PLUG-IN HYBRID ELECTRIC VEHICLE TECHNOLOGY 

 

 

2.1 Overview of a Hybrid Electric Vehicle 

A hybrid electric vehicle (HEV) uses both an internal combustion (IC) engine and 

an electric motor in the powertrain, and also uses a bank of batteries to recapture and 

store energy from braking.  This combination of an electric motor and an IC engine is 

more efficient from a system viewpoint than a conventional powertrain. 

There are many different configurations of hybrid electric systems, including 

series, parallel, and power-split platforms.  All PHEVs in this study have a parallel hybrid 

configuration with a pre-transmission motor location and a continuously variable 

transmission (CVT).  This configuration is shown in Figure 1. 
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Figure 1. PHEV Parallel Pre-Transmission Configuration with CVT 

 

The addition of HEV technology to a vehicle design improves efficiency 

primarily by four ways.  First, the addition of the electric system allows the IC engine to 

operate in a more efficient range a greater amount of time. Typically, IC engines are 

more efficient at a higher load near wide open throttle.  In a conventional vehicle, power 

requirements at cruising and idling are so low that the engine is forced to run at a lower 

than optimum loading.  However, with a hybrid configuration, the IC engine can run at 

the most efficient load most of the time, using the excess power to charge the batteries.   

If the batteries are charged, the electric motor can provide the small amount of power 

required to propel the vehicle while the engine remains off. 
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 Second, having the power of an electric motor at hand, it makes it possible to 

downsize the engine.  Electric motors have higher torque at low rpm range while IC 

engines typically have high torque at high rpm range.  This makes using an electric motor 

combined with an engine during acceleration, a time when the highest torque is needed, 

more efficient that using a larger equivalent torque IC engine.   Also, having a smaller 

engine reduces the engine braking load, leaving more energy available to be recovered by 

regenerative braking. 

 Thirdly, having an electric motor allows the IC engine to completely shutoff 

instead of idling.  The electric motor can simultaneously start the car moving and start the 

engine.  Not having the engine idling while sitting at a traffic light significantly increases 

fuel economy in city driving.  The Chevrolet Silverado incorporates this mild form of 

hybridization, and by simply eliminating engine idling, it has shown a 13% fuel economy 

increase in city driving. 

 Finally, the electric system allows for extensive recapture of the energy of 

braking.  In conventional vehicles, deceleration is accomplished by friction between 

brake pads and rotors.  The kinetic energy is dissipated in the form of heat.  However, it 

is possible to recover a lot of this energy in useable form.  By using the electric motor in 

reverse as a generator, the resistance created by the generation of electricity can be used 

to decelerate the vehicle and the electricity generated is used to charge the battery.  Some 

estimates show it is possible to get almost 60% of the energy of braking back into useful 

electricity. 
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2.2 Hybrid Electric Vehicle Components 

 

2.2.1 Battery Pack 

 The battery pack is the main electrical energy storage device.  It is typically made 

up of a number of modules, connected in series with an open circuit voltage in the range 

of 100 to 300 volts, with the best designs at the higher end of this range.  Each module is 

made of a number of cells.   

 Battery packs can be come in many different chemistries, but the most common 

are Nickel Metal Hydride (NiMH), Lead Acid (Pb Acid), and Lithium Ion (Li Ion).  

These are the chemistries considered in this study.  Each chemical battery type has its 

own power, energy, and voltage characteristics.  

 The battery pack’s energy capacity is given in amp-hours and its state of charge 

(SOC) is defined as: 

          (2.1) 

max used

max

( )C CSOC
C
−

=  

 where Cmax is the nominal rated C/3 capacity of the pack in A-h and Cused is the capacity 

of the pack in A-h that has been used since the pack was fully charged. C/3 is the 

capacity rating where the entire charge of the pack is discharged in 3 hours.  The safe 

operating SOC range varies with different battery chemistries but is forced to stay over 

the constant range of 0.2 to 1 for this study.  For most battery chemistries, the battery 

pack starts to be damaged at a SOC less than 0.2. 
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2.2.2 Electric Motor 

The electric motor, often referred to as simply the motor, converts electrical 

energy from the battery pack to mechanical power into the CVT.  The electric motor can 

also be used in reverse as a generator, converting mechanical energy from braking into 

electrical energy to be used to charge the battery pack. 

There are two main types of electric motors used in HEVs.  The first is permanent 

magnet motors, using a permanent magnet to create the magnetic field needed to produce 

power.  The second is an induction motor, which uses current to create the magnetic field.  

This study investigates only permanent magnet motors, the more common of the two in 

HEV applications. 

 

2.2.3 Power Electronics 

 Since the battery pack is basically a constant voltage device, a motor controller is 

needed to vary the current so that the motor produces the necessary torque.  The power 

electronics are typically designed to the specific characteristics of the electric motor and 

are typically comprised of a microprocessor, power switching semiconductors, and a 

thermal management system. 

 

2.2.4 Internal Combustion Engine 

 The internal combustion (IC) engine converts gasoline to mechanical engine to 

drive the wheels, and when needed to drive the motor operating as a generator to recharge 

the battery pack.  There are many different types of engine designs, but in this study, a 
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scaled version of the spark ignition 2001 1.5 L 60 kW Prius engine is used.  Data for this 

engine is provided by ANL19 and is shown in Appendix D. 

 

2.2.5 Continuously Variable Transmission 

 The continuously variable transmission (CVT) is a belt driven transmission that 

provides continuous gear ratios to allow the IC engine and electric motor to operate at the 

most efficient or most powerful rpm over a range of vehicle speeds.  The use of a CVT 

results in both better performance and better fuel economy over an automatic 

transmission. 

 

2.3 PHEV Technology Considerations 

 The main aspect differentiating the PHEV from the HEV is the ability to plug the 

PHEV into the grid and charge the battery pack using grid electricity.  A PHEV is rated 

by the all electric range (AER), which is the distance the vehicle can travel without the IC 

engine turning on over the EPA Urban Dynamometer Driving Schedule (UDDS) starting 

with an SOC of 1 and finishing with the smallest possible SOC that the battery pack can 

sustain without being damaged (assumed to be 0.2 in this study).  Figure 2 shows the 

UDDS speed trace. 
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Figure 2.  UDDS Driving Cycle 

 

 The UDDS cycle simulates urban driving and is part of the test procedure for 

determining EPA rated fuel economy.  A PHEV that has an AER of 10 miles is 

designated as a PHEV10 and a PHEV that has an AER of 40 miles is designated as a 

PHEV40 and so on. 

 While a PHEV might have an AER of 40 miles, it might not necessarily have a 

control scheme that will use all electric operation for the first 40 miles of operation.  

PHEVs might use a control scheme that uses battery power to optimize fuel economy or 

to provide the most pleasant driving experience.  While a PHEV might have the ability to 

travel a certain distance in all electric operation, in real world use, it could operate in all 

electric mode only for a certain speed range and torque demand.  The engine could turn 

on any time the driver asks for a significant increase in torque, and prolonged all electric 

operation would be rare.  Even so, fuel economy benefits could be realized whether or 
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not the PHEV operates strictly in all electric mode.  Different control schemes were not 

evaluated in this study. 

 The average light duty vehicle in the US is driven 40 miles per day14.  However, 

some days, vehicles will travel longer distances than this, and some days, vehicles will 

travel shorter distances than this.  ERPI4 determined that a PHEV20 can drive 39% of its 

total miles driven in all electric mode awhile a PHEV40 can drive 61% of its total miles 

in all electric mode.  Above a 40 mile AER, the benefits start to drop off, and at a 60 

AER, 72% of the total miles would be driven in all electric mode.  As a compromise 

between simulation time and ability to capture most of the miles driven in all electric 

mode, AERs of 10, 20, and 40 miles are chosen for this optimization. 
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CHAPTER 3 

 

METHODOLOGY 

 

 

3.1 Overview of Approach 

 In order to determine the least cost PHEV design that meets a set of performance 

constraints, the following steps are used: 

• A base vehicle platform and base vehicle characteristics are 

established, such as drag coefficient and accessory loads. 

• Design parameters are selected. 

• Performance constraints are selected. 

• Relationships between the design parameters are developed based 

on the performance constraints. 

• Cost functions of the design parameters are developed. 

• Design parameters are optimized using minimum cost as a figure 

of merit. 

• Impacts of optimized designs are evaluated for gasoline 

consumption reduction and carbon emissions reduction. 

 The optimization steps are repeated for different all electric ranges (AERs) of 10, 

20, and 40 miles.  After the design parameters were optimized, the resulting vehicle 

design may have a different mass than the mass used during the optimization.  Therefore, 
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the masses of the resulting designs were calculated and the optimization was repeated for 

designs with the adjusted masses. 

 

3.2 Powertrain Systems Analysis Toolkit 

 Argonne National Laboratory’s Powertrain Systems Analysis Toolkit (PSAT)3 is 

used extensively in this study.  PSAT is a Matlab/Simulink based software that allows 

user specification of all specific vehicle components.  Once the vehicle is specified, 

PSAT uses forward facing component dynamic models to simulate the vehicle operation 

along a specified speed trace or a specific performance test.  From a specified road speed 

and grade, PSAT determines the power required at the wheels, determines the resulting 

driver response, and goes from driver, through the powertrain, including transient 

behavior and component efficiencies, and attempts to match the power required to meet 

the speed trace. Ultimately, PSAT will output fuel consumption, performance 

characteristics for specific powertrain components, and total cycle emissions for a given 

vehicle over a given driving cycle or performance test. 

 For all PSAT simulations in this study, a base vehicle platform is used and the 

design parameters are varied by scaling the sizes of the components of interest, and by 

changing the chemistry and scaling the size of the battery pack. 

 PSAT is first used to develop relationships between design parameters based on 

the performance constraints, determining the specific combinations of electric motor and 

engine sizes that will meet the 0-60 acceleration time and the 50-70 acceleration time 

performance constraints.  PSAT is also used to determine the battery pack capacity 

required for the three battery types, NiMH, Li Ion, and Pb Acid, for the different AERs. 
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3.3 Component Costs 

 Component cost curves for engine size, motor size, and each of the three types of 

battery types are developed from various studies and industry estimates.  The cost curves 

give a dollar amount per unit size of the design parameter, e.g., $ per kW peak motor 

power or $ per kWh battery capacity for a certain battery chemistry.  Battery lifetimes are 

estimated, and battery replacement costs are discounted to present value and included in 

the battery costs. 

 Once the component cost curves are developed, it becomes possible to assign a 

PHEV an incremental powertrain cost for its various levels and types of components.  

Components that are the same for all types of PHEVs, i.e., chargers, vehicle frames, and 

CVTs, will have their costs ignored. 

 

3.4 Optimization Approach 

 Once the performance curves and component cost curves are constructed, the 

vehicle design parameters are optimized to determine the least cost design.  The 

optimization routine starts with a motor size and an engine size corresponding to a point 

that has sufficient power on a performance curve.  Then, for each AER and for each 

battery type, the smallest acceptable kWh capacity of the battery pack is determined 

either from the AER range requirement, the peak electric motor power requirement, or to 

meet the grade ability performance constraint.   

 Once the component sizes are determined, the routine determines the drivetrain 

cost of the vehicle using the component cost curves.  The least cost design for a given 

AER is then determined. 
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CHAPTER 4 

 

BASE CHARACTERISTICS AND PERFORMANCE GOALS 

 

 

4.1 Base Vehicle Platform 

 The base vehicle platform was chosen to resemble a typical midsized sedan.  The 

following vehicle characteristics, taken from a 2001 study by Tony Markel and Keith 

Wipke5, are used: 

Table 1. Base Vehicle Characteristics 

Frontal Area (Af) 2.17 m2 

Coefficient of Drag (CD) 0.33 

First Coefficient of Rolling Resistance (CRR1) 0.007 

Second Coefficient of Rolling Resistance (CRR2) 0.00012 s/m

Electric Accessory Load (Pacc,e) 500 W 

Mechanical Accessory Load (Pacc,m) 700 W 
 

 All vehicles modeled in PSAT and all optimization results are for vehicles with 

the characteristics listed in Table 1. 

 

4.2 Performance Constraints 

 The optimized vehicle is required to meet six performance constraints.  Many of 

these are taken from PNGV goals when the consortium was created, while others are 

developed from examining what consumers want when purchasing automobiles.  The 

performance constraints are: 
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1) 0-60 mph acceleration time in less than 12 seconds.  This originated from 

the PNGV goals.  The vehicle starts from rest with a SOC of 0.7 and 

accelerates to 60 mph.  The 0.7 SOC is assumed to be average operating 

SOC. 

2) 50-70 mph acceleration time in less than 8 seconds.  Also a PNGV goal, 

50-70 mph can be thought of as the “passing acceleration”.  The vehicle 

starts at 50 mph with an SOC of 0.7 and is accelerated to 70 mph. 

3) 0-30 mph acceleration time less than 5 seconds in all electric operation.  

This is assumed to be the lower performance limit of a vehicle that is 

drivable in a city environment in all electric operation.  The vehicle starts 

at rest with a SOC of 0.7 and the engine is not allowed to start at any time 

in the performance test. 

4) 6.5% grade at 55 mph for 1200 seconds.  This is a PNGV goal.  The 

vehicle is allowed to use both engine and electric power.  The initial SOC 

of the vehicle is 0.7 and the final SOC at the end of the test must be higher 

than 0.2.   

5) Top speed at least 90 mph.  The vehicle at 0.7 SOC must be able to go 

faster than 90 mph with both engine and electric power. 

6) Vehicle must meet a specified all electric range (AER).  The vehicle starts 

at a full SOC and must be able to run along the UDDS cycle for the 

specified number of miles without engine operation.  The final SOC must 

be above 0.2. 
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 There are many other performance qualities that consumers could want in a car. 

However, the optimization gets significantly more complicated as more constraints are 

added. 
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CHAPTER 5 

 

VEHICLE MODELING 

 

 

5.1 Approach 

 To determine that a given vehicle design meets the 0-60 mph acceleration, the 50-

70 mph acceleration, the 0-30 mph all electric acceleration, and the AER performance 

constraints, the vehicle design’s performance was simulated in Powertrain Systems 

Analysis Toolkit (PSAT).  To determine that a given vehicle design passes the grade 

ability constraint, an analytical model was constructed.  Both of these models require 

design parameter values, vehicle characteristics, and total vehicle mass as inputs. 

 The total vehicle mass input presents a problem because the mass of the optimum 

vehicle design resulting from the optimization may not be consistent with the assumed 

mass.  To address this issue, a vehicle mass is input to the vehicle model, the 

optimization is performed, the new masses of the resulting designs are calculated, and 

these new masses are put back into the vehicle performance models and new optimum 

designs are calculated.  This iterative process on total vehicle mass, while time 

consuming, had to only be performed for one iteration for the total masses of the resulting 

optimum designs to be within 1.5% of the masses used in the optimization. 

 The PHEV10 Pb Acid optimum design was assumed to have a total vehicle mass 

of 1,600 kg.  All other designs with different AERs and different battery types have total 

vehicle masses different than 1,600 kg. 
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 It was determined that all optimum design parameter values, e.g. electric motor 

size, engine size, etc., resulted from a single driving performance constraint.  Therefore, 

it was only necessary to calculate the design parameter value that was the minimum value 

needed to meet the driving performance constraint for vehicles with different masses.  So, 

while the first development of the vehicle models included all ranges of design parameter 

values, all following iterations on vehicle mass only calculated the minimum design 

parameter values necessary to meet the pertinent driving performance constraint. 

 

5.2 Base Vehicle Setup 

 In order to simulate a vehicle in PSAT, one must first define the vehicle 

characteristics, the powertrain configuration, and specify the specific components.  PSAT 

includes a library of configurations and components, and allows specific parameters to be 

modified and scaled as needed. 

 For the powertrain configuration, a parallel hybrid two wheel drive CVT 

configuration with the electric motor connected pre-transmission is used.  Figure 3 shows 

the base configuration. 
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Figure 3.  Base Hybrid Configuration in PSAT 

 

 The starter used is a standard 2 kW starter.  It is conceivable that the electric 

motor can start the engine, however, this would add complexity in the modeling. 

 For the mechanical accessories, a constant 700 W loss is used.  This is roughly the 

load of all the engine accessories on a conventional light duty vehicle, such as the water 

pump and the air conditioning compressor. 

 A simple clutch model is used, with a lock threshold of 5 rpm and a rotating 

inertia of 0.004 kg*m2.  This clutch can handle up to 150 N-m of torque. 

 The CVT used is a belt style CVT with a gear range of 0.42 to 2.40.  The gear 

efficiencies are calculated in PSAT and the maximum efficiency is 92%.  The CVT 

includes a hydraulic pump for transmission fluid and is included in the gearbox 

efficiency. 

 For the final drive, a 3.77 gear ratio was selected.  This is the final gear ratio of 

the Ford Taurus. 
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 For the wheels, a 14 inch rim diameter was selected and rolling coefficients were 

set to match the base vehicle characteristics from Chapter 4.  The first rolling coefficient, 

CRR1 was set to 0.007 and is treated as a normal rolling friction coefficient.  The second 

rolling coefficient, CRR2 was set to 0.00012.  The coefficients are used in PSAT’s wheel 

friction model to calculate rolling resistance by the following equation: 

          (5.1) 

1 2[ * ]* *R RR RRF C C V m g= +  

where FR is the force on the vehicle from rolling resistance in N, V is the velocity of the 

vehicle in m/s, m is the mass of the vehicle in kg, and g is gravity, 9.81 m/s2. 

 A 12V DC/DC power converter was selected with an efficiency of 0.95.  The 

electrical accessory loss was set at a constant 500 W.  This is to simulate loads such as 

the radio or the headlights. 

 A standard Ford Taurus vehicle platform was selected and then the characteristics 

were modified based on the vehicle characteristics in Chapter 4.  The frontal area (Af) 

was set to 2.17 m2 and the coefficient of drag (CD) was set to 0.33.  

 The entire vehicle mass was overwritten to 1,600 kg for the PHEV10 optimum 

design.  For other designs, the mass of the actual design in PSAT was compared to the 

actual mass of the PHEV10 design, and the difference was added to 1,600 kg and the 

resulting mass was set for the vehicle.  This process in effect resulted in using a base 

mass excluding the engine, motor, and battery pack of 1,277 kg. 
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5.3 Engine Platform and Scaling Procedure 

 The 2001 model year 1.5 L 60 kW spark ignition Toyota Prius engine was 

selected as the base engine platform.  This engine is one of the more efficient of the 

newer engines in the marketplace today.  The data for this engine was measured and 

compiled at ANL and is included with PSAT19. The data for this engine is shown in 

Appendix D.  Figure 4 shows the efficiency map for the base engine. 

 

Figure 4. Base 60 kW Engine Efficiency Map 

 

 The engine is scaled by maximum power rating using a linear engine scaling 

algorithm that comes with PSAT.  The scaling file linearly scales the fuel map so that the 

engine efficiency is constant with scaled power.  Figure 5 shows the efficiency map of 

the base engine scaled to 30 kW. 
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Figure 5. 30 kW Scaled Engine Efficiency Map 

 

 The engine is scaled over a wide range, 10 to 60 kW.  The accuracy of the 

constant efficiency with varying maximum power is reduced as the engine power gets 

further away from the nominal 60 kW.  It is estimated that the engine efficiency might 

vary as much as 20%15 at 10 kW from the assumed efficiency at 60 kW. 
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5.4 Motor Platform and Scaling Procedure 

 The motor used is a 49 kW continuous 49 kW peak permanent magnet motor 

developed by Honda.  The effective torque map comes from Honda R&D America and is 

included with PSAT20.  Data for this motor is shown in Appendix D. 

 The motor is scaled by peak power using PSAT’s linear motor scaling algorithm, 

similar to the engine scaling algorithm. 

 

5.5 Battery Packs and Battery Pack Scaling 

 A commercial example of a battery pack was selected for each type of battery 

chemistry from the battery packs in PSAT.  The pack size was scaled linearly by 

manually adding to the number of modules and at the same time, linearly increasing the 

nominal rated A-h capacity.  This method linearly increases the voltage and thus the 

power capability of the pack and at the same time linearly increases the A-h capacity of 

the pack by the same percentage. The internal resistance characteristics of the batteries 

remained the same for each chemistry.  For any performance tests, the initial SOC was set 

to 0.7 and the minimum SOC was set to 0.2, except for all electric range simulation, 

which the initial SOC was set to 1. 

 For the NiMH battery pack, a 60 A-h 300 cell Ovonics battery pack16 with a 

nominal voltage of 1.2 volts/cell was chosen and scaled.  The internal resistance and open 

circuit voltage data was provided by Ovonics and came with PSAT and is shown in 

Appendix C. 
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 For the Pb Acid battery pack, a Johnson Controls 28 A-h 150 cell pack17 with a 

nominal voltage of 2.0 volts/cell was selected and scaled.  The data for this pack was 

provided by the University of Illinois and comes with PSAT and is shown in Appendix C. 

 Finally, for the Li Ion pack, the only available choice was a 6 A-h 75 cell battery 

pack with a nominal voltage of 3.6 volts/cell developed by Saft18.  The data for this pack 

comes with PSAT and includes resistance and charging efficiency data based on 

temperature and a thermal model.  This is shown in Appendix C. The pack was scaled 

with the same method as the other two chemistries. 

 

5.6 Control Schemes 

 For performance tests in which the engine is allowed to operate, a parallel HEV 

control strategy is used in which preference is given to performance over fuel economy.  

For the acceleration tests, this strategy allowed for both the engine and the motor to run 

wide open at maximum power throughout the test. 

 For tests in which the engine wasn’t allowed to operate, a fuel consumption 

orientated parallel HEV control strategy is used.  To insure that the engine doesn’t start, 

the engine was set to turn on only when the wheel power demand was greater than 1012 

kW.  After the tests for all electric operation, it was verified that the engine did not turn 

out through the entirety of the test. 

 For tests to determine fuel economy, the electric-only control strategy was used 

for the full charge tests simulating electric only fuel economy and a parallel hybrid 

consumption strategy was used for the partial charge tests simulating gasoline only fuel 

economy.  For the partial charge tests, the charge sustaining SOC was set at 0.7 and the 
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engine was allowed to start when there was more power required than the electric motor 

could provide and also when the battery state of charge went below 0.65.   This control 

strategy assured that there was no significant battery drain between the start and ending 

of the cycle, which would skew the resulting gasoline only fuel economy. 

 

5.7 Determining the Minimum Electric Motor Size 

 It was found that the performance constraint of 0-30 mph acceleration in less than 

5 seconds determined the minimum acceptable electric motor size.  Using the all electric 

setup control scheme, different scaled levels of the electric motor are tested in an 

acceleration run.  During the all electric acceleration tests, the battery pack was purposely 

oversized to ensure that the pack provided sufficient power for the test and that the motor 

was able to produce peak power.   

 An iterative approach was used to determine the minimum electric motor size that 

would pass the 0-30 mph acceleration constraint. It was determined that a car with the 

base vehicle characteristics and the base PSAT setup with a mass of 1,600 kg needs at 

least a 44 kW motor to accelerate from 0-30 mph in 5 seconds in all electric operation.  

For designs with larger masses, the minimum electric motor size was found by the same 

method. 

 

5.8 Acceleration Performance Curves Development 

 Acceleration as a function of motor size and engine size was developed to 

represent a constant acceleration time.  The two acceleration curves developed are the 

curve for 0-60 mph in 12 seconds and the curve for 50-70 mph in 8 seconds.  These 
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curves represent the acceptable combinations of motor and engine sizes that will meet the 

performance goal, see Figure 8 on page 32.  These curves were developed for a 1,600 kg 

vehicle.  For designs other than 1,600 kg, it was only necessary to develop the left 

endpoints of these curves, as the optimum designs were found to lie on these endpoints. 

 Starting at the minimum acceptable electric motor size for a 1,600 kg vehicle, 44 

kW, an iterative approach is used to determine the corresponding engine size that meets 

the performance goal.  Engine sizes were adjusted and the acceleration test was rerun 

until the resulting acceleration time was within .1 second of the performance constraint.  

Once the corresponding engine size is found, the electric motor size is adjusted by a 1 

kW step size and the process is repeated. 

 For designs with vehicle mass other than 1,600 kg, only the corresponding engine 

size needed to accompany the minimum electric motor size to meet the 0-60 mph and 50-

70 mph performance constraints was determined.   

 Common logic would suggest that the power from the electric motor and engine 

would be directly additive, and thus the performance curves would resultantly be straight 

lines.  However, this is not the case because the IC engine and the motor have different 

torque curve shapes.  Figure 6 shows the wide-open throttle (WOT) engine torque curve. 
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Figure 6.  Base WOT Engine Torque Curve 

 

The engine produces its highest torque at its mid RPM range.  However, the electric 

motor produces its best torque at its low range of RPM.  Figure 7 shows the base electric 

motor torque curve. 
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Figure 7.  Base Electric Motor Torque Curve 

 

 For the acceleration performance constraints, the drive-train goes over a wide 

range of rpm (albeit, less of a range with the use of a CVT) and by increasing the electric 

motor size, the drivetrain torque is increased during the beginning of the test when the 

drivetrain is at a low rpm range, and by increasing the engine torque, the drivetrain torque 

is increased more at the higher range of rpm.  This effect is more pronounced in the 0-60 

mph acceleration test than the 50-70 mph acceleration test because it is over a wider 

range of rpm.   

 Once a number of tests are run and acceptable combinations of electric motor size 

and engine size are determined for each acceleration test, the points are curve fitted to get 

a smooth function.  The 0-60 acceleration time performance curve is curve fitted with a 
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second order polynomial while the 50-70 acceleration time performance curve is fitted 

with a linear equation.  Figure 8 shows the performance curves and the curve fits. 
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Figure 8.  Performance Curves 

 

Figure 8 is for a total vehicle mass of 1,600 kg. The total drive train power required in 

both cases decreases as the electric motor size increases. 

 The smooth function for the 0-60 mph time in 12 seconds for a 1,600 kg vehicle is 

given by: 

          (5.2) 

2
0 60 0 60 0 60.0002* 1.327* 95.32 (kW)E M M− − −= − − +  
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where M0-60 is the motor size in kW and E0-60 is the engine size in kW, and the 

combination of M0-60 and E0-60 at any point along the 0-60 performance curve provides 

the power needed to propel the vehicle from 0-60 mph in 12 seconds.  M0-60 is valid from 

44 kW to 62 kW, and correspondingly, E0-60 is valid from 36.5 kW to 12 kW. 

 The smooth function for the 50-70 mph time in 8 seconds for a 1,600 kg is given 

by: 

          (5.3) 

50 70 50 701.0563* 78.577 (kW)E M− −= − +  

where M50-70 is the motor size in kW and E50-70 is the engine size in kW, and the 

combination of M50-70 and E50-70 along the 50-70 performance curve provides the power 

needed to propel the vehicle from 50-70 mph in 8 seconds.  M50-70 is valid from 44 kW to 

62 kW, the same range as in the 0-60 mph performance curve. If more demanding 

performance constraints were used, these curves could be developed over a wider range 

of engine and motor sizes.   

 It was determined that in cases of large AERs, the optimum engine size value is at 

the left endpoint of the 0-60 performance curve.  Therefore, while it was necessary to 

develop these curves for a single vehicle mass in order to find out the location of the 

optimum point along the curve, it was only necessary to find the left endpoint for 

different vehicle masses. 

 

5.9 Simulating Top Speed 

 The power required for a 90 mph top speed was determined using PSAT 

simulation.  It was found that all vehicles designs that could pass the 0-30 mph 
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acceleration test also had a top speed greater than 90 mph in all electric mode only.  

Thus, any combination of electric motor size and engine size that uses a motor greater 

than or equal to the minimum motor size is sufficient to pass the top speed performance 

constraint. The top speed performance constraint did not drive any design parameter 

optimum values.   If a more demanding top speed constraint had been used, it might have 

had an impact on the optimization. 

 

5.10 Simulating All Electric Range 

 To determine the battery capacity required for a certain level of all electric range 

and battery type, the base vehicle was simulated with PSAT.  Running in all electric 

mode, the vehicle was run on the UDDS cycle for a specified distance (10, 20, and 40 

miles).  The simulation was set to stop whenever the SOC of the battery pack dropped 

below 0.2.  The battery capacity was scaled iteratively until the simulation stopped at the 

desired distance.  This battery capacity iteration was repeated for all three battery types 

and was also repeated during the vehicle mass iterations to arrive at the final vehicle 

mass. 

 The smallest possible electric motor was used as previously determined by the 0-

30 mph time performance constraint.  The use of a larger electric motor allows for more 

regenerative braking energy to be captured, and can result in lower battery capacity 

required for a given AER.  Since it would be very time consuming to optimize the 

electric motor size versus battery capacity for different vehicle weights and battery types, 

and because it would not be expected to have a significant effect on the results, the effect 

of motor size on battery capacity was ignored.  Consequently, all the results of the AER 
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modeling are for the smallest motor and largest battery capacity design possibility.  The 

accuracy of this assumption is investigated later. 

 The maximum instantaneous power of the battery pack is checked to determine if 

the electric motor gets sufficient power over the simulation.  The maximum discharging 

power is determined from a battery circuit in which the internal resistance is set to the 

minimum internal resistance of the cell, Rint,min, and the terminal voltage is set at the 

minimum cell voltage provided by the battery manufacturer.  Then, after some algebra on 

a voltage loop and a current loop equation, the maximum power output of the battery 

pack, Pmax,  is given by: 

          (5.4) 

max min min
max

int,min

( )*P *  (W)VOC V V K
R
−

=  

where VOCmax is the maximum open circuit voltage per cell and is given by the battery 

manufacturer as a map indexed by SOC and the battery pack temperature.  VOCmax is 

1.35 volts/cell for NiMH16, 2.4 volts/cell for Pb Acid17, and 3.9 volts/cell for Li Ion18.  

Vmin is the minimum cell voltage at the terminals and is 0.7 volts/cell for NiMH, 1.5 

volts/cell for Pb Acid, and 3.2 volts/cell for Li Ion. Rint,min is the minimum internal 

resistance per cell in ohms and is given by the battery manufacturer as a map indexed by 

SOC and battery pack temperature.  Rint,min is 0.000625 ohms/cell for NiMH, 0.001167 

ohms/cell for Pb Acid, and 0.00493 ohms/cell for Li Ion.  K is the number of cells in the 

battery pack.  Using Equation 5.4, the maximum power for NiMH, Pb Acid, and Li Ion 

battery types are 0.728 kW/cell, 1.156 kW/cell, and 0.454 kW/cell respectively. 

 Even with the least power dense battery type, Li Ion, the corresponding maximum 

available power corresponding to a 10 mile all electric range was sufficient to power the 
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minimum electric motor size.  However, for larger motor sizes, the battery pack power 

was checked to ensure that it was sufficient to power the electric motor.  Table 2 shows 

the required battery capacities for each battery pack for each AER for vehicles with the 

final vehicle masses. 

 

Table 2.  Battery Capacities Required for AERs 

AER (miles) Battery Capacity (kWh) 
 NiMH Pb Acid Li Ion 

10 3.51 3.57 2.81 
20 6.85 6.94 5.45 
40 13.64 13.78 10.81 

 

 These packs all have different voltages and different A-h capacities.  Table B.1 in 

Appendix B shows all the characteristics for these packs.  The Li Ion packs require 

significantly less energy capacity because of a higher charging and discharging efficiency 

and because of a lighter optimum vehicle design. 

 Table 3 shows the corresponding maximum pack powers corresponding to the 

required pack capacity for the AER. 

 

Table 3.  Battery Maximum Power for Packs with Specified AER 

AER (miles) Maximum Pack Power (kW) 
 NiMH Pb Acid Li Ion 

10 88.0 107.5 44.8 
20 123.0 157.9 62.4 
40 174.7 222.5 88.0 
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5.11 Modeling the Grade Ability Performance Constraint 

 Simulating the grade constraint for many different configurations of vehicles with 

PSAT would be tedious and time consuming, so an analytical approach was used.  From 

a force balance, the vehicle power is calculated, and then the motor power is calculated.  

From the motor power, the battery capacity needed to make the 6.5% grade restraint at 55 

mph for 1200 seconds is calculated. 

 The force required, Fveh, to move the vehicle up a constant grade at a constant 

speed is given by: 

          (5.5) 

veh g d rF F F F= + +  

where Fg  is the gravity force, Fd is the drag force, and Fr is the frictional rolling 

resistance force, all in N. 

 The gravitational force component, Fg, is given by: 

          (5.6) 

1* *sin(tan ( /100))gF m g grade−=  

where m is the mass of the vehicle, g is the gravitational constant, and grade is the road 

grade, 6.5 %. 

 The drag force, Fd, is given by: 

          (5.7) 

2* * *
2
D F

d
C AF Vρ

=  

where ρ is the density of air, 1.29 kg/m3, CD is the coefficient of drag, 0.33, AF is the 

frontal area, 2.17 m2, and V is the velocity of the vehicle, 24.58 m/s (55 mph). 
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 The force of rolling resistance, FR, is given by: 

          (5.8) 

1 2[ * ]* *R RR RRF C C V m g= +  

where CRR1 is the first coefficient of rolling resistance, 0.007, and CRR2 is the second 

coefficient of rolling resistance, 0.00012 s/m. 

 Next, the power required, Pveh is calculated: 

          (5.9) 

*veh vehP F V=  

 Next, the total drivetrain power required is calculated by adding in drivetrain 

efficiencies and accessory loads: 

          (5.10) 

, ,
veh

total acc m acc e
drivetrain

PP P P
η

= + +  

Pacc,m is the mechanical accessory load, 0.7 kW, Pacc,e is the electrical accessory load, 0.5 

kW, and ηdrivetrain is the drivetrain efficiency, which is assumed to be 0.8.   

 Once Ptotal is determined, the corresponding power out of the motor and out of the 

battery pack is determined.  The motor power, Pmotor, is given by: 

          (5.11) 

motor total engineP P P= −  

where Pengine is the maximum power of the engine.  The power out of the battery, Pbattery 

is given by: 

          (5.12) 
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,*
motor

battery
motor battery dis

PP
η η

=  

where ηmotor is the efficiency of the motor, normally a weak function of rpm and load, but 

assumed constant and estimated to be 0.95.  The battery discharge efficiency, ηbattery,dis, is 

a weak function of SOC and battery temperature, but is assumed constant and estimated 

to be 0.95. 

 Once the battery power is known, the necessary capacity to pass the grade ability 

performance constraint, Cneeded,grade, can be calculated in kWh.  The current out of the 

battery, I, is given as: 

          (5.13) 

battery

eff

P
I

V
=  

where Veff is the voltage of the battery pack, and is calculated with the following 

equation: 

          (5.14) 

,*nom needed grade
eff

nom

V C
V

C
=  

where Vnom is the nominal voltage per cell, and Cnom is the nominal capacity in kWh per 

cell.  Table 4 shows the nominal voltages and nominal capacities used for each battery 

type. 

Table 4.  Nominal Voltages and Capacities16,17,18 

Battery Type Vnom (Volts/cell) Cnom (Wh/cell) 
NiMH 1.2 72.0 

Pb Acid 2.0 56.0 
Li Ion 3.6 21.6 



 

 
40

 

Data from Table 4 comes from battery manufacturer information that is included with 

PSAT. 

 The battery energy capacity needed is calculated with the following: 

          (5.15) 

min ,* * ( )*eff sustain needed gradeI V t SOC SOC C= −  

where t is the time for the grade ability test, 1/3 hour, SOCsustain is the charge sustaining 

SOC, specified as 0.7 in the performance constraints, and SOCmin is the minimum allowed 

SOC, 0.2. 

 Performing a little algebra, the necessary battery energy capacity, Cneeded,grade, is 

simplified to: 

          (5.16) 

,
min

[kW]* [h]battery
needed grade

sustain

P t
C

SOC SOC
=

−
 

The battery energy capacity is calculated for each battery type, AER, and motor/engine 

size combination. 
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CHAPTER 6 

 

COMPONENT COST MODELING 

 

 

6.1 Component Costing Approach 

 Since many of PHEV components use new and developing technologies, concrete 

cost estimates are difficult to determine.  However, there has been significant study on 

HEV costs.  Mainly, two studies from the Electric Power Research Institute4, 6 (EPRI) 

and industry examples are used in determining vehicle component costs. 

 The EPRI studies were done in a partnership with an industry working group with 

representatives from all the major automobile manufacturers.  The cost estimates include 

manufacturing materials and manufacturing volume considerations.  The costs in this 

study are estimated for a volume of 100,000 units per year. 

 

6.2 Component Costs 

6.2.1 Engine Size 

 The engine size cost estimate is taken from an EPRI study4 and is based heavily 

on feedback from industry representatives.  Only a 4 cylinder engine in a front wheel 

drive configuration is considered, consistent with the engine used in the PSAT modeling 

in the previous chapter.  The cost for the engine, $CE, is calculated with the following 

equation: 
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          (6.1) 

$ $12.00* $424E EC P= +  

where PE  is the peak power of the engine in kW.  This equation is stated to be valid up to 

peak engine powers of around 90 kW, at which point the engine would become a six 

cylinder engine with a different cost function. 

 

6.2.2 Electric Motor Size 

 The cost of the electric motor also comes from an EPRI study4.  EPRI, along with 

help from the representatives from industry, estimate the cost of the electric motor as: 

          (6.2) 

$ $13.7* $190M MC P= +  

where $CM is the cost of the electric motor and PM is the peak power of the electric motor 

in kW.  This is for a brushless permanent magnet motor with a manufacturing volume of 

100,000 units per year. 

 In addition to the cost of the electric motor, the PHEV also needs power 

electronics to control the electric motor.  For a typical pulse width modulation controller 

with thermal management system included, the cost of the power electronics, $CPE, was 

estimated  by EPRI to be: 

          (6.3) 

$ $8.075* $235PE MC P= +  

and the total cost associated with the electric motor size design parameter is $CM added to 

$CPE. 
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6.2.3 Battery Pack Cost 

 The battery pack cost is comprised of the cost of the batteries, the hardware and 

mounting, and of the thermal management. The EPRI studies are used to determine the 

cost of the battery accessories4 and the cost of NiMH batteries6.  A UC Davis study is 

used to determine the cost of Pb Acid batterys7 and an industry example is used to 

estimate the cost of Li Ion batteries8.  

 For NiMH batteries, EPRI6 estimates the cost of “energy batteries” used in all 

electric vehicles at $235 per kWh and “power batteries” used in conventional HEVs at 

$400 per kWh.  NiMH batteries used in PHEVs would be somewhere between these two 

numbers.  Corresponding to EPRI’s estimate of the NiMH battery cost for a PHEV20, 

$320 per kWh is used in this study.  Equation 6.4 gives the cost of NiMH batteries: 

          (6.4) 

,$ $320*  [kWh]Batt NiMHC Capacity=  

where $CBatt,NiMH is the cost of the NiMH batteries and Capacity is the energy capacity of 

the battery pack in kWh. 

 For Pb Acid batteries, the UC Davis study7 uses a similar battery pack as used in 

the PSAT modeling, and estimates its cost with a 100,000 units per year manufacturing 

volume at $120 per kWh.  For Pb Acid batteries, the following equation is used: 

          (6.5) 

,$ $120*  [kWh]Batt PbAcidC Capacity=  

where $CBatt,PbAcid is the cost of the lead acid batteries. 

 Since Li Ion batteries are a very new and developing technology, the prices for 

large scale HEV use are very difficult to obtain.  As a compromise, an industry estimate 
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based on small scale consumer use is used8, which is $650 per kWh for Li Ion batteries.  

This might be a relatively high estimate and as production volumes increase and 

technology develops, this estimate could be reduced substantially.  For Li Ion batteries, 

the following equation is used: 

          (6.6) 

,$ $650*  [kWh]Batt LiIonC Capacity=  

where $CBatt,LiIon is the cost of the Li Ion batteries. 

 For the cost of the battery pack accessories an EPRI study4 estimate developed in 

cooperation with industry is used.  For the hardware, the tray, and the thermal 

management, the following equation is used: 

          (6.7) 

$ $1.2* [kWh] $680BattAccC Capacity= +  

where $CBattAcc is the cost of all the battery pack accessories. 

 

6.2.4 Battery Replacement Costs 

 Battery life is a complicated function of charging and discharging cycles, depths 

of discharge (DOD), driving frequency, climate, battery type, and varies greatly between 

different battery pack designs.  No attempt was made to include all of these factors in the 

battery life estimation. 

 From literature review, certain trends for each battery type have been shown.  A 

current estimate of the battery life of current technology NiMH, Pb Acid, and Li Ion are 

1,500, 450, and 1,200 cycles at depths of discharge of 0.8 respectively9.  However, 

advanced NiMH and Pb Acid designs have been shown to have the potential of 2,000 
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cycles6 and certain Li Ion battery pack designs have shown to have as much as 9,000 

cycles10.   EPRI has shown that 2,000 cycles on a PHEV20 roughly translates to 100,000 

vehicle miles. 

 For a 15 year, 150,000 mile vehicle life, this study estimates that Li Ion and 

NiMH will have a battery replacement at 100,000 miles (year 10) and Pb Acid will have 

a battery replacement every 50,000 miles (year 5 and year 10).  Only the battery cost is 

added on, not the battery accessories.  The battery replacement costs are discounted with 

the economic present value equation: 

          (6.8) 

(1 )N

FVPV
i

=
+

 

where PV is the present value cost in dollars, FV is the future value cost in dollars (from 

the battery cost equations), i is the interest rate, assumed to be 7% to estimate inflation 

and the return consumers expect on their money, and N is the number of years.  The 

present value of all future battery replacements is included in the battery cost $Cbatt when 

determining total incremental powertrain cost. 

 

6.2.5 Incremental Powertrain Cost 

 The total incremental powertrain cost, $CTotal, is given by: 

          (6.9) 

$ $ $ $ $ $Total E M PE Batt BattAccC C C C C C= + + + +  

$CTotal is not the total cost of the powertrain; it is only the total cost of the powertrain that 

is dependent on the design parameters.  The combination of design parameters that 
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produces the lowest $CTotal while still meeting all the performance constraints is the 

optimum least cost design. 
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CHAPTER 7 

 

OPTIMIZATION ROUTINE AND VEHICLE MASS ITERATION 

 

 

7.1 Optimization Approach 

 An optimization routine was written (Appendix B) that optimizes the design 

parameters for a given battery type and AER.  The optimization routine inputs a range of 

engine sizes and motor sizes, adjusts the engine and motor size to meet the performance 

acceleration constraints, and then determines the battery capacity.  The battery capacities 

required for the AER constraint, to provide the peak motor power, and to meet the grade 

ability constraint are calculated and the minimum battery capacity that will satisfy all 

three constraints is selected. 

 The cost of the combinations of electric motor size, engine size, and battery 

capacity is determined from the cost functions.  Finally, the least cost combination is 

determined.  This is repeated for each battery type, and then the whole process is repeated 

for each AER.   

 Since PSAT requires a total vehicle mass input which is not varied in the 

optimization routine, these calculations are at a fixed mass.  The masses of the resulting 

vehicle designs are calculated.  These masses are used as the assumed vehicle masses in 

the next vehicle mass iteration.  For each vehicle mass iteration, the PSAT simulations 

the optimization is repeated.  Vehicle mass iterations were done for each battery type.   
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7.2 Design Parameter Drivers 

 It was found that the optimum value of any given design parameter is determined 

by a single performance constraint.  Thus, for all successive iterations on vehicle mass, 

only the design parameter values that were needed to pass the pertinent performance 

constraint were calculated.  The following is a list of the design parameters and their 

controlling performance constraint. 

 

7.2.1 Electric Motor Size 

 The 0-30 mph acceleration in 5 seconds in all electric operation determines the 

electric motor size.  There is nothing in the optimization driving the electric motor to be 

any larger than this. 

 

7.2.2 Battery Capacity 

 In all cases of AER, the optimum battery capacity is the minimum battery 

capacity required to pass the AER performance constraint while using the minimum 

electric motor size.  The battery capacity is the most sensitive (most expensive) design 

parameter and all other design parameters are adjusted so that the vehicle can have the 

smallest battery capacity possible and still meet the performance constraints. 

 

7.2.3 Engine Size 

 The smallest engine size that meets the 0-60 mph in 12 seconds performance 

constraint when paired with the minimum electric motor size is the optimum value except 

in cases where the battery capacity is insufficient to meet the grade ability performance 
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constraint which occurs at AERs of 10 and 20 miles.  At these AERs, increasing the 

engine size costs less than increasing the battery capacity, therefore, the optimum engine 

size is the one that allows the vehicle to pass the grade ability performance constraint 

while having the smallest battery capacity possible.  

   

7.3 Vehicle Mass Iteration 

 Once the optimum designs for a vehicle with an assumed mass are known, and the 

controlling performance constraints for each of the design parameters are determined, the 

assumed mass of the vehicle is set equal to the mass of the vehicle with the resulting 

design parameters.  The design parameter values that meet the controlling performance 

constraint with the new assumed vehicle mass are calculated.   

 The optimum PHEV10 Pb Acid vehicle design was set to a total vehicle mass of 

1,600 kg.  All the masses of the other vehicle designs are determined by comparing them 

with the PHEV10 design using linear scaling of component mass with respect to size in 

PSAT.  The mass of the final optimum design is calculated and compared to the total 

vehicle assumed mass to determine if another iteration on mass is necessary. Table 5 

shows the resulting masses for each vehicle design and vehicle mass iteration. 
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Table 5.  Masses of Vehicle Designs 

AER 
(miles) 

Battery 
Type First Design Mass Final Design Mass % Difference

10 Pb Acid 1,600 1,600 0.0% 
10 NiMH 1,520 1,513 0.5% 
10 Li Ion 1,514 1,501 0.8% 
20 Pb Acid 1,724 1,750 1.5% 
20 NiMH 1,567 1,562 0.3% 
20 Li Ion 1,556 1,544 0.8% 
40 Pb Acid 1,976 1,981 0.2% 
40 NiMH 1,658 1,658 0.0% 
40 Li Ion 1,637 1,653 1.0% 

 

The difference between the initial assumed mass and the resulting vehicle mass based on 

the optimum design was as much as 25% in the cases of larger AERs.  However, the 

vehicle mass converged very quickly.  After only one vehicle mass iteration, the greatest 

difference in assumed mass and calculated mass was only 1.5%.  This was determined 

acceptable and no other iterations on vehicle mass were carried out. 

 

7.4 Determining Impact of Optimum Design 

 Current proponents of PHEVs predict that near term economically viable PHEVs 

will most likely have AERs in the range of 10-20 miles11.  This is also in the range that a 

lot of vehicles are driven daily.  This study determines the possible impact of the 

optimum PHEV designs for 10, 20, and 40 mile AERs. 

 To determine the fuel economy of the optimum PHEV designs, the EPA 

combined cycle test is simulated in PSAT and a weighting factor is used to estimate the 

time driven in all electric operation versus the time driven on charge sustaining mode.  

For a conventional vehicle, the EPA rated fuel economy is calculated with: 
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          (7.1) 

1
.55 .45EPA

Urban Highway

FE

FE FE

=
+

 

where FEEPA is the EPA rated fuel economy in mpg, FEUrban is the fuel economy in mpg 

on the UDDS Driving Schedule simulating urban driving, and FEHighway is the fuel 

economy in mpg on the Highway Fuel Economy Test (HWFET) Driving Schedule 

simulating highway driving.  However, for a PHEV, FEUrban and FEHighway have to be 

adjusted to represent driving in all electric mode using grid electricity and driving in 

charge sustaining mode using gasoline. The fuel economies, weighted for 55% urban 

driving and 45% highway driving, are calculated for driving both in all electric operation 

on grid electricity and for driving in charge sustaining mode on gasoline.   

 A method developed by an EPRI4 study is used to determine the percentage of 

total miles the vehicle travels in all electric operation.  A mileage weighted probability 

(MWP) is determined.  MWP is the statistical probability that a vehicle is driven less than 

or equal to its AER in a day.  To calculate the MWP, data from the 1995 National Public 

Transportation Survey12 was used to determine the probability that a given car will drive 

a certain amount of miles. Assuming that the PHEV is charged nightly, the miles that will 

be driven in all electric operation are calculated.  For a PHEV20, EPRI calculates an 

MWP of 0.39, i.e. 39% of the miles driven on a PHEV20 will be in all electric operation.  

The other 61% of the miles are assumed to be in charge sustaining gasoline only 

operation.  For a PHEV10, EPRI calculates an MWP of 0.22 and for a PHEV40, EPRI 

calculates an MWP of 0.614. 
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 Once the fuel economies in all electric mode and charge sustaining mode in both 

highway and urban driving are determined, the impact of the optimum design is 

calculated.  From Oak Ridge National Laboratory’s Transportation Energy Data Book13 

the average passenger vehicle drives 12,200 miles per year.  The CAFE average fuel 

economy for 2004 model passenger cars using the same EPA rating procedure is 27.5 

miles per gallon.  This is for an average 1,570 kg, 136 kW, car running on gasoline14.  

Gasoline consumption of both the average vehicle and the PHEVs are quantified and 

compared.  Also, using national grid upstream CO2 emissions (0.607 kg CO2 per kWh) 

from the grid energy used by the PHEVs, the annual CO2 emissions for the PHEV and for 

the average passenger car are calculated and compared.  It should be noted that there will 

be an increased use in power plant fuels, coal, natural gas, and nuclear fuel for the 

PHEVs.  However, this study focuses on the reduction of gasoline use because of the 

imported oil issue, while coal, nuclear, and natural gas are all 100% domestic fuels. 

 The annual fuel costs of the average vehicle and the PHEVs was also calculated 

and compared.  A $2.50 per gallon gas price is assumed.  The national average residential 

electricity rate of 8.97 cents per kWh is used21.  It should be noted that this is a high 

estimate for the cost of electricity, because a lot of PHEVs would be charged at night and 

would benefit from off-peak prices of electricity. 
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CHAPTER 8 

 

RESULTS, DISCUSSION, AND CONCLUSIONS 

 

 

 

8.1 Final Results 

 The optimization process produced the final optimum least cost designs.  Table 6 

shows the optimum PHEV designs for each AER. 

Table 6.  Optimum PHEV Designs 

AER 
(miles) 

Motor 
Power 
(kW) 

Engine 
Power 
(kW) 

Battery 
Capacity 

(kWh) 

Battery 
Type Cost 

10 44 42.0 3.57 Pb Acid $3,947 

20 46 38.0 6.94 Pb Acid $4,845 

40 49 38.8 13.78 Pb Acid $6,752 
 

These are the least cost PHEV designs that meet the AER and all the performance 

constraints.   All the optimum designs used Pb Acid battery type. The cost in Table 6 is 

only the cost of the engine, motor, and battery pack. Table 7 shows the cost breakdown 

for each design. 
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Table 7.  Cost Breakdown of Optimum Designs 

 

 The total cost in Table 7 is not the total drivetrain cost, but only the incremental 

drivetrain cost above a constant baseline cost that is a function of the vehicle design 

parameters.  The battery and battery replacement costs were the largest cost in the 

optimization.  While Pb Acid had one more replacement that the other two battery types, 

it still produced the least cost design. 

 The second least expensive battery type was designs using NiMH battery type.  

Table 8 shows the optimum vehicle designs restricted to NiMH battery type. 

Table 8.  Optimum Designs for NiMH Battery Type 

AER 
(miles) 

Motor 
Power 
(kW) 

Engine 
Power 
(kW) 

Battery 
Capacity 

(kWh) 

Battery 
Type Cost 

10 42.5 39.6 3.51 NiMH $4,628 

20 43.5 35.9 6.85 NiMH $6,222 

40 45.0 36.0 13.64 NiMH $9,541 
 

Table 9 shows the cost breakdown for the NiMH optimum vehicle designs. 

 

 

 

 

AER 
(miles) Engine Motor Power 

Electronics 
Battery and 

Replacements
Battery 

Accessories Total 

10 $928 $793 $590 $952 $684 $3,947 
20 $880 $820 $606 $1,850 $688 $4,845 
40 $890 $861 $631 $3,673 $697 $6,752 
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Table 9.  Cost Breakdown for NiMH Optimum Designs 

 

Once again, the battery and battery replacement cost were the largest part of the total 

cost. 

 The Li Ion battery type produced the most expensive optimum designs.  Table 10 

shows the optimum vehicle designs for Li Ion battery type. 

Table 10.  Optimum Designs for Li Ion Battery Type 

AER 
(miles) 

Motor 
Power 
(kW) 

Engine 
Power 
(kW) 

Battery 
Capacity 

(kWh) 

Battery 
Type Cost 

10 40.0 38.7 2.81 Li Ion $5,623 

20 40.5 35.3 5.45 Li Ion $8,184 

40 41.0 32.8 10.81 Li Ion $13,427 
 

Table 11 shows the cost breakdown for the Li Ion optimum designs. 

Table 11.  Cost Breakdown for Li Ion Optimum Designs 

 

 

AER 
(miles) Engine Motor Power 

Electronics 
Battery and 

Replacements
Battery 

Accessories Total 

10 $899 $772 $578 $1,694 $684 $4,628 
20 $855 $786 $586 $3,306 $688 $6,222 
40 $856 $807 $598 $6,584 $696 $9,541 

AER 
(miles) Engine Motor Power 

Electronics 
Battery and 

Replacements
Battery 

Accessories Total 

10 $888 $738 $558 $2,755 $683 $5,623 
20 $848 $745 $562 $5,343 $687 $8,184 
40 $818 $752 $566 $10,598 $693 $13,427
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8.2 Discussion 

 In all cases, the resulting optimum value for the design parameter was driven by a 

single constraint.  For most of the values of AER, the controlling performance constraint 

was the same for each design parameter. 

 For the electric motor size, the minimum motor size required to meet the 0-30 

mph acceleration in all electric mode was the optimum value.  This is the smallest 

acceptable motor size. 

 For the engine size, the optimum value is the engine size needed to pass the 0-60 

acceleration constraint when combined with the minimum acceptable motor size.  There 

are two exceptions to this.  In cases of small AER, 10 miles and 20 miles, the optimum 

value of engine size needed was the size needed to pass the grade constraint with the 

minimum battery capacity needed to provide the AER.  It was ultimately less expensive 

to add a bigger engine to charge the batteries in the grade constraint than to add more 

batteries. 

 In all cases, the lead acid battery type was the optimum battery type, even with 

one more battery replacement over the vehicle life.  Lead acid is much cheaper than its 

competitors and in applications that need a lot of batteries, less expensive triumphs over 

better battery performance. 

 Most current consumer HEV designs use NiMH batteries rather than lead acid 

batteries.  A distinction should be made here between HEV designs using batteries 

selected for high power output and a PHEV design using batteries selected for high 

energy storage.  The discharge cycle of an HEV battery pack is much more demanding 

than a PHEV battery pack, and lead acid battery life characteristics are unsuitable.  In 
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order to use lead acid batteries in an HEV application, the battery pack would have to be 

sized above the necessary power and energy requirements to have an acceptable battery 

life.  This adds weight and cost.  Also, it should be noted than for small battery pack 

capacities required in HEVs, the cost of the batteries are much less than the cost of the 

battery hardware which is insensitive to battery capacity. This means that different 

battery chemistries do not play as large of a role in the overall battery pack cost in HEVs 

as in PHEVs. 

 In all cases, the optimum value for battery capacity is the minimum battery 

capacity required for the AER.  Basically, the battery capacity is set at the minimum to 

pass the AER and all other optimization parameters are varied to pass all the other 

performance constraints. 

 While the driving force behind each optimum value is relatively straight forward, 

the effect of increasing mass with increasing component sizes is also quite dramatic.  As 

AER increases, the added batteries add mass to the vehicle and more power is needed 

from the engine and electric motor, which adds more mass.  Meanwhile, more batteries 

need to be added because the now heavier vehicle needs to meet the AER.   

 It was at first thought that since the Li Ion battery type designs weighed so much 

less than the other designs that they might be the optimum battery chemistry because of 

the smaller battery capacity, engine size, and motor size required for smaller vehicle 

masses.  However, the higher cost of Li Ion batteries caused the lead acid battery vehicle 

designs to be the least cost optimum designs. 
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8.3 Sensitivity of Motor Size to AER 

 The smallest acceptable electric motor size was used when determining the 

battery capacity required for a given AER.  However, the use of a larger electric motor 

allows for more energy from regenerative braking to be captured, and thus less battery 

capacity is required for the AER.  To determine electric motor sizes effect on AER, the 

capacity needed for a given AER was simulated for 4 values of electric motor size.  A 

lead acid 1,600 kg vehicle with an AER of 20 miles was used.  Figure 9 shows the effect 

of electric motor size on battery capacity required for a given AER. 

Electric Motor Size Effect on Battery Capacity Required for 
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Figure 9.  Electric Motor Size Effect on Battery Capacity Required for AER 

 

Figure 9 shows that the battery capacity needed for a given AER is only a weak function 

of motor size.   
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 The cost of the designs described in Figure 9 were calculated by pairing the 

electric motor size with an optimum engine size from the controlling performance 

constraint, i.e., either the 0-60 mph performance constraint or the grade ability 

performance constraint as described in the previous section.   Figure 10 shows the effect 

of electric motor size on the optimum incremental drivetrain cost. 
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Figure 10.  Effect of Electric Motor Size on Drivetrain Cost 

 

 Figure 10 shows that increasing the motor size increases the overall incremental 

drivetrain cost even though it decreases the optimum battery capacity required for the 

AER performance constraint.  The additional cost of the electric motor is more than the 

savings from the reduced battery cost.  Therefore, the assumption of using the minimum 
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acceptable electric motor size when simulating the battery capacity required for the AER 

is not expected to have an effect on the optimization results. 

 

8.4 Impact of Optimum PHEV Designs 

 Using the methodology for determining impact outlined in Chapter 7, the 

optimum Pb Acid design for the PHEV10 was simulated and has the following fuel 

economies: 

Table 12.  Fuel Economies for PHEV10 Optimum Design 

PHEV10 EPA Weighted 55/45 
Electric Operation (kWh/mi) .233 

Gasoline Operation (mpg) 58.1 
 UDDS HWFET 

Electric Operation (kWh/mi) .235 .231 
Gasoline Operation (mpg) 56.2 60.5 

 

 Table 13 shows the fuel economies found for the optimum PHEV20 design. 

Table 13.  Fuel Economies for PHEV20 Optimum Design 

PHEV20 EPA Weighted 55/45 
Electric Operation (kWh/mi) .262 

Gasoline Operation (mpg) 56.5 
 UDDS HWFET 

Electric Operation (kWh/mi) .271 .253 
Gasoline Operation (mpg) 54.3 59.5 
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Finally, Table 14 shows the fuel economies for the optimum PHEV40 design. 

 

Table 14.  Fuel Economies for PHEV40 Optimum Design 

PHEV40 EPA Weighted 55/45 
Electric Operation (kWh/mi) .291 

Gasoline Operation (mpg) 54.5 
 UDDS HWFET 

Electric Operation (kWh/mi) .315 .267 
Gasoline Operation (mpg) 52.2 57.7 

  

 The fuel economy is relatively similar for each of the three designs; however, it 

decreases as AER increases because of the increased mass of the designs.  The miles 

driven in all electric operation and in gasoline operation were calculated for each design 

and the annual gasoline consumption and CO2 emissions were calculated. 

 The PHEV10 is able to operate on average 22% of its miles in all electric 

operation when charged nightly.  Driven 12,200 miles per year, it will operate 2,684 

miles in all electric operation using grid electricity and 9,516 miles on gasoline as a 

charge sustaining HEV.  Using the fuel economies from Table 12 and using the EPA 

weighting, 55% urban and 45% highway miles, the PHEV10 will use 163.9 gallons of 

gasoline and 625.7 kWh grid electricity per year.  The upstream power plant CO2 

emissions and the tailpipe CO2 emissions come out to total 1,833 kg of CO2 per year. 

 Similarly, the PHEV20, operating 39% of its miles using grid electricity, will 

operate 4,758 miles in all electric mode and 7,442 miles in gasoline only mode.  Using 

fuel economies from Table 13, the PHEV20 will use 131.6 gallons of gasoline and 
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1247.6 kWh grid electricity per year.  The total CO2 emissions for the PHEV20 are 1,925 

kg per year. 

 The PHEV40 design operates 61% of its miles in all electric mode.  7,442 miles 

will operate on electricity and 4,758 miles will operate on gasoline each year.  Using fuel 

economies from Table 14, the PHEV40 will use 87.3 gallons of gasoline and 2169 kWh 

of grid electricity annually.  The total CO2 emissions for the PHEV40 are 2,091 kg per 

year. 

 Using 8.97 cent per kWh electricity and $2.50 per gallon gasoline, the annual fuel 

costs for the PHEV10, PHEV20, and PHEV40 are $466, $441, and $413 per year 

respectively.  It should be noted that the PHEV10 has a fuel cost of 2.09 cents per mile 

when operating on electricity and a fuel cost of 4.30 cents per mile operating on gasoline, 

so there is a financial incentive for PHEV owners to plug their PHEV into the grid.  The 

other optimum PHEV designs had similar fuel costs per mile. 

 By contrast, today’s CAFE average car getting 27.5 mpg, driven the same amount 

of miles uses 444 gallons of gasoline per year and produces 3,935 kg of tailpipe CO2 

emissions.   The average car has an annual fuel cost of $1,109 per year.  Table 15 shows 

the percentage reduction in gasoline consumption and CO2 emissions and the annual fuel 

savings for each of the optimum PHEV designs over today’s average car. 

Table 15. Gasoline Consumption, CO2 Reduction, and Fuel Savings of PHEVs 

 
Gasoline 
Saved 

(gallons/year) 

% Gasoline 
Reduction 

CO2 Reduced 
(kg/year) 

% CO2 
Reduction 

Fuel Savings 
($/year) 

PHEV10 279.8 63% 2,102 53% $643 

PHEV20 312.0 70% 2,010 51% $668 

PHEV40 356.4 80% 1,844 47% $696 
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 Gasoline savings increase as AER increases, however, CO2 emissions also 

increase as AER increases because the vehicle is using more grid electricity that comes 

mainly from coal combustion.  Even the PHEV10 with a moderate cost premium 

provides a 63% gasoline consumption reduction.  This has the potential to significantly 

reduce our dependence on foreign oil. 

 

8.5 Conclusions 

 The design optimization methodology and optimum results for a plug-in hybrid 

electric vehicle has been presented and certain trends have been observed.  Most of the 

design parameters are driven by a single performance constraint.  The main findings are 

as follows: 

• Lead Acid battery type produces the least cost design for AERs of 10, 20, and 40 

miles.  The vehicle cost is most sensitive to battery capacity and the optimum 

value of battery capacity is always the capacity required for the vehicle to meet 

the all electric range. 

• Electric motor size is driven by the 0-30 mph acceleration in all electric operation 

constraint.  The smallest size electric motor that can meet the 0-30 mph constraint 

is optimum in all cases of all electric range. 

• Engine size is driven by the 0-60 mph acceleration constraint except in cases of 

small all electric ranges, 10 miles and 20 miles, in which it is driven by the grade 

ability constraint.  For cases of all electric range higher than 20 miles, the smallest 

engine size combined with the minimum electric motor size that can make the 

vehicle pass the 0-60 mph acceleration constraint is the optimum engine size.  For 
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the cases of small electric range, the optimum engine size is the engine size 

needed to pass the grade ability constraint while using the minimum battery 

capacity to provide the all electric range. 

• The EPA weighted fuel economy for the PHEV10 design is 58.1 mpg in gasoline 

only operation and .233 kWh/mi in electric operation using grid electricity.  The 

fuel economy is similar for all the optimum designs; however, it decreases 

slightly as AER increases because vehicle mass also increases.  

• The PHEV10 optimum design provides a 63% reduction in gasoline consumption 

and a 53% reduction in CO2 emissions over the CAFE average car.  The 53% 

reduction in CO2 emissions includes power plant emissions.  This translates to a 

savings of 280 gallons of gasoline and 2,102 kg of emitted CO2 per year. 

• The PHEV20 optimum design provides a 70% reduction in gasoline consumption 

and a 51% reduction in CO2 emissions including power plant emissions.  This 

translates to a savings of 312 gallons of gasoline and 2,010 kg of emitted CO2 per 

year. 

• The PHEV40 optimum design provides an 80% reduction in gasoline 

consumption and a 47% reduction in CO2 emissions including power plant 

emissions.  This translates to a savings of 356 gallons of gasoline and 1,844 kg of 

emitted CO2 per year. 

• The percentage of gasoline reduction increases and the percentage of CO2 

reduction decreases as AER increases.  However, all optimum PHEV designs 

have demonstrated over a 60% gasoline consumption reduction and at least a 45% 

CO2 reduction over the average car in the current vehicle fleet. 
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• For $2.50 per gallon gas and 8.97 cents per kWh electricity, the fuel cost of the 

optimum PHEV designs is $643 to $696 per year less than the fuel cost of the 

average sedan meeting the 27.5 mpg CAFE standard. 

 

8.6 Future Work 

 This was a first attempt at a PHEV design optimization and many aspects that 

could have been considered and probably should have been considered in retrospect were 

not.  These include using more demanding consumer orientated performance goals and 

putting values on floating performance metrics. 

 The resulting optimum designs are vehicles with low performance compared to 

average fleet vehicle.  The 12 second 0-60 mph time and the 5 second 0-30 time 

simulates a relatively underpowered car (about 80 kW total drivetrain power).  For future 

studies, higher performance constraints might be considered in order to result in vehicle 

designs that might appeal to a wider consumer audience. 

 In order to find the market optimum design, consumer needs and values would 

have to be investigated.  If dollar amounts were put on performance metrics such as 

acceleration time and fuel economy, and the vehicle was optimized to maximize value 

rather than minimizing cost, the resulting designs would be more market orientated.  

However, this approach would add complexity and a lot of estimates and assumptions 

based on economics would be required. 

 Overall, this optimization approach is outlined and is encouraged to be used as a 

base to build on.  The method has been outlined and assumptions can easily be changed 

and approaches can be modified for different vehicle types and technologies. 
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APPENDIX A 

 

PSAT MODELING POINTS 

 

 

Table A.1.  0-60 mph Acceleration Time 

Motor Size 
(kW) 

Engine Size 
(kW) 

Total Power
(kW) 

0-60 Time 
(seconds) 

44 36.52 80.52 12 
45 35.36 80.36 12 
46 33.63 79.63 12 
47 32.47 79.47 12 
48 31.31 79.31 12 
49 29.57 78.57 12 
50 28.41 78.41 12 
51 27.25 78.25 12 
52 25.51 77.51 12 
53 24.35 77.35 12 
54 23.19 77.19 12 
55 21.45 76.45 12 
56 20.29 76.29 12 
57 19.13 76.13 12 
58 17.97 75.97 12 
59 16.23 75.23 12 
60 15.07 75.07 12 
61 13.33 74.33 12 
62 12.17 74.17 12 

 

 Table A.1 is for a 1,600 kg vehicle. 
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Table A.2.  50-70 mph Acceleration Points 

Motor Size 
(kW) 

Engine Size 
(kW) 

Total Power
(kW) 

50-70 Time 
(seconds) 

44 32.47 76.47 8 
45 31.31 76.31 8 
46 29.86 75.86 8 
47 28.99 75.99 8 
48 27.83 75.83 8 
49 26.67 75.67 8 
50 25.51 75.51 8 
51 24.64 75.64 8 
52 23.48 75.48 8 
53 22.32 75.32 8 
54 21.45 75.45 8 
55 20.29 75.29 8 
56 19.71 75.71 8 
57 18.55 75.55 8 
58 17.39 75.39 8 
59 16.23 75.23 8 
60 15.07 75.07 8 
61 14.49 75.49 8 
62 13.04 75.04 8 

 

 Table A.2 is for a 1600 kg vehicle. 
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APPENDIX B 

 

OPTIMUM BATTERY PACK DESCRIPTIONS 

 

 

Table B.1.  Battery Pack Descriptions for Designs with AER 

Battery Type AER 
(miles) 

Capacity 
(kWh) 

Pack Zero Load 
Voltage (V) A-h Capacity Mass (kg)

NiMH 10 3.51 145 24.2 47 

 20 6.85 203 33.8 92 

 40 13.64 286 47.7 183 

Pb Acid 10 3.57 299 11.9 125 

 20 6.94 417 16.7 244 

 40 13.78 587 23.5 484 

Li Ion 10 2.81 233 12.0 42 

 20 5.45 325 16.8 82 

 40 10.81 457 23.6 162 
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APPENDIX C 

 

OPTIMIZATION CODE 

 

 
%PHEV Optimization Routine 
% Sam Golbuff "Optimization of a Plug-In Hybrid Electric Vehicle" 
% Georgia Institute of Technology, Strategic Energy Initiative 
  
function PHEV(Batt_type,AER) 
  
%Batt_type='LiIon' %NiMH, LiIon, or PbAcid 
%All electric range in miles, 10 20 30 40 50 or 60 
  
P_m_min=43; %kW  minimum motor size 
P_m_max=100; %kW maximum motor size 
P_e_min=10; %kW minimum engine size 
P_e_max=100; %kW maximum engine size 
  
for P_m=P_m_min:1:P_m_max 
    for P_e=P_e_min:1:P_e_max 
        i=P_e-P_e_min+1; %index for engine loop 
        P_e_in(i)=P_e; 
        P_m_in(i)=P_m; 
        
[P_m_out(i),P_e_out(i),C_batt_out(i),Cost_Tot_out(i)]=PHEVoptim(P_m,P_e
,Batt_type,AER); %runs for set P_m 
         
    end 
    Cost_Tot_min_k=min(Cost_Tot_out); 
    %find pointing row 
    for r=1:1:(P_e_max-P_e_min) 
        if Cost_Tot_min_k == Cost_Tot_out(r) 
            pointer=r; 
        end  
    end 
    P_e_out_optim_k = P_e_out(pointer); 
    P_m_out_optim_k = P_m_out(pointer); 
    C_batt_out_optim_k = C_batt_out(pointer); 
     
    k=P_m-P_m_min+1; %index for motor loop 
    Cost_Tot_min(k)=Cost_Tot_min_k; 
    P_e_out_optim(k)=P_e_out_optim_k; 
    P_m_out_optim(k)=P_m_out_optim_k; 
    C_batt_out_optim(k)=C_batt_out_optim_k; 
end 
  
Cost_min=min(Cost_Tot_min) 
for l=1:1:(P_m_max-P_m_min) 
    if Cost_min == Cost_Tot_min(l) 
        pointer=l; 
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    end 
end 
P_e_optim_final=P_e_out_optim(pointer) 
P_m_optim_final=P_m_out_optim(pointer) 
C_batt_optim_final=C_batt_out_optim(pointer) 
  
 
 

%   Plug In Hybrid Electric Vehicle Optimization Code 
%   Sam Golbuff,  Georgia Institute of Technology, Strategic Energy 
%   Initiative 
  
function [P_m,P_e,C_batt,Cost_Tot] = PHEVoptim(P_m,P_e,Batt_type,AER) 
%inputs: P_m motor power in kW, P_e engine power in kW, Batt_type 
battery 
%type, AER all electric range in miles 
%outputs P_m motor power than meets constraints, P_e Engine power that 
%meets constraints, C_batt batter capacity in A-h, Cost_Tot total cost 
of 
%drivetrain 
  
  
% First, determine if P_m and P_e meet acceleration constraints 
  
P_m_0_30 = 44; %Minimum electric motor power needed in kW to pass 0-
30mph in 5 seconds for 1,600 kg vehicle 
  
if P_m >= P_m_0_30; 
else 
    P_m=P_m_0_30; 
end                        % This will redefine P_m is less than 44 kW 
  
P_e_0_60 = -.0002*P_m^2-1.327*P_m+95.32; %Minimum Engine Power for 0-60 
in 12 seconds 
  
if P_e >= P_e_0_60; 
else 
    P_e=P_e_0_60; 
end                        % This will redefine P_e if doesnt meet 0-60 
requirement 
  
P_e_50_70 = -1.0563*P_m+78.577; %Minimum Engine Power for 50-70 in 8 
seconds 
  
if P_e >= P_e_50_70; 
else 
    P_e=P_e_50_70; 
end                       % This will redefine P_e if doesnt meet 50-70 
requirement 
  
% Now P_e and P_m meet all acceleration requirements 
  
% Next, determine battery capacity 
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        % Finding A-h Capacity needed for AER for 1,600 kg vehicle 
        Batt_Type_list={'NiMH';'PbAcid';'LiIon'}; 
        Batt_Type_funct = strcmp(Batt_Type_list, Batt_type); 
        if Batt_Type_funct(1) == 1 %NiMH 
            C_AER_list=[24.6;34.5;42;48;52.8;57.6]; %A-h required for 
AER, 10 20 30 40 50 60 
        end 
        if Batt_Type_funct(2) == 1 %PbAcid 
            C_AER_list=[17.3;25;30.2;34.7;39.2;42.6]; 
        end 
        if Batt_Type_funct(3) == 1 %LiIon 
            C_AER_list=[7.8;11.3;13.9;16;17.5;19.2]; 
        end 
        C_AER_pointer=AER/10; 
        C_AER=C_AER_list(C_AER_pointer); %Capacity required in A-h for 
AER 
  
  
        % Finding A-h Capacity needed for motor power requirement 
        P_Nominal_list=[.541;.771;.447]; %nominal kW per cell of 
different battery types 
        C_Nominal_list=[.2;.186666;.08]; %nominal A-h per cell of 
different battery types 
        if Batt_Type_funct(1) == 1 %NiMH 
            P_Nominal=P_Nominal_list(1); 
            C_Nominal=C_Nominal_list(1); 
        end 
        if Batt_Type_funct(2) == 1 %PbAcid 
            P_Nominal=P_Nominal_list(2); 
            C_Nominal=C_Nominal_list(2); 
        end 
        if Batt_Type_funct(3) == 1 %LiIon 
            P_Nominal=P_Nominal_list(3); 
            C_Nominal=C_Nominal_list(3); 
        end 
        K_power=P_m/P_Nominal; %Number of cells for power requirement 
        C_P=C_Nominal*K_power; %Required Capacity (A-h) by the motor 
        
  
        %Finding A-h Capacity needed for Grade Ability Requirement 
        P_req_grade = 45.7; %total kW needed for 6.5% grade at 55 mph 
for 1,600 kg vehicle 
        P_m_grade = P_req_grade-P_e; 
        if P_m_grade < 0 
            P_m_grade = 0; 
        end 
        eta_motor = .95; %effiency of motor 
        eta_batt_dis = .95; %efficiency of discharging battery 
        P_batt_grade = P_m_grade/(eta_motor*eta_batt_dis); 
        V_Nominal_list = [1.2;2.0;3.6]; %Volts/cell for different 
battery types 
        if Batt_Type_funct(1) == 1 %NiMH 
            V_Nominal=V_Nominal_list(1); 
        end 
        if Batt_Type_funct(2) == 1 %PbAcid 
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            V_Nominal=V_Nominal_list(2); 
        end 
        if Batt_Type_funct(3) == 1 %LiIon 
            V_Nominal=V_Nominal_list(3); 
        end 
        t = 1200/(60*60); %seconds of the gradeability test 
        SOC_sustain = .7; %Charge Sustaining SOC 
        SOC_min = .2; %Minimum Allowable SOC 
        C_grade = 
((1000*P_batt_grade*C_Nominal*t)/(V_Nominal*(SOC_sustain-SOC_min)))^.5; 
        % C_grade is the minimum capacity A-h to make the grade 
requirment 
         
        %Final Battery Capacity 
        C_list=[C_AER;C_P;C_grade]; 
        C_batt=max(C_list);  % This is the battery capacity that meets 
the power, grade, and AER constraints 
         
% Now, P_m, P_e, Batt_type and C_batt are specified 
 % Next, find the incremental cost of the power-train 
 P_m; 
 P_e; 
 Batt_type; 
 C_batt; 
 int=.07; 
 Cost_e = 12.00*P_e+424;  % Cost of engine ($) 
 Cost_m = 13.7*P_m+190;   % Cost of motor ($)   
 Cost_pe = 8.075*P_m+235;   % Cost of Power Electronics ($) 
    if Batt_Type_funct(1) == 1 %NiMH 
        Cost_batt = 97*C_batt+(97*C_batt/(1+int)^10); % Cost of battery 
($) for NiMH 
    end 
    if Batt_Type_funct(2) == 1 %PbAcid 
        Cost_batt = 
36*C_batt+(36*C_batt/(1+int)^5)+(36*C_batt/(1+int)^10); % Cost of 
battery ($) for PbAcid 
    end 
    if Batt_Type_funct(3) == 1 %LiIon 
        Cost_batt = 195*C_batt+(195*C_batt/(1+int)^10);  % Cost of 
battery ($) for LiIon 
    end 
 Cost_batt_acc = 4*C_batt+680; % Cost of battery accessories ($) 
 Cost_Tot=Cost_e+Cost_m+Cost_pe+Cost_batt+Cost_batt_acc; %Total Cost of 
Powertrain 
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APPENDIX D 

 

BATTERY PACK DATA 

 

 

 The battery pack data is included in PSATv6.0 in different initialization files in 

Matlab code.  

 

D.1 Ovonics NiMH  

ess_nimh_60_300_ovonics.m16 

%% File description 
% Name : ess_nimh_60_300_ovonic                  
% Author : A.Rousseau - ANL                                              
% Description : Initialize the parameters used in the Ovoniv M108 NiMH 
% Capacity = 60Ah, Cell number = 300 
% Cell type = M108                                                   
% Nominal Voltage = 12V                                              
% Nominal Capacity (C/3) = 60Ah                                      
% Dimensions (L * W * H) = 385mm X 102mm X 119mm                     
% Weight = 11.6kg                                                    
% Volume (modules only) = 5L                                         
% Nominal Energy (C/3) = 750 Wh                                      
% Peak Power (10s pulse @ 50%DOD @ 35 deg. C) = 4.9kW                
% Data provided by  : Dennis Corrigan, Vice President of EV Battery 
Systems, Ovonic      
% Model : lib_ess_generic_map                                                       
% Technology : nimh                                                                 
  
%% File content 
ess.list.init = {'soc_min','soc_max','soc_init','num_cell'}; 
ess.init.soc_init = 0.7; 
ess.init.element_per_module = 12; 
ess.init.num_module = 25; % value for number of modules, this number is 
scaled linearly with capacity 
ess.init.num_cell = ess.init.num_module * ess.init.element_per_module; 
ess.init.volt_nom = 1.2; 
ess.init.volt_min = 0.7; 
ess.init.volt_max = 1.35; 
ess.init.mass_module = 11.6; % (kg), mass of a single ~6 V module 
ess.init.mass_cell = ess.init.mass_module/ess.init.element_per_module; 
ess.init.soc_min = 0.3; % This is overwritten to be .2 
ess.init.soc_max = 1.0; 
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% LOSS AND EFFICIENCY parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
ess.init.soc_index = [0:.1:1];  % SOC RANGE over which data is defined 
ess.init.temp_index = [0 22 40];  % Temperature range over which data 
is defined (C) 
ess.init.cap_max_map = [60  60  60];    % (A*h), max. capacity at C/5 
rate, indexed by ess.init.temp_index, scaled linearly with number of 
modules 
ess.init.eff_coulomb = [0.975   0.975   0.975]; % average coulombic 
(a.k.a. amp-hour) efficiency below, indexed by ess.init.temp_index 
  
% module's resistance to being discharged, indexed by 
ess.init.soc_index and ess.init.temp_index 
ess.init.rint_dis_map = 
 

1.167 0.905 0.851 0.792 0.775 0.76 0.75 0.768 0.823 0.881 0.839

1.167 0.905 0.851 0.792 0.775 0.76 0.75 0.768 0.823 0.881 0.839

1.167 0.905 0.851 0.792 0.775 0.76 0.75 0.768 0.823 0.881 0.839
 
*10/1000/ess.init.element_per_module; % (ohm) 
 
% module's resistance to being charged, indexed by ess.init.soc_index 
and ess.init.temp_index 
ess.init.rint_chg_map = fliplr(ess.init.rint_dis_map);% (ohm), no other 
data available 
  
% module's open-circuit (a.k.a. no-load) voltage, indexed by 
ess.init.soc_index and ess.init.temp_index 
ess.init.voc_map = 
 

12.5 12.8 13.1 13.3 13.4 13.4 13.5 13.6 13.7 13.9 14.2 

12.5 12.8 13.1 13.3 13.4 13.4 13.5 13.6 13.7 13.9 14.2 

12.5 12.8 13.1 13.3 13.4 13.4 13.5 13.6 13.7 13.9 14.2 
 
/ess.init.element_per_module; % (V) 
  
% Max current and power when charging/discharging 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ess.init.curr_chg_max = -max(max((ess.init.volt_max-ess.init.voc_map) 
./ess.init.rint_chg_map)); 
ess.init.curr_dis_max = max(max((ess.init.voc_map-ess.init.volt_min) 
./ess.init.rint_dis_map)); 
  
%to check the ess.calc.pwr_chg & ess.calc.pwr_dis because they're a 
vector and in the database for the plot we need maps  
ess.calc.pwr_chg = -max((ess.init.volt_max-ess.init.voc_map) 
.*ess.init.volt_max./ess.init.rint_chg_map);%per cell 
ess.calc.pwr_dis = max((ess.init.voc_map-ess.init.volt_min) 
.*ess.init.volt_min./ess.init.rint_dis_map);%per cell 
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ess.init.pwr_chg = -max(max((ess.init.volt_max-ess.init.voc_map) 
.*ess.init.volt_max./ess.init.rint_chg_map));%per cell 
ess.init.pwr_dis = max(max((ess.init.voc_map-ess.init.volt_min) 
.*ess.init.volt_min./ess.init.rint_dis_map));%per cell 
  
% battery thermal model 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ess.init.therm_on = 1;                                                              
% --     0=no ess thermal calculations, 1=do calc's 
ess.init.therm_cp_module = 830;                                                     
% J/kgK  ave heat capacity of module (estimated for NiMH) 
ess.init.temp_reg = 35;                                                            
% C  thermostat temp of module when cooling fan comes on 
ess.init.area_mod = 1.6*(ess.init.mass_module/11)^0.7;                              
% -- if module dimensions are unknown, assume rectangle shape and scale 
vs PB25 
ess.init.area_module = 2*(0.385*0.119+0.102*0.119);                                 
% m^2 total module surface area exposed to cooling air (typ rectang 
module) 
ess.init.flow_air_mod = 0.01;                                                       
% kg/s   cooling air mass flow rate across module (20 cfm=0.01 kg/s at 
20 C) 
ess.init.mod_flow_area = 0.005*2*(0.385+0.102);                                     
% m^2 cross-sec flow area for cooling air per module (assumes 10-mm gap 
btwn mods) 
ess.init.case_thk = 2/1000;                                                         
% m  thickness of module case (typ from Optima) 
ess.init.therm_case_cond = 0.2;                                                     
% W/mK  thermal conductivity of module case material (typ polyprop 
plastic - Optima) 
ess.init.speed_air = 
ess.init.flow_air_mod/(1.16*ess.init.mod_flow_area);                      
% m/s  ave velocity of cooling air 
ess.init.therm_air_htcoef = 30*(ess.init.speed_air/5)^0.8;                           
% W/m^2K cooling air heat transfer coef. 
ess.init.therm_res_on = 
((1/ess.init.therm_air_htcoef)+(ess.init.case_thk/ess.init.therm_case_c
ond))/ess.init.area_module; % K/W  tot thermal res key on 
ess.init.therm_res_off = 
((1/4)+(ess.init.case_thk/ess.init.therm_case_cond))/ess.init.area_modu
le; % K/W  tot thermal res key off (cold soak) 
ess.init.flow_air_mod = max(ess.init.flow_air_mod,0.001); 
ess.init.therm_res_on = 
min(ess.init.therm_res_on,ess.init.therm_res_off); 
  
clear ess.init.area_module ess.init.mod_flow_area ess.init.case_thk 
ess.init.therm_case_cond ess.init.speed_air ess.init.therm_air_htcoef 
ess.init.area_mod 
  
% Battery density 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ess.init.pwr_dis_nom = max(max((ess.init.volt_nom-ess.init.volt_min) 
.*ess.init.volt_min./ess.init.rint_dis_map));%per cell 
ess.init.pwr_density = ess.init.pwr_dis_nom/ess.init.mass_cell; 
ess.init.energy_density = 
mean((ess.init.volt_nom*ess.init.cap_max_map))/ess.init.mass_cell; 
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D.2 Johnson Controls Pb Acid 

ess_pb_28_150.m17 

%% File description 
% Name : ess_pb_28_150                   
% Author : A.Rousseau - ANL                                              
% Description : Initialize the parameters used in the Johnson Controls 
lead-acid battery 
% Capacity = 28Ah, Cell number = 150 
% These parameters describe the Johnson Controls 12-95 lead-acid     
% battery.  This data was provided by the University of Illinois     
% Urbana/Champaign under subcontract #XCB-5-15296-01 to NREL.        
% Model : lib_ess_generic_map                                                       
% Technology : pb                                                                   
  
%% File content 
ess.list.init = {'soc_min','soc_max','soc_init','num_cell'}; 
ess.init.soc_init = 0.7; 
ess.init.element_per_module = 6; 
ess.init.num_module = 25; % value for number of modules, scaled 
linearly with capacity 
ess.init.num_cell = ess.init.num_module * ess.init.element_per_module; 
ess.init.volt_nom = 2; 
ess.init.volt_min = 1.5;      % caution, this value may be too 
low(compared with other lead acid batteries) 
ess.init.volt_max = 2.4; 
ess.init.mass_module = 11.8;                             % (kg), mass 
of entire pack(including fan,ecu,case) divided by 40 modules 
ess.init.mass_cell = ess.init.mass_module /ess.init.element_per_module; 
ess.init.soc_min = 0.404; % overwritten to be .2 
ess.init.soc_max = 1.0; 
  
% LOSS AND EFFICIENCY parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
ess.init.soc_index = [0:.2:1]; % SOC RANGE over which data is defined 
ess.init.temp_index = [0 22 40]; % Temperature range over which data is 
defined(C) 
ess.init.cap_max_map = [28   28   28]; % (A*h), max. capacity at C/5 
rate, indexed by ess.init.temp_index, scaled linearly with number of 
modules 
ess.init.eff_coulomb = [.9   .9   .9];   % average coulombic (a.k.a. 
amp-hour) efficiency below, indexed by ess.init.temp_index 
  
% module's resistance to being discharged, indexed by 
ess.init.soc_index and ess.init.temp_index 
ess.init.rint_dis_map = 
 

0.038 0.024 0.007 0.007 0.007 0.011 

0.038 0.024 0.007 0.007 0.007 0.011 

0.038 0.024 0.007 0.007 0.007 0.011 
 

/ess.init.element_per_module; % (ohm) 
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% module's resistance to being charged, indexed by ess.init.soc_index 
and ess.init.temp_index 
ess.init.rint_chg_map = ess.init.rint_dis_map; %no other data available 
  
% module's open-circuit (a.k.a. no-load) voltage, indexed by 
ess.init.soc_index and ess.init.temp_index 
ess.init.voc_map =  
 

6.0 8.9 11.8 12.0 12.3 12.6 

6.0 8.9 11.8 12.0 12.3 12.6 

6.0 8.9 11.8 12.0 12.3 12.6 
 

/ess.init.element_per_module; % (V) voc at low soc seems low compared 
with other lead acid batteries, use with caution 
  
% Max current and power when charging/discharging 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ess.init.curr_chg_max = -max(max((ess.init.volt_max-ess.init.voc_map) 
./ess.init.rint_chg_map)); 
ess.init.curr_dis_max = max(max((ess.init.voc_map-ess.init.volt_min) 
./ess.init.rint_dis_map)); 
  
%to check the ess.calc.pwr_chg & ess.calc.pwr_dis because they're a 
vector and in the database for the plot we need maps  
ess.calc.pwr_chg = -max((ess.init.volt_max-ess.init.voc_map) 
.*ess.init.volt_max./ess.init.rint_chg_map); % per cell 
ess.calc.pwr_dis = max((ess.init.voc_map-ess.init.volt_min) 
.*ess.init.volt_min./ess.init.rint_dis_map); % per cell 
ess.init.pwr_chg = -max(max((ess.init.volt_max-ess.init.voc_map) 
.*ess.init.volt_max./ess.init.rint_chg_map)); % per cell 
ess.init.pwr_dis = max(max((ess.init.voc_map-ess.init.volt_min) 
.*ess.init.volt_min./ess.init.rint_dis_map)); % per cell 
  
% battery thermal model 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ess.init.therm_on = 1;                                                        
% -- 0=no ess thermal calculations, 1=do calc's 
ess.init.therm_cp_module = 660;                                                     
% J/kgK  ave heat capacity of module (typical Pb bat - from Optima) 
ess.init.temp_reg = 35;                                                       
% C thermostat temp of module when cooling fan comes on 
ess.tmp.area_mod = (ess.init.mass_module/11)^0.7;                                
% -- if module dimensions are unknown, assume rectangle shape and scale 
vs PB25 
ess.tmp.area_module = 0.2*ess.tmp.area_mod;                                         
% m^2 total module surface area exposed to cooling air (typ rectang 
module) 
ess.init.flow_air_mod = 0.01;                                                     
% kg/s cooling air mass flow rate across module (20 cfm=0.01 kg/s at 20 
C) 
ess.tmp.therm_flow_area_module = 0.005*ess.tmp.area_mod;                            
% m^2 cross-sec flow area for cooling air per module (assumes 10-mm gap 
btwn mods) 
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ess.tmp.case_thk = 2/1000;                                                   
% m thickness of module case (typ from Optima) 
ess.tmp.therm_case_cond = 0.20;                                                     
% W/mK thermal conductivity of module case material (typ polyprop 
plastic - Optima) 
ess.tmp.speed_air = 
ess.init.flow_air_mod/(1.16*ess.tmp.therm_flow_area_module);  
% m/s  ave velocity of cooling air 
ess.tmp.therm_air_htcoef = 30*(ess.tmp.speed_air/5)^0.8;                            
% W/m^2K cooling air heat transfer coef. 
ess.init.therm_res_on = 
((1/ess.tmp.therm_air_htcoef)+(ess.tmp.case_thk/ess.tmp.therm_case_cond
))/ess.tmp.area_module; % K/W  tot thermal res key on 
ess.init.therm_res_off = 
((1/4)+(ess.tmp.case_thk/ess.tmp.therm_case_cond))/ess.tmp.area_module; 
% K/W  tot thermal res key off (cold soak) 
ess.init.flow_air_mod = max(ess.init.flow_air_mod,0.001); 
ess.init.therm_res_on = 
min(ess.init.therm_res_on,ess.init.therm_res_off); 
  
if isfield(ess,'tmp') 
ess = rmfield(ess,'tmp');     
end 
  
% Battery density 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ess.init.pwr_dis_nom = max(max((ess.init.volt_nom-ess.init.volt_min) 
.*ess.init.volt_min./ess.init.rint_dis_map));%per cell 
ess.init.pwr_density = ess.init.pwr_dis_nom/ess.init.mass_cell; 
ess.init.energy_density = 
mean((ess.init.volt_nom*ess.init.cap_max_map))/ess.init.mass_cell; 
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D.3 Saft Li Ion 

Ess_li_6_75_saft.m18 

%% File description 
% Name : ess_li_6_75_saft                    
% Author : A.Rousseau - ANL                                              
% Description : Initialize the parameters used in the Saft Li-ion 
% Capacity = 6Ah, Cell number = 75 
% Model : lib_ess_generic_map                                                       
% Technology : liion                                                                
  
%% File content 
ess.list.init = {'soc_min','soc_max','soc_init','num_cell'}; 
ess.init.soc_init = 0.7; 
ess.init.element_per_module = 3; 
ess.init.num_module = 25; % value for number of modules, scaled 
linearly with battery capacity 
ess.init.num_cell = ess.init.num_module * ess.init.element_per_module; 
ess.init.volt_nom = 3.6; 
ess.init.volt_min = 3.2; 
ess.init.volt_max = 3.9; 
ess.init.mass_module = .37824*3; % (kg), mass of a single module 
ess.init.mass_cell = ess.init.mass_module/ess.init.element_per_module; 
ess.init.soc_min = 0.3; % This is overwritten to .2 
ess.init.soc_max = 1.0; 
  
% LOSS AND EFFICIENCY parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
ess.init.soc_index = [0 10 20 40 60 80 100]/100; % SOC RANGE over which 
data is defined 
ess.init.temp_index = [0 25    41];  % Temperature range over which 
data is defined (C) 
ess.init.cap_max_map = [5.943 7.035 7.405]; % (A*h), max. capacity at 
C/5 rate, indexed by ess.init.temp_index, scaled linearly with number 
of modules 
ess.init.eff_coulomb = [0.968 0.99 0.992]; % average coulombic (a.k.a. 
amp-hour) efficiency below, indexed by ess.init.temp_index 
  
% module's resistance to being discharged, indexed by 
ess.init.soc_index and ess.init.temp_index 
ess.init.rint_dis_map = 
 

0.041900 0.028800 0.022100 0.014000 0.014500 0.014500 0.016200

0.072000 0.015150 0.008390 0.004930 0.005050 0.005524 0.005722

0.053500 0.013300 0.008200 0.005900 0.005900 0.006000 0.006300
 

% (ohm) 
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% module's resistance to being charged, indexed by ess.init.soc_index 
and ess.init.temp_index 
 
 
ess.init.rint_chg_map =  
 

0.021 0.018 0.0177 0.0157 0.0138 0.0138 0.015 

0.0124 0.0068 0.005426 0.00442 0.00463 0.00583 0.00583 

0.0104 0.0079 0.0072 0.0064 0.0059 0.0058 0.006 
 

% (ohm) 
  
% module's open-circuit (a.k.a. no-load) voltage, indexed by 
ess.init.soc_index and ess.init.temp_index 
ess.init.voc_map =  
 

3.44 3.473 3.496 3.568 3.637 3.757 3.896 

3.124 3.349 3.433 3.518 3.616 3.752 3.898 

3.128 3.36 3.44 3.528 3.623 3.761 3.899 
 
% (V) 
  
% Max current and power when charging/discharging 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ess.init.curr_chg_max = -max(max((ess.init.volt_max-ess.init.voc_map) 
./ess.init.rint_chg_map)); 
ess.init.curr_dis_max = max(max((ess.init.voc_map-ess.init.volt_min) 
./ess.init.rint_dis_map)); 
  
% to check the ess.calc.pwr_chg & ess.calc.pwr_dis because they're a 
vector and in the database for the plot we need maps  
ess.calc.pwr_chg = -max((ess.init.volt_max-ess.init.voc_map) 
.*ess.init.volt_max./ess.init.rint_chg_map); % per cell 
ess.calc.pwr_dis = max((ess.init.voc_map-ess.init.volt_min) 
.*ess.init.volt_min./ess.init.rint_dis_map); % per cell 
  
ess.init.pwr_chg = -max(max((ess.init.volt_max-ess.init.voc_map) 
.*ess.init.volt_max./ess.init.rint_chg_map)); % per cell 
ess.init.pwr_dis = max(max((ess.init.voc_map-ess.init.volt_min) 
.*ess.init.volt_min./ess.init.rint_dis_map)); % per cell 
  
% battery thermal model 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ess.init.therm_on = 1;                                                              
% -- 0=no ess thermal calculations, 1=do calc's 
ess.init.therm_cp_module = 795;                                                     
% J/kgK  ave heat capacity of module (estimated for NiMH) 
ess.init.temp_reg = 35;                                                             
% C thermostat temp of module when cooling fan comes on 
ess.tmp.area_module = .032;                                                         
% m^2 total module surface area exposed to cooling air (type rectangle 
module) 
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ess.init.flow_air_mod = .07/12;                                                     
% kg/s cooling air mass flow rate across module (20 cfm=0.01 kg/s at 20 
C) 
ess.tmp.mod_flow_area = .0011;                                                      
% m^2 cross-sec flow area for cooling air per module (assumes 10-mm gap 
btwn mods) 
ess.tmp.case_thk = .001;                                                            
% m thickness of module case (typ from Optima) 
ess.tmp.therm_case_cond = 15;                                                       
% W/mK thermal conductivity of module case material (typ polyprop 
plastic - Optima) 
ess.tmp.speed_air = ess.init.flow_air_mod/(1.16*ess.tmp.mod_flow_area);             
% m/s  ave velocity of cooling air 
ess.tmp.therm_air_htcoef = 30*(ess.tmp.speed_air/5)^0.8;                            
% W/m^2K cooling air heat transfer coef. 
ess.init.therm_res_on = 
((1/ess.tmp.therm_air_htcoef)+(ess.tmp.case_thk/ess.tmp.therm_case_cond
))/ess.tmp.area_module; % K/W  tot thermal res key on 
ess.init.therm_res_off = 
((1/4)+(ess.tmp.case_thk/ess.tmp.therm_case_cond))/ess.tmp.area_module; 
% K/W  tot thermal res key off (cold soak) 
ess.init.flow_air_mod = max(ess.init.flow_air_mod,0.001); 
ess.init.therm_res_on = 
min(ess.init.therm_res_on,ess.init.therm_res_off); 
ess = rmfield(ess,'tmp'); 
  
% Battery density 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ess.init.pwr_dis_nom = max(max((ess.init.volt_nom-
ess.init.volt_min).*ess.init.volt_min./ess.init.rint_dis_map)); % per 
cell 
ess.init.pwr_density = ess.init.pwr_dis_nom/ess.init.mass_cell; 
ess.init.energy_density = 
mean((ess.init.volt_nom*ess.init.cap_max_map))/ess.init.mass_cell; 
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APPENDIX E 

 

ENGINE AND ELECTRIC MOTOR DATA 

 

 

E.1 Base Engine Data 

Eng_si_1500_52_USprius.m19 

%% File description 
% Name : eng_si_1500_52_USprius                  
% Author : F.Besnier - ANL                                               
% Description : Initialize the 1.5L 60 kW MY01 US Prius gasoline engine 
% Data provided by ANL APRF using in-situ engine torque sensor 
% Remarks : The engine start speed is not compatible with  
% other powertrain configurations. 
% Model : lib_eng_map_hot                                                    
% Technology : si                                                                   
  
%% File content 
eng.list.init   = 
{'warmup_init','tau','dn','inertia','spd_str','fuel_density_val','spd_i
dle'}; 
  
eng.init.fuel_mass = 50.0;   % Capacity of tank in kg 
eng.init.mass = 108 + 6 + 10; %block + radiator + tank 
eng.init.inertia = 0.1598;  
eng.init.tau = 0.2; % 0 to 100% of max torque in 200ms 
eng.init.dn = 0.05; % 100% of max to 0 torque in 50ms 
eng.init.spd_idle = 
conversion_calc('rotational_speed','rpm','rad/s',970); % rad/s 
(default) 
eng.init.spd_str = 
conversion_calc('rotational_speed','rpm','rad/s',800);          
eng.init.warmup_init = 0; % This should normally by 0 
eng.init.pwr_max = 52000; % Watts 
eng.init.pwr_max_eff = 50000; % Watts 
  
%Fuel parameters for premium gasoline 
eng.init.fuel_density_val = 0.749; % kg/L 
eng.init.fuel_heating_val = 43000000; % (J/kg)Specific LHV 
eng.init.fuel_carbon_ratio = 0.86; % (% Carbon by weight) 
eng.init.co2_init = 0; 
  
% Baseline engine parameters 
eng.init.displ_init = 1500.0; % cc 
eng.init.num_cyl_init = 4; 
eng.init.bore_init = 8.3; % mm 
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eng.init.stroke_init = 8.32; % mm 
eng.init.comp_ratio_init = 11.5;       
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% maximum curves at each speed (closed and wide open throttle) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% hot max wide open throttle curves 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
eng.init.spd_max_hot_index = [0  104.72   157.08  209.44  261.80  
314.16  366.52  418.88  471.24  523.60  628.32  700  750 775    780]; 
eng.init.trq_max_hot_map = [0  85.3844   93.4610   99.23   101.1538   
103.0768   105.3844   106.9228  102.3036  93.4610  80  70  65 0 0]*1.2; 
% hot wide open throttle torque 
  
% hot max closed throttle curves 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
eng.init.spd_min_hot_index =[ 0    10    20    30    40    50    60    
70]; 
eng.init.trq_min_hot_map =[ -2.2266  -35.0633  -49.4566  -53.5278      
-53.1965  -52.1803  -51.9947  -51.9537] 
  
% Mid speed is used in logic to limit closed and wide open torque 
curves 
eng.init.spd_avg = 0.5 * (eng.init.spd_max_hot_index(1)+ 
eng.init.spd_max_hot_index(length(eng.init.spd_max_hot_index))); 
  
eng.init.spd_fuel_hot_index = [104.72 126.386 157.08 164.3015 184.162 
209.44 261.80 292.493 314.16 332.215 366.52 375.547 418.88 471.24 
523.60 600 650]; 
eng.init.trq_fuel_hot_index = [11.5380 15.3840 17.6916  22.3076 25.3844 
27.6920 31.5380 35.3840 40  44.6152  50.7688 60 66.154 71.5380 80 
85.3844 93.0764 ]; 
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%  efficiency 
eng.init.eff_hot_map =  
 

15.0 17.5 20.0 22.5 25.0 26.0 28.0 29.0 30.5 32.0 33.0 34.0 34.5 35.0 34.0 35.0 35.0

17.5 20.0 22.5 25.0 26.0 27.5 28.0 30.0 31.0 32.5 33.0 35.0 35.0 35.0 35.0 35.0 35.0

16.5 19.0 22.0 23.0 25.0 26.0 27.5 29.0 30.0 31.0 32.5 34.0 35.0 35.0 35.0 35.0 35.0

16.0 19.0 21.0 23.0 25.0 26.0 27.5 29.0 30.0 31.0 32.5 34.0 35.0 35.0 35.0 35.0 35.0

16.0 18.0 20.0 22.5 25.0 26.0 27.5 28.0 30.0 31.0 32.5 34.0 35.0 35.0 35.0 35.0 35.0

15.0 17.5 20.0 22.5 24.0 25.5 27.5 28.0 30.0 31.0 33.0 34.0 35.0 35.0 35.0 35.0 35.0

14.0 15.0 18.0 22.0 24.0 25.0 27.5 28.0 30.0 31.0 32.5 34.0 35.0 35.0 35.0 35.0 35.0

13.0 14.0 17.5 20.0 23.0 25.0 27.0 28.0 29.5 31.0 32.0 33.0 34.0 35.0 35.0 35.0 35.0

13.0 14.0 15.0 20.0 22.5 24.0 26.0 27.5 29.0 30.5 31.5 33.0 34.0 35.0 35.0 35.0 35.0

13.0 14.0 15.0 17.5 22.5 23.0 26.0 27.5 29.0 30.0 31.5 33.0 34.0 35.0 35.0 35.0 35.0

13.0 14.0 16.0 18.0 20.0 22.5 25.0 26.0 27.5 29.0 30.5 32.0 33.0 33.5 34.5 35.0 35.0

13.0 14.0 16.0 18.0 20.0 22.5 25.0 26.0 27.5 29.0 30.5 31.5 32.5 33.0 34.0 35.0 35.0

13.0 14.0 17.0 19.0 19.0 20.0 23.0 25.0 27.0 28.0 29.0 31.0 32.5 33.0 34.0 34.5 35.0

13.0 14.0 17.0 19.0 19.0 20.0 22.5 24.0 26.0 28.0 29.5 31.0 32.0 33.0 34.0 34.0 32.5

13.0 14.0 17.0 19.0 19.0 20.0 22.5 23.0 25.0 27.5 29.5 30.0 31.0 33.0 33.5 34.0 32.5

13.0 14.0 17.0 19.0 19.0 20.0 22.5 23.0 25.0 27.5 29.0 30.0 30.5 32.0 33.0 34.0 32.5

13.0 14.0 17.0 19.0 19.0 20.0 22.0 22.5 24.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 32.5
 

/100;  
 % These are the numbers for the engine efficiency map 
 
eng.init.fuel_hot_map = 
eng.init.spd_fuel_hot_index'*eng.init.trq_fuel_hot_index 
/eng.init.fuel_heating_val./(eng.init.eff_hot_map);%now in kg/s 
  
% engine torque for fuel rate kg/s 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
eng.init.spd_zero_fuel_hot_index = eng.init.spd_min_hot_index; 
eng.init.trq_zero_fuel_hot_index = 1.5*eng.init.trq_min_hot_map; 
  
%Emissions in percentage of fuel rate (kg/s) 
eng.init.spd_co_hot_index = eng.init.spd_fuel_hot_index; 
eng.init.trq_co_hot_index = eng.init.trq_fuel_hot_index; 
eng.init.co_hot_map = 
zeros(length(eng.init.spd_co_hot_index),length(eng.init.trq_co_hot_inde
x));  
  
eng.init.spd_hc_hot_index = eng.init.spd_fuel_hot_index; 
eng.init.trq_hc_hot_index = eng.init.trq_fuel_hot_index; 
eng.init.hc_hot_map = 
zeros(length(eng.init.spd_hc_hot_index),length(eng.init.trq_hc_hot_inde
x)); 
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eng.init.spd_nox_hot_index = eng.init.spd_fuel_hot_index; 
eng.init.trq_nox_hot_index = eng.init.trq_fuel_hot_index; 
eng.init.nox_hot_map = 
zeros(length(eng.init.spd_nox_hot_index),length(eng.init.trq_nox_hot_in
dex)); 
  
eng.init.spd_pm_hot_index = eng.init.spd_fuel_hot_index; 
eng.init.trq_pm_hot_index = eng.init.trq_fuel_hot_index; 
eng.init.pm_hot_map  = zeros(length(eng.init.spd_hc_hot_index), 
length(eng.init.trq_nox_hot_index)); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% O2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
eng.init.spd_o2_hot_index = eng.init.spd_fuel_hot_index; 
eng.init.trq_o2_hot_index = eng.init.trq_fuel_hot_index; 
eng.init.o2_hot_map = 
zeros(length(eng.init.spd_fuel_hot_index),length(eng.init.trq_fuel_hot_
index)); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% exhaust table 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% HOT 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
eng.init.spd_equiv_hot_index = eng.init.spd_fuel_hot_index; 
eng.init.trq_equiv_hot_index = eng.init.trq_fuel_hot_index; 
  
eng.init.equiv_hot_map =  
zeros(length(eng.init.spd_equiv_hot_index),length(eng.init.trq_equiv_ho
t_index)); 
% Heat rejection variable Presid data table 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
eng.init.spd_htrej_hot_index = eng.init.spd_fuel_hot_index; 
eng.init.trq_htrej_hot_index = eng.init.trq_fuel_hot_index; 
eng.init.htrej_hot_map  = zeros(17,17); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Heat Transfer 
%the following is a new thermal model of the engine 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
eng.init.spd_ex_gas_flow_hot_index =   eng.init.spd_fuel_hot_index; 
eng.init.trq_ex_gas_flow_hot_index =   eng.init.trq_fuel_hot_index; 
eng.init.ex_gas_flow_hot_map       =   eng.init.fuel_hot_map *(1+20);               
% g/s  ex gas flow map:  for CI engines, exflow=(fuel use)*[1 + (ave 
A/F ratio)] 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%eng.init.v0x\fuel use, thermal and emissions\thermal\fc heat net 
calculation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
eng.init.ex_pwr_map = 
eng.init.spd_fuel_hot_index'*eng.init.trq_fuel_hot_index; 
eng.init.ex_temp_map = 
eng.init.ex_pwr_map./(eng.init.ex_gas_flow_hot_map *1089/1000) + 20;  % 
W   EO ex gas temp = Q/(MF*cp) + Tamb (assumes engine tested ~20 C) 
eng.init.spd_ex_temp_index = eng.init.spd_fuel_hot_index;  
eng.init.trq_ex_temp_index = eng.init.trq_fuel_hot_index; 
  
eng.init.temp_operating = 90; 
eng.init.ex_temp_operating = mean(mean(eng.init.ex_temp_map)); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculations 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% maximum and minimum calculations 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
eng.init.trq_hot_max = max(eng.init.trq_max_hot_map); % N-m 
eng.init.spd_hot_max = 
max(eng.init.spd_max_hot_index(max(find(eng.init.trq_max_hot_map>0)))); 
% rad/s 
eng.init.pwr_hot_max = max(eng.init.spd_max_hot_index.* 
eng.init.trq_max_hot_map); % W 
eng.init.pwr_max_hot_map = eng.init.spd_max_hot_index.* 
eng.init.trq_max_hot_map; % W 
  
% Calculate the max engine efficiency in within the max torque curve 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
eng.init.eff_hot_map = 
eng.init.spd_fuel_hot_index'*eng.init.trq_fuel_hot_index/eng.init.fuel_
heating_val./(eng.init.fuel_hot_map); 
eng.tmp.max_trq = 
interp1(eng.init.spd_max_hot_index,eng.init.trq_max_hot_map,eng.init.sp
d_fuel_hot_index); 
eng.tmp.max_trq = 
eng.tmp.max_trq(:)*ones(1,length(eng.init.trq_fuel_hot_index)); 
eng.tmp.max_trq = (eng.init.trq_fuel_hot_index(:) * 
ones(1,length(eng.init.spd_fuel_hot_index)))' > eng.tmp.max_trq; 
eng.init.eff_hot_map(eng.tmp.max_trq) = 0; 
eng.init.eff_max = max(max(eng.init.eff_hot_map)); 
  
eng = rmfield(eng,'tmp'); 
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E.2 Base Motor Data 

Mc_pm_49_49_Honda.m20 

%% File description 
% Name : mc_pm_49_49_Honda                   
% Author : A.Rousseau - ANL                                              
% Description : Initialize a permanent magnet electric motor from Honda 
% Continuous Power = 49kW, Peak Power = 49kW 
% Data provided by Anil Paryani (Honda R&D Americas)                 
% Model : lib_mc_map_Pelec_funTW_volt_in,lib_mc_map_Pelec_funTW_pwr_in 
% Technology : pm                                                                   
  
%% File content 
mc.list.init = {'inertia','tau','coeff_regen','curr_max','volt_min'}; 
  
mc.init.inertia = 0.0507;  
mc.init.coeff_regen = 1; 
mc.init.volt_min = 60; % (V), minimum voltage allowed by the controller 
and motor 
mc.init.tau = 0.05; % from 0 to 100 % of the torque in 50 ms 
mc.init.t_max_trq = 180; % Time the motor can remain at max torque 
mc.init.mass = 45 + 15; % (kg), mass of motor and controller                        
mc.init.curr_max = 400; % (A), maximum current allowed by the 
controller and motor 
mc.init.spd_base = 
conversion_calc('rotational_speed','rpm','rad/s',1500); % rad/s 
  
mc.init.spd_cont_index = 
conversion_calc('rotational_speed','rpm','rad/s',[0:500:8500 8600 
8700]); 
mc.init.trq_cont_map = [274.4    274.4   274.4   274.4  233.8 187.0 
155.9 133.6 116.9 103.9 93.5 85.0 77.9 71.9 66.8 62.3 58.4 55.0 0 0]; % 
(N*m) 
 
mc.init.spd_max_index = mc.init.spd_cont_index; 
mc.init.trq_max_map = mc.init.trq_cont_map; 
  
mc.init.spd_min_index = mc.init.spd_max_index; % rad/s 
mc.init.trq_min_map = -mc.init.trq_max_map; 
  
mc.init.spd_eff_index = 
conversion_calc('rotational_speed','rpm','rad/s',[0:500:8500]); 
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mc.init.trq_eff_index = [0.0  19.6    39.2    78.4    98.0    117.6 
137.2 156.8 176.4 235.2 274.4]; 
mc.init.eff_trq_map = 0.01* 
 

63 87.7 84.7 79.4 78.09 76.5 75 73.89 71.3 63.8 59.7 

63.07 87.76 84.71 79.49 78.1 76.56 75.09 73.9 71.33 63.88 59.75

80.23 85.98 86.96 87.34 86.64 85.45 84.73 84.03 83.26 80.81 77.35

80.24 87.45 88.53 89.23 89.37 88.36 88.08 87.98 87.33 85.65 82.47

81.05 90.54 90.31 90.33 90.42 90.38 90.13 89.86 89.38 87.95 87.25

83.52 88.41 91.83 91.51 91.56 91.43 91.28 91.02 91.23 90.67 90.67

84.9 90.61 91.38 92.36 92.29 92.35 92.16 92.12 93.52 93.61 93.61

84.92 90.37 92.79 93.59 94.31 94.42 94.68 95.24 95.42 95.42 95.42

86.24 93.14 94.56 95.69 95.67 96.02 96.07 95.88 95.88 95.88 95.88

85.7 90.78 93.73 96 96.13 96.39 96.23 96.23 96.23 96.23 96.23

82.22 89.23 93 95.29 96.05 96.05 96.05 96.05 96.05 96.05 96.05

81.37 87.75 92.89 95.47 95.83 95.83 95.83 95.83 95.83 95.83 95.83

80.69 86.69 92.47 95.18 95.4 95.4 95.4 95.4 95.4 95.4 95.4 

79.83 86 92.05 95.06 95.48 95.48 95.48 95.48 95.48 95.48 95.48

78.99 85 91.13 94.5 94.7 94.7 94.7 94.7 94.7 94.7 94.7 

77.41 84.26 90.75 94.21 94.21 94.21 94.21 94.21 94.21 94.21 94.21

76.08 82.89 90.31 93.49 93.49 93.49 93.49 93.49 93.49 93.49 93.49

75.97 82.22 89.96 93.17 93.17 93.17 93.17 93.17 93.17 93.17 93.17
 

% These are the numbers for the motor efficiency map 
  
mc.init.spd_prop_cont_index = [-fliplr(mc.init.spd_cont_index(2:end)) -
eps 0 eps mc.init.spd_cont_index(2:end)]; 
mc.init.trq_prop_cont_map = [-fliplr(mc.init.trq_cont_map(2:end))  -
mc.init.trq_cont_map(2) mc.init.trq_cont_map(2) mc.init.trq_cont_map(2) 
mc.init.trq_cont_map(2:end)]; 
mc.init.pwr_prop_cont_map = 
mc.init.spd_prop_cont_index.*mc.init.trq_prop_cont_map; 
  
mc.init.spd_prop_max_index = [-fliplr(mc.init.spd_max_index(2:end)) -
eps 0 eps mc.init.spd_max_index(2:end)]; 
mc.init.trq_prop_max_map = [-fliplr(mc.init.trq_max_map(2:end))   -
mc.init.trq_max_map(2) mc.init.trq_max_map(2) mc.init.trq_max_map(2) 
mc.init.trq_max_map(2:end)]; 
mc.init.pwr_prop_max_map =  
mc.init.spd_prop_max_index.*mc.init.trq_prop_max_map; 
  
mc.init.spd_reg_cont_index = [-fliplr(mc.init.spd_cont_index(2:end)) -
eps 0 eps mc.init.spd_cont_index(2:end)]; 
mc.init.trq_reg_cont_map = [fliplr(mc.init.trq_cont_map(2:end))  
mc.init.trq_cont_map(2) -mc.init.trq_cont_map(2) -
mc.init.trq_cont_map(2)  -mc.init.trq_cont_map(2:end)]; 
mc.init.pwr_reg_cont_map = 
mc.init.spd_reg_cont_index.*mc.init.trq_reg_cont_map; 
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mc.init.spd_reg_max_index = [-fliplr(mc.init.spd_max_index(2:end)) -eps 
0 eps mc.init.spd_max_index(2:end)]; 
mc.init.trq_reg_max_map = [fliplr(mc.init.trq_max_map(2:end))    
mc.init.trq_max_map(2) -mc.init.trq_max_map(2) -mc.init.trq_max_map(2) 
-mc.init.trq_max_map(2:end)]; 
mc.init.pwr_reg_max_map = 
mc.init.spd_reg_max_index.*mc.init.trq_reg_max_map; 
  
mc.init.spd_eff_index = [-fliplr(mc.init.spd_eff_index(2:end)) 
mc.init.spd_eff_index]; 
mc.init.trq_eff_index = [-fliplr(mc.init.trq_eff_index(2:end)) 
mc.init.trq_eff_index]; 
mc.init.eff_trq_map = [flipud(fliplr(mc.init.eff_trq_map(2:end,2:end))) 
flipud(mc.init.eff_trq_map(2:end,:));fliplr(mc.init.eff_trq_map(:,2:end
)) mc.init.eff_trq_map]; 
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