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ABSTRACT

This dissertation contributes to our understanding of how plug-in hybrid electric vehicles

(PHEVs) and plug-in battery-only electric vehicles (EVs)—collectively termed plug-in elec-

tric vehicles (PEVs)—could be successfully integrated with the electric power system. The

research addresses issues at a diverse range of levels pertaining to light-duty vehicles, which

account for the majority of highway vehicle miles traveled, energy consumed by highway travel

modes, and carbon dioxide emissions from on-road sources. Specifically, the following topics

are investigated: (i) On-board power electronics topologies for bidirectional vehicle-to-grid and

grid-to-vehicle power transfer; (ii) The estimation of the electric energy and power consumption

by fleets of light-duty PEVs; (iii) An operating framework for the scheduling and dispatch of

electric power by PEV aggregators; (iv) The pricing of electricity by PHEV aggregators and

how it affects the decision-making process of a cost-conscious PHEV owner; (v) The impacts

on distribution systems from PEVs under aggregator control; (vi) The modeling of light-duty

PEVs for long-term energy and transportation planning at a national scale.



1

1. GENERAL INTRODUCTION

The electrification of transportation has become a cornerstone of our efforts to conserve

energy, protect the environment, and reduce our nation’s dependence on fossil fuels, which are

a geopolitically insecure and dwindling energy source. This dissertation studies light-duty plug-

in electric vehicles, because they represent a very significant and timely electric transportation

technology. Plug-in electric vehicles (PEVs)—either plug-in hybrid electric vehicles (PHEVs)

or pure electric vehicles—adopt similar drivetrains as hybrid electric vehicles (HEVs), but are

equipped with higher-capacity batteries, allowing electricity from the power system to displace

a significant portion of petroleum consumed in the transportation sector. Accelerating the

development of PEV technology is recognized as an essential part of the solution to the energy

and environmental problems around the world [1].

The contributions of this dissertation can be classified into three levels, namely:

1. the vehicle level, where a novel power electronics topology was proposed to enable the

bidirectional exchange of energy with the power system;

2. the power system level, where the focus is on load estimation from fleets of PEVs,

charging control algorithms, and potential impacts on the power system.

3. the national level, where appropriate PEV models are proposed for long-term energy

and transportation planning studies.

1.1 Dissertation Organization

The dissertation’s chapters correspond to journal and conference papers that I have au-

thored or co-authored.

In Chapter 2, a novel power electronics topology is proposed, which enables bidirectional
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power transfer between HEVs and the grid for a variety of drivetrain configurations. The

topology utilizes only the pre-existing vehicles’ internal power converters and electric machines,

which are normally used to provide traction, and thus eliminates the requirement for an addi-

tional (on-board or off-board) battery charger. The proposed method can help to reduce costs

and vehicle weight. In addition, with the capability for bidirectional power transfer, that is,

charging the battery from the grid or discharging the stored electrochemical energy to the grid,

these vehicles could be used to assist power system operation by providing ancillary services

(e.g., voltage and frequency regulation, capacity reserve, or peak load shaving), thus increasing

the security and reliability of the power system [2,3].

The emerging fleet of PEVs will introduce a considerable amount of additional load on the

power system, which needs to be forecast. To this end, Chapter 3 proposes methodologies

to estimate the electric energy and power consumption by light-duty PEVs. This study is

based on a probabilistic formulation, where various aspects have been taken into consideration.

For example, we are using a realistic light-duty vehicle travel pattern obtained from the Na-

tional Household Travel Survey (NHTS). In addition, PEV operation is reasonably modeled

considering all possible drivetrain configurations, such as series and parallel topologies. We

also consider whether a public charging infrastructure is available or not, which would allow

drivers to charge their vehicles away from home. Finally, different voltage and current levels

are considered for the charging circuits. Using the proposed method, the PEVs’ daily energy

and power consumption are estimated for two uncontrolled charging scenarios. The results of

this work indicate that under uncontrolled charging, a significant amount of charging will take

place during peak hours when the wholesale electricity is expensive, resulting in higher charging

cost. The coincidence between peaks of PEV and other load also requires additional capacity

in generation, transmission, and distribution in order to maintain the adequacy of the nation’s

power system.

PEVs constitute a type of “energy load” that is in fact more flexible than traditional load.

For example, the majority of PEV owners return home early in the evening, and may not have a

preference about when their vehicles are being charged as long as the batteries are fully charged

by the next morning. To utilize this flexibility, appropriate algorithms for charging control and
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management must be designed. This control will be performed by PEV aggregators, either

existing load serving entities with new financial contracts specific for PEV loads, or new for-

profit entities that will participate in the wholesale electricity market. Chapter 4 proposes an

operating framework and sets forth algorithms for the scheduling and dispatch of electric power

for PEV aggregators, whose main objective is the maximization of energy trading profits. The

aggregators are assumed to operate in the current wholesale electric energy market framework.

First, a minimum-cost load scheduling algorithm is designed, which determines the purchase of

energy in the day-ahead market based on the forecast electricity price and PEV power demands.

Second, a dynamic dispatch algorithm is developed, used for distributing the purchased energy

to PEVs on the operating day. The algorithms were developed by taking into account realistic

vehicle travel patterns from the NHTS database. Simulation results are used to evaluate the

proposed algorithms, and to demonstrate the potential impact of an aggregated PEV fleet on

the power system.

By participating in an aggregator-controlled off-peak charging program, a PHEV owner

relinquishes control of the battery’s state of charge, in exchange for a reduced electricity rate.

In this case, some charging that normally would have occurred during on-peak hours may not be

allowed by the aggregator, and so a fraction of the PHEVs’ daily miles traveled may shift from

the charge-depleting to the charge-sustaining mode. Hence, a greater portion of the tractive

energy would be derived from gasoline, increasing PHEV owners’ fuel expenses. In Chapter 5,

the decision-making process of a cost-conscious PHEV owner who is trying to minimize his/her

transportation energy costs is studied. The analysis leads to a set of outcomes determined by

the prices of electricity and gasoline, and yields certain interesting insights pertaining to the

pricing of electricity by PHEV aggregators.

On the bulk power transmission level, the PEV additional load is manageable, and may not

cause serious supply adequacy problems at least in the short term. However, the emerging fleet

of PEVs could overload local distribution systems, especially in feeders with high concentration

of PEVs. The problem might be more urgent for cities in coastal regions in the U.S., since

it is expected that PEVs will initially penetrate the market in these locations [4]. Chapter 6

proposes a method to evaluate potential impacts on distribution systems from light-duty PEVs.
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As an example, we study the potential impacts from PEVs under the control of aggregators

who maximize their energy trading-related profits using the method of Chapter 4.

Finally, the emerging PEV fleet will increase the interdependency between the electricity

and transportation sectors. Since electricity can be generated from various resources such

as hydro, wind, solar, nuclear, coal, and natural gas, PEV technology provides an opportu-

nity to diversify the primary energy sources for transportation, and reduce our dependence on

petroleum. New investments in the energy infrastructure will be required to satisfy the addi-

tional PEV energy demand. Emissions from vehicle tailpipes will be shifted to power plants (or

will disappear altogether if renewable energy sources are used), so the net emissions from the

integrated system will change. Therefore, PEV modeling is important for studying the design of

the national energy and transportation infrastructures. Realizing this need, Chapter 7 proposes

models for light-duty PEVs, appropriate for identifying the impacts of vehicle technologies on

the national energy and transportation infrastructures. The models are parameterized using

an array of publicly available data, and are implemented within an advanced national energy

and transportation planning tool called NETPLAN that has been recently developed at Iowa

State University.

Chapter 8 summarizes our research findings, and proposes areas for extending this work in

the future.
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2. BIDIRECTIONAL POWER TRANSFER BETWEEN HEVS AND

GRID WITHOUT EXTERNAL POWER CONVERTERS

A paper published in the Proceedings of the IEEE Energy 2030 Conference, Atlanta, GA,

Nov. 17–18, 2008.

Di Wu, Hao Chen, Trishna Das, and Dionysios C. Aliprantis

Abstract

This paper proposes methodologies to realize bidirectional power transfer between hybrid

electric vehicles (HEVs) and the power grid for the most common HEV configurations. Only

the internal power electronics and electric machines of the vehicle’s propulsion system are being

used, thus avoiding additional external power converters. Theoretical analysis and simulation

results verify the effectiveness of the proposed methodologies.

2.1 Introduction

With the growing emphasis on energy conservation and environmental protection, hybrid

electric vehicles (HEVs) are becoming increasingly popular because of their high fuel economy

and reduced emissions compared with conventional petroleum fueled vehicles [5–7]. From the

viewpoint of energy, HEVs can be considered as a special multi-energy reservoir. The electric

and chemical energy stored in the battery and fuel tank can be transformed to mechanical

energy for propulsion by the power electronics and drive system [8]. On the other hand, a

large fleet of HEVs represents an enormous distributed energy storage potential, which can be

exploited to support the power grid.
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Conventional HEV batteries are charged through the use of the on-board internal combus-

tion engine (ICE) and electric generator, or by the electric generator only during the “regen-

erative braking” process [9]. There is no provision to charge the batteries externally, let alone

discharging stored energy to the grid. With an additional bidirectional power transfer capabil-

ity, that is, charging the battery from the grid or discharging the stored electric/chemical energy

to the grid, plug-in HEVs become ideal candidates to assist power system operation providing,

for instance, voltage and frequency regulation, power quality improvement, peak load shaving

and grid ancillary services, thus increasing the security and reliability of the power system [2].

This capability is also referred to as grid-to-vehicle (G2V) and vehicle-to-grid (V2G) [3].

A method is introduced in [10] to utilize a series-parallel HEV (Toyota Prius) as an emer-

gency power source in the event of power outage for a local isolated load without additional

power electronics devices. This paper proposes methodologies to realize bidirectional power

transfer between HEVs and the grid for different types of HEVs by utilizing only the vehicles’

internal power converters and electric machines, which are normally used to provide traction.

In this study, the electric motor is assumed to be a permanent magnet synchronous machine

(PMSM), which is widely used in HEV applications [8, 11]. Matlab/Simulink is used for mod-

eling, simulation and analysis of the proposed strategies.

2.2 Bidirectional Power Transfer Strategy

Bidirectional power transfer implies that power can flow from the grid to the HEV and vice

versa. During G2V operation, the batteries are being charged. During V2G operation, it is

advantageous to enable the discharge of energy not only from the batteries but also from the

fuel tank. Since the capacity of battery is limited, the energy stored in the fuel tank can further

enhance HEVs’ V2G capability.

As is well known, the ICE efficiency is a function of torque and speed, and varies significantly

with operation point. It is beneficial to operate the ICE in the high-efficiency region to increase

fuel economy [6]. Thus, when discharging the energy stored in the fuel tank, the torque and

speed of the generator that is loading the ICE should be controllable. It should be noted

that when the engine is operated to provide power for V2G application, the vehicle could be
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located outdoors or indoors if sufficient ventilation for exhaust and cooling requirements is

provided [12].

2.3 Proposed Methodologies

Three common existing HEV configurations [6, 8] are shown in Figure 2.1. Note that the

series and series-parallel configurations make use of two electric machines, each with its own

converter. In the parallel configuration, there is only one motor and one inverter.

(a) Series HEVs (b) Parallel HEVs

(c) Series-Parallel HEVs

Figure 2.1 HEV Configurations.

2.3.1 Series and Series-Parallel HEVs

The proposed topology for series and series-parallel HEVs is shown in Figure 2.2, where the

c-phase is disconnected from the inverter and the grid is connected with the a-phase in series

after opening switches K1, K3 and closing switch K2–K′2 [12]. This constitutes a simple single-

phase H-bridge inverter [13]. When the battery is being charged/discharged from/to the grid,
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the generator and its corresponding rectifier/inverter are not in operation. When the energy

stored in the fuel tank is discharged (through the engine and the generator), the generator is

loading the ICE and controlled to operate ICE at a given torque and speed point (e.g., the one

that corresponds to maximum efficiency). Since the vehicle is stationary, no propulsion torque

is needed from the motor. Thus, the motor-side inverter is available and can be changed to an

H-bridge inverter.

Grid

out
i

'
a

b

c

a
DC

V C
1

K

3
K

2
K

'

2
K

n

Motor

batt
i

Figure 2.2 Topology for bidirectional power transfer in series and series-parallel HEVs.

Because the voltage of the power grid is essentially constant, the output current can be

controlled to achieve the desired active and reactive power. To this end, hysteresis modulation

can be used. It is interesting to note that the stator windings of the motor are employed

in Figure 2.2. With this configuration, no additional filter is required to filter out the high-

frequency harmonic components in the output current. In the ensuing analysis, the equivalent

inductance value for this configuration will be derived.

The stator voltage equation in the rotor reference frame is [14,15]

vrqd0s = (rs + Lqd0sp)i
r
qd0s + ωrλ

r
dqs , (2.1)

where

vrqd0s =
[
vrqs v

r
ds v

r
0s

]T
,

irqd0s =
[
irqs i

r
ds i

r
0s

]T
,
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λrdqs =
[
λrds −λrqs 0

]T
,

rs =


rs 0 0

0 rs 0

0 0 rs

 ,

Lqd0s =


Lq 0 0

0 Ld 0

0 0 Lls

 ,

rs is the stator’s resistance, Lls is the leakage inductance, Lq and Ld are the qd-axes self-

inductances, ωr is the speed of the rotor reference frame, and p denotes differentiation with

respect to time.

Since the motor will be locked, ωr is equal to zero. Therefore, the second term in (2.1)

is eliminated. Hence, the voltages and currents in abc variables can be obtained using the

reference frame transformation

vabcs = (Kr
s)
−1vrqd0s

= (Kr
s)
−1(rs + Lqd0sp)i

r
qd0s

= (Kr
s)
−1(rs + Lqd0sp)(K

r
s)iabcs

= (rs + Lsp)iabcs , (2.2)

where

vabcs = [vas vbs vcs]
T ,

iabcs = [ias ibs ics]
T ,

Ls = (Kr
s)
−1Lqd0sK

r
s ,

Kr
s =

2

3


cos θr cos(θr − 120◦) cos(θr + 120◦)

sin θr sin(θr − 120◦) sin(θr + 120◦)

1/2 1/2 1/2


is the abc-qd0 rotor reference frame transformation matrix, (Kr

s)
−1 is the inverse transformation

matrix, and θr is the angle between a-phase axis and rotor axis.

The abc-phase currents are

iabcs = [ias ibs ics]
T = [iout −iout 0]T . (2.3)
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Substituting iabcs in (2.2) by (2.3) yields

vas = [rs + (Ls(1, 1)− Ls(1, 2))p]iout

vbs = [−rs + (Ls(2, 1)− Ls(2, 2))p]iout . (2.4)

The machine’s inductance matrix is symmetric, so Ls(1, 2) = Ls(2, 1), and hence

vab = vas − vbs

={2rs + [Ls(1, 1) + Ls(2, 2)− 2Ls(1, 2)]p}iout

=(2rs + Leqp)iout , (2.5)

where

Leq = (Lq + Ld) + (Lq − Ld) cos(2θr + 60◦) . (2.6)

The torque of a PMSM can be expressed as [15]

Te =
3

2

P

2

[
(Lmd − Lmq)irdsirqs + LmdImi

r
qs

]
, (2.7)

where P denotes the number of poles, Lmq and Lmd are the qd-axes magnetizing inductances,

and Im represents the magnetizing current of the permanent magnets. The currents irqs and irds

in (2.7) can be calculated by

irqd0s = Kr
siabcs . (2.8)

Hence, (2.7) becomes after trigonometric manipulations

Te = −
√

3

2
P

[
(Lmd − Lmq)

2√
3

cos(θr − 60◦)iout + LmdIm

]
sin(θr − 60◦) iout . (2.9)

As the desired output current iout is normally a sinusoidal function of time with constant

frequency (e.g., 60 Hz), randomly choosing θr can cause a pulsating torque whose magnitude

may be comparable to the motor’s rated torque. This can be avoided by controlling θr equal

to 60◦ or 240◦ in the proposed topology. At this position, Leq = 2Ld, which is large enough to

filter the high-frequency harmonic components of the output current, thus avoid the need for

an additional filter. When K1 is closed and K2–K′2 is open, the rotor is controlled to rotate to

the desired position (60◦ or 240◦) and is then locked.
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It should be noted that at this position the permanent magnets are aligned with the arma-

ture field, and could be demagnetized if the output current amplitude exceeds a certain value.

This upper bound of the output current will depend on the permanent-magnet materials used.

2.3.2 Parallel HEVs

Charging/discharging the battery from/to the grid in parallel HEVs is similar to the series

and series-parallel HEVs. However, when discharging the stored energy in fuel tank, the traction

motor must be operated as a generator. The motor’s torque (which is loading the ICE) needs

to be controlled to operate the ICE at the desired (e.g., the most efficient) point. No additional

power electronics devices within the HEV exist to construct the H-bridge inverter. Therefore,

the method discussed in the previous section is not feasible in this case. A new topology to

realize bidirectional power transfer for parallel HEVs is shown in Figure 2.3. The midpoint of

the DC link (g) and the neutral point of the motor (n) are connected to the grid through a

filter that improves the quality of the output current. The main idea is to realize both torque

and output current control through the same converter by an appropriate control strategy.

Grid

asi

bs
i

cs
i

out
iLf

g n

Motor

DCV

C

1
K

2
K

C

Figure 2.3 Topology for bidirectional power transfer in parallel HEVs.

The output current is given by

iout = ias + ibs + ics , (2.10)
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and

iabcs = (Kr
s)
−1irqd0s . (2.11)

Based on (2.10) and (2.11), the output current is

iout = 3ir0s , (2.12)

which implies that the output current can be controlled via the 0-axis current. Typically, a

motor is only intended to provide a desired amount of torque. Since ir0s does not contribute

to electromagnetic torque, balanced three-phase currents are always used resulting in zero 0-

axis current. In the proposed topology, however, ir0s is simultaneously controlled to follow the

desired value that is dictated by the power output to the grid.

Torque control is realized by controlling the qd-axes currents. For a simplified controller,

it is not uncommon to set the d-axis current command to zero and vary the q-axis current

command linearly with the torque command. However, this setting is not optimal, and some-

times infeasible when discharging the energy stored in the fuel tank, as will be discussed later

in subsection 2.4.2.

The abc-phase currents can be calculated by (2.11), for example,

ias = irqs cos θr + irds sin θr + ir0s . (2.13)

In “steady state1,” and ignoring the harmonic terms, (2.13) becomes

ias = Irqs cos θr + Irds sin θr +
√

2I0s sin θ

= Irqs cos(ωrt+ θr0) + Irds sin(ωrt+ θr0) +
√

2Ir0s sin(ωt+ φ) , (2.14)

where Irqs, I
r
ds are the qd-axes currents (constants), Ir0s is the rms value of the 0-axis current,

θr0 is the rotor position at t = 0, ω is the radial frequency of the grid voltage and φ is the

output current phase angle.

In general, ωr can be different from ω. Therefore, assuming that the phase current limit

for the motor windings is Is (rms), the qd0-axes currents must satisfy

(Irqs)
2 + (Irds)

2

2
+ (Ir0s)

2 ≤ I2s . (2.15)

1“Steady state” implies the case wherein PI controller outputs have become constant and are equal on average
with the actual controlled quantities, e.g., currents and electromagnetic torque.
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The stator phase voltage can be derived in a similar fashion, for example,

vas = vrqs cos θr + vrds sin θr + vr0s . (2.16)

In the “steady state,” and ignoring the harmonic terms, (2.1) can be reduced to

V r
qs = rsI

r
qs + ωr(LdI

r
ds + LmdIm)

V r
ds = rsI

r
ds − ωrLqIrqs

vr0s = rsi
r
0s + Llspi

r
0s , (2.17)

where in the 0-axis voltage equation, lowercase variables are used to signify that these voltages

and currents are not constants (they have a frequency of 60 Hz). Hence, (2.16) becomes

vas =V r
qs cos θr + V r

ds sin θr + vr0s

=Vqs cos(ωrt+ θr0) + Vds sin(ωrt+ θr0) + vr0s . (2.18)

From Figure 2.3, taking g as the potential’s reference point, we obtain

vag = vas + vng

= vas + vgrid + vf , (2.19)

where vgrid is the grid voltage, and vf is the voltage across the inductive filter. Assuming that

the DC link voltage is VDC , the following inequality must hold for correct operation of the

inverter,

|vag(t)| ≤
VDC

2
. (2.20)

Replacing vas in (2.19) by (2.18) and ignoring the resistive voltage drops and v0s (which is

relatively small) yields the following sufficient condition for (2.20):

(LqI
r
qs)

2 + (LdI
r
ds + LmdIm)2 ≤

(
VDC
2 − |vgrid + vf |

ωr

)2

. (2.21)

The motor’s power is equal to Te · ωrm, where ωrm is the mechanical rotor speed (ωrm =

2ωr/P ). Thus, power can be increased by either Te or ωr under the condition that (2.15) and

(2.21) are satisfied. In order to maximize the efficiency of the power conversion, the maximum-

torque-per-stator-ampere (MTPA) control strategy is used herein [16, 17]. For a given torque
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and output current command, the qd-axes current commands are determined by (2.7), while

the 0-axis current is determined by (2.12). The abc current commands are computed by (2.11).

Hysteresis modulation is used to control the abc-phase currents.

2.4 Simulation Results

Simulation results of bidirectional power transfer application for series, parallel and series-

parallel HEVs were obtained using Matlab/Simulink. The parameters of the PMSM in this

study are given in Table 2.1. The DC link voltage is assumed to be 400 V and the stator

current limit is assumed to be 40 A. Considering a typical US household electrical installation,

the power transfer limit is assumed to be 1.65 kW (110 V/15 A).

Table 2.1 Electrical parameters of a 20kVA PMSM

param. value param. value

rs 0.0437 Ω Lls 0.8865 mH

Lmq 6.95 mH Lmd 3.25 mH

P 8 Im 100 A

2.4.1 Series and Series-Parallel HEVs

In the topology for series and series-parallel HEVs, the output current and its command

(15 A rms in this study) are shown separately in Figure 2.4 and together in detail in Figure 2.5.

Clearly, iout closely followed the command i∗out. Arbitrary active and reactive power output

can be achieved by adjusting the 0-axis current command’s magnitude and phase with respect

to grid voltage.

The electromagnetic torque of the motor under 15 A output current for various rotor angles

is shown in Figure 2.6. Randomly choosing θr may result in large torque pulsations; e.g.,

θr = 0◦, which results in a pulsating torque with a magnitude of 100 N·m. To avoid this, one

can choose θr = 60◦ or θr = 240◦ as discussed in subsection 2.3.1. Equation (2.9) predicts the

existence of three components (namely, dc, 60 Hz, and 120 Hz) in the pulsating torque, whereas
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it seems that only the 60 Hz component is created. In this specific case, this is due to the fact

that (Lmd − Lmq)iout � LmdIm.
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Figure 2.4 Output current for series and series-parallel HEVs.
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Figure 2.5 Output current in detail for series and series-parallel HEVs.
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Figure 2.7 Battery charging current for series and series-parallel HEVs.
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An example of the battery’s charging current in G2V operation is shown in Figure 2.7,

where it is assumed that the battery’s internal resistance is 2 Ω and the dc-link capacitance is

2096 and 4192 µF. As can be seen, the ripple of the charging current waveform is reduced with

more capacitance.

2.4.2 Parallel HEVs

In the topology for parallel HEVs, the output current waveform is similar to the previous

case and is not repeated. The stator currents of the motor are shown in Figure 2.8. These

currents have two components—the qd-axes currents for torque control and the 0-axis current.

The frequencies and magnitudes of these two components can be different. The frequency of

the qd-axes currents is determined by the rotor speed and the frequency of the 0-axis current is

the grid frequency. In this study, these two components are (33 Hz, 34.4 A) and (60 Hz, 5 A),

respectively.
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Figure 2.8 Stator phase currents for parallel HEVs.

Herein, the MTPA control strategy is used to obtain the qd-axes current commands. The
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following example is a case where the MTPA control outperforms the control where torque is

generated from the q-axis current only (i.e., irds = 0). When the motor is commanded to gen-

erate 1.65 kW at ωr = 2π(33) rad/s, Te = 31.8 N·m, keeping irds = 0, the voltage limit (2.21)

is violated2, resulting in output current distortion, as shown in Figure 2.9. The motor’s elec-

tromagnetic torque is also distorted, compared with the torque under MTPA control strategy

in Figure 2.10.
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Figure 2.9 Distortion of output current due to voltage limit violation when torque is generated

by q-axis current component only (irds = 0) for parallel HEVs.

The maximum theoretical power that the motor can provide and the corresponding torque

as a function of ωr are shown in Figure 2.11. This result was obtained by using (2.21). As can

be seen, under the MTPA control strategy the motor can be operated within a much wider

range. It is interesting to note that the motor can generate up to 3.5 kW, which could be used

to provide 1.65 kW to grid and simultaneously charge the battery.

2Under this case, the DC link voltage at least needs to be 478 V to satisfy the voltage limit. VDC is only
400 V in this example.
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2.5 Conclusion

With a suitable control strategy, bidirectional power transfer for HEVs can be achieved by

utilizing the vehicle’s drivetrain, without additional external hardware (other than an inductive

choke, if required). Theoretical analysis and simulation results demonstrate the feasibility of

the proposed strategies for series, parallel and series-parallel HEVs.
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3. ELECTRIC ENERGY AND POWER CONSUMPTION BY

LIGHT-DUTY PLUG-IN ELECTRIC VEHICLES

A paper published in the IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 738–746,

May 2011.

Di Wu, Dionysios C. Aliprantis, and Konstantina Gkritza

Abstract

This paper proposes methodologies to estimate the electric energy and power consumption

by light-duty plug-in electric vehicles (PEVs). Using the travel patterns of light-duty vehicles

in the U.S. obtained from the 2009 National Household Travel Survey, the PEVs’ energy and

power consumption are estimated for two uncontrolled charging scenarios.

Index Terms

Land vehicles, load forecasting, probability, road vehicle electric propulsion, stochastic ap-

proximation.

Nomenclature

a all-electric range

cfr fraction of daily vehicle miles traveled (VMT) in all-electric mode

d charge-depleting range

E(x) expected value of random variable (RV) x

fx probability density function of RV x
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Fx cumulative distribution function of RV x

he portion of htr from the electrical traction subsystem

htr tractive energy per mile at the wheels

m daily VMT

ma daily VMT in all-electric mode

mcd daily VMT in charge-depleting mode

MN (t) sample mean of power consumption at time t over a sample size N

Wn daily energy consumption of a fleet of n PEVs

x random variable

x(t) stochastic process

x̂ estimate of a random variable’s expected value

Yn(t) power consumption at time t of a fleet of n PEVs

δ(x) Dirac delta function

ε daily electric energy consumption of a PEV

η wall-to-wheels efficiency

ξ fraction of tractive energy derived from electricity

σ(x) standard deviation of RV x

3.1 Introduction

Plug-in electric vehicles (PEVs) have been identified as a vital technology to reduce carbon

emissions and dependence on petroleum [1]. An expectation has been set for one million

PEVs on U.S. roads alone by 2015. PEVs—either plug-in hybrid electric vehicles (PHEVs) or

pure electric vehicles (EVs)—adopt similar drivetrain configurations as hybrid electric vehicles

(HEVs) [18], but are characterized by larger battery capacity and the capability of being

recharged from the electric grid. Therefore, a portion of the energy obtained from gasoline can

be replaced by electricity from the power system.

The emerging fleet of PEVs will introduce a considerable amount of additional load on the

power system. Several studies have been devoted to this topic during the last few years, at

both national and regional scales [19–26]. In most of these, all PEVs in a fleet are assigned
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the same all-electric range (AER)1 and the corresponding amount of usable energy in their

batteries. The daily electric energy consumption is then estimated assuming that the charging

frequency is once per day. Power consumption is typically estimated based on the results of

the energy calculations.

Previous work has adopted assumptions that lead to inaccurate results. First, some PEVs

will be incapable of being always driven in all-electric mode, but rather they will be operated in

blended mode, requiring occasional support from their internal combustion engine [28]. Second,

the electric energy consumption is often estimated without considering vehicle travel patterns.

For example, in [21–23] and [26], all vehicles leave home with fully charged batteries and return

home with the entire usable energy exhausted. However, some PEVs may not travel at all on a

day, or will travel less than their electric range, thus consuming only a fraction of their battery

energy. Therefore, this leads to an overestimation of electric energy consumption. Third, when

estimating power consumption, some studies use models that represent situations unlikely to

occur. In [19], off-peak electricity is consumed by the entire PEV fleet, whereas in reality some

vehicles may be traveling, and some will be unable to receive any more energy from the grid

because their batteries will be fully charged. In [22], all PEVs begin charging simultaneously

at 5 p.m. or 10 p.m. In the uncontrolled charging scenarios of [23], all PEVs leave home evenly

between 8 a.m. and 9 a.m., and return home between 6 p.m. and 9 p.m. Obviously, these

simplifying assumptions do not account for real-world travel patterns, so the validity of the

results obtained is questionable.

Herein, a more accurate methodology to estimate the electric energy and power consump-

tion of light-duty PEVs is set forth. The analysis is based on the actual U.S. travel patterns,

as captured by the 2009 National Household Travel Survey (NHTS). The formulation is prob-

abilistic and makes use of the NHTS statistical data to represent the travel patterns of the

U.S. light-duty vehicle (LDV) fleet.2 LDV travel accounts for 92% of the highway vehicle miles

traveled (VMT) [30], 76% of the energy consumed by highway travel modes [31], and 74% of

1AER is defined as the distance from the beginning of a driving cycle with initially fully charged battery to
the exact point at which the internal combustion engine turns on [27].

2The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles
(SUVs) and trucks with gross vehicle weight less than 8,500 pounds [29].
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the carbon dioxide emissions from on-road sources [32].

The remainder of this paper is structured as follows: Section 3.2 discusses travel patterns

and the NHTS database. Section 3.3 describes the basics of PEV operation. In Section 3.4, an

analytical methodology to estimate PEV electric energy consumption is presented. Section 3.5

illustrates a simulation-based methodology for calculating PEV power and energy consumption.

In Section 3.6, some concluding remarks are offered.

3.2 Travel Patterns

A fundamental underlying assumption of this analysis is that the driving behavior of PEV

owners will be similar to the behavior of drivers of conventional nonelectric vehicles. In other

words, it is assumed that PEVs will not affect daily travel patterns and lifestyles in any signif-

icant fashion: people will have the same travel demands as before, and will use their vehicles

(either PEVs or not) to run the same everyday errands. It could be argued that this assumption

is not entirely correct, because PEV owners may drive differently than the average driver. This

change could be attributed to either a PEV (being a different type of vehicle) impacting the

travel patterns, or to specific attributes of PEV owners, such as increased environmental aware-

ness or income level [33]. At least initially, when PEVs enter the market, this argument could

be valid. However, as the penetration of PEVs increases, then the PEV driver will “converge”

to the average driver.

The 2009 NHTS collects information on the travel behavior of a national representative

sample of U.S. households, such as mode of transportation, trip origin and purpose, and trip

distance. The database files can be found online at [34]. For this analysis, information con-

tained in the “travel day trip” database file (DAYPUBLL) and the “vehicle” database file

(VEHPUBLL) is needed. The survey consists of 150,147 households and 294,408 LDVs. Ta-

ble 3.1 shows the distribution of the LDV fleet by vehicle class, in urban or rural areas in the

U.S.

It was observed that vehicle travel patterns vary by household area (urban or rural) and day

of the week (weekday or weekend). Therefore, the vehicle travel pattern is examined separately

for the following four cases: (i) trip in an urban area on a weekday (‘urban weekday’), (ii) trip
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Table 3.1 Distribution of LDV Fleet by Vehicle Class and Area Type

Car Van SUV Pickup truck

Urban 56.9% 9.2% 19.6% 14.3%

Rural 42.9% 8.0% 19.1% 30.0%

All 53.0% 8.9% 19.4% 18.7%

in an urban area during the weekend (‘urban weekend’), (iii) trip in a rural area on a weekday

(‘rural weekday’), and (iv) trip in a rural area during the weekend (‘rural weekend’). These

four area/day cases are represented by 141,011; 56,677; 68,979; and 27,741 LDVs, respectively.

Because the NHTS data set contains trips spread throughout a year, and because herein these

trips are not further distinguished with respect to the date they occurred on, the results ob-

tained should be interpreted as statistics of energy and power consumption for an arbitrary

urban/rural weekday/weekend of the year.

It should be noted that not all LDVs travel on a given day. The probability that a random

LDV (in an urban or a rural area) travels (on a random weekday or weekend) can be estimated

by using the information included in the DAYPUBLL and VEHPUBLL files. The derived

vehicle travel probabilities are in the range 45–65%. Previous reports have not taken this

fact explicitly into account, and have assumed that all PEVs travel every day, resulting in an

overestimation of the energy and power consumption [20].

The parking start/end times and location (e.g., home, work, shopping mall, etc.) for every

vehicle throughout the day can be extracted from the vehicle database. This kind of information

is required for the determination of the charging profile. The probability of a vehicle to be

parked anywhere (including at home) or be parked at home is shown in Figure 3.1. These plots

provide valuable insights to comprehend the outcome of the power consumption estimation,

which will be carried out in Section 3.5.

3.3 Basics of PEV Operation

There is still uncertainty regarding the size and configuration of future PEVs. The market

will contain an array of models with different drivetrain topologies and electric ranges. Some
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Figure 3.1 Probability of a random LDV to be parked. [Top: parked anywhere (including at

home). Bottom: parked at home.]

PEVs may be pure EVs, without an internal combustion engine. Others may be designed

to operate initially in EV mode, and then switch to a charge-sustaining mode (e.g., series

PHEVs). However, a clearly defined switch from one mode of operation to the other is not

the only possible operation strategy. PEVs can be also operated in blended mode, where the

internal combustion engine occasionally assists the electric motor in supplying the tractive

energy (e.g., a parallel PHEV with a relatively weak electric traction motor).

Therefore, the operation of PEVs can be classified into the charge-depleting (CD) mode

and the charge-sustaining (CS) mode [27]. In CD mode, the vehicle is gradually depleting the

energy stored in the batteries, with either a fraction of or the entire tractive energy coming

from the battery pack. The total distance that a PEV can travel in CD mode with its batteries

initially fully charged is defined as its “charge-depleting range” (CDR). After all the usable

battery energy is exhausted, the operation of the PEV enters CS mode, where it is operated

similarly to a conventional HEV, with all tractive energy derived from the fuel. Several of the

previous studies treat CD operation the same as all-electric (i.e., EV) operation. In those, the
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designation “PHEV-x” simply represents a PHEV that, starting with a fully charged battery,

can travel x miles in EV mode without consuming any fuel in the tank. In order to encompass

all possible operating strategies, this analysis is performed based on the more comprehensive

concepts of CD operation and CDR.

To represent the uncertainty regarding future PEVs, a probabilistic formulation is provided,

with all parameters expressed as random variables (RVs). Herein, RVs are denoted by boldface

symbols; for instance, the daily VMT (m) or the tractive energy per mile at the wheels (htr)

of a random PEV.

The tractive energy per mile that is provided by the battery in CD mode (he) is a fraction

(ξ) of the total tractive energy per mile (htr) required to overcome aerodynamic drag, rolling

resistance, and vehicle inertia [25, 27]: he = ξhtr. The tractive energy depends on several

parameters, such as vehicle weight, aerodynamic drag coefficient, personal driving habits, geo-

graphic location, driving cycle, weather conditions, road conditions, and others. In this study,

htr is assumed to have a normal distribution with mean value determined by the vehicle class—

0.21 kWh/mile for cars, 0.33 kWh/mile for vans, 0.37 kWh/mile for SUVs, and 0.40 kWh/mile

for pickup trucks3—and standard deviation equal to 10% of the mean.

In order to capture the entire spectrum of possible PEV operation—from “light” parallel

to pure EV, it is assumed that ξ is an RV with the following PDF:

fξ(x) =


1 for 0.2 ≤ x < 1 ,

0.2δ(x− 1) for x = 1 .

(3.1)

In other words, it is assumed that 20% of PEVs will be operated as pure EVs in CD mode.

Furthermore, it is assumed that ξ is independent of htr, leading to

E(he) = E(ξ)E(htr) . (3.2)

This is a safe assumption to make as long as future PEV drivetrain topologies will be inde-

pendent of vehicle class. However, if, for instance, smaller vehicles will tend to be correlated

with higher ξ, while larger vehicles with smaller ξ, this assumption will have to be revisited.

Nevertheless, the above assumptions are warranted by lack of better information presently.

3These numerical values were derived using information found in [25,35,36].
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3.4 Electric Energy Consumption

This section presents an analytical methodology to estimate the energy consumption of

PEVs, under the assumption that charging occurs once per day (after all trips are completed).

A methodology to estimate the energy when multiple daily charges in-between trips are possible

is presented in Section 3.5.

For a random PEV in an urban (or rural) area, on a random weekday (or weekend), the

daily electric energy consumption (ε) depends on the product of two RVs, namely he and mcd

(daily VMT in CD mode):

ε =
1

η
hemcd , (3.3)

where η = 67.2% accounts for the overall wall-to-wheels efficiency, and is assumed to be

constant.4 The VMT in CD mode depend on both the travel patterns and the CDR. When

assuming that the charging frequency is once per day and that the PEV starts with a fully

charged battery, mcd can be expressed as a function of VMT (m) and CDR (d):

mcd =


m for m ≤ d ,

d for m > d .

(3.4)

If he is assumed to be independent of m and d, then he is independent of mcd. Again, this

simplifying assumption—namely, that drivetrain topology, vehicle class, VMT, and CDR are

all mutually independent—is required to proceed with the analysis due to insufficient data (but

it is recognized that it might not portray reality accurately). Under these assumptions, the

expected value of ε is

E(ε) =
1

η
E(he)E(mcd) . (3.5)

4It is assumed that the efficiencies of charger, battery (roundtrip), on-board power electronics, traction motor,
and mechanical transmission plus accessory loads (e.g., air-conditioning, on-board electronics) are: 95% [25],
92% [37], 95% [25, 38], 92% [38], and 88% [39], respectively; this results in an overall efficiency from the wall
outlet to the wheels of 67.2%. In particular, the selected value for efficiency of mechanical transmission and
accessory loads (88%) represents the overall efficiency of a fleet of PEVs that consists of: hybrid electric vehicles
with gearbox and mechanical driveline, and pure EVs or series PEVs that drive the wheels and power the
accessory loads directly.
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3.4.1 Previous work

In previous studies, it is often assumed that PEVs are operated as pure EVs within their

CD range (ξ = 1). As a result, the CDR (d) obtains the meaning of an AER (a), and he

becomes synonymous to htr. In this case, (3.5) becomes

E(ε) =
1

η
E(htr)E(ma) , (3.6)

where ma is the daily VMT in all-electric mode, as expressed in (3.4) with d replaced by a.

In [21–23] and [26], it is assumed further that ma = a. In other words, it is assumed that all

PEVs are operated as pure EVs until they completely deplete their batteries by being driven

at least as far as their all-electric range on a daily basis. Hence, (3.6) becomes

E(ε) =
1

η
E(htr) a . (3.7)

This estimation is simple and facilitates calculations, but it is inaccurate because the effect

of travel patterns on the energy consumption is ignored. The estimated energy consumption

becomes equal to the entire usable energy, irrespective of how a PEV travels.

In fact, the expected value of daily VMT powered from electricity is only a fraction of

the expected daily VMT. In order to include effects of travel patterns on the electric energy

consumption, [35] defined a ‘battery usage factor’ as a function of AER based on the 1995

Nationwide Personal Travel Survey data.5 This can be expressed as

cfr(a) =
E(ma)

E(m)
=

∫ a
0 xfm(x) dx+ a

∫∞
a fm(x) dx∫∞

0 xfm(x) dx
. (3.8)

Replacing E(ma) by cfr(a)E(m) in (3.6) yields

E(ε) =
1

η
E(htr) cfr(a)E(m) . (3.9)

Such an estimation was performed in [19,20].

Although (3.9) is more accurate than (3.6) and (3.7), blended mode operation (ξ < 1) is

still not considered. Moreover, rather than being assigned a unique value a, the CDR (instead

of the AER) should be represented by a random variable. In order to take these facts into

account, an improved estimation method is proposed in the next subsection.

5In [40], a ‘utility factor’ is similarly defined, except that the concept of CDR is used rather than AER. This
factor represents the fraction of daily VMT in CD mode.
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3.4.2 Proposed method

Substituting (3.2) into (3.5) yields the more general formula:

E(ε) =
1

η
E(ξ)E(htr)E(mcd) . (3.10)

One can proceed with calculations of the three expected values in the right-hand side of (3.10)

as follows:

1. The first term, E(ξ), is the mean value of the distribution of the PEV drivetrain electrifi-

cation parameter (see Section 3.3), which is equal to 0.68 for the proposed PDF (3.1).

2. The second term is E(htr) =
∑4

k=1 rkE(htr,k), where rk are the ratios of different vehicle

classes (Table 3.1), and E(htr,k) are given in Section 3.3. The results are provided in

Table 3.2.

3. The calculation of the third term, E(mcd), requires knowledge of the PDF of mcd (fmcd
).

Given that m and d are assumed independent, the corresponding CDF can be expressed in

terms of probabilities as

Fmcd
(x) = P [mcd ≤ x]

= P [d ≤ x] + P [m ≤ x,d > x]

= P [d ≤ x] + (P [m ≤ x]− P [m ≤ x,d ≤ x]) . (3.11)

Differentiating (3.11) yields, after manipulations,

fmcd
(x) = fm(x)

∫ ∞
x
fd(v) dv + fd(x)

∫ ∞
x
fm(u) du . (3.12)

The above equation highlights the interplay between travel patterns and technological ad-

vances when determining E(mcd). The PDF fm can be readily extracted from the 2009

NHTS data. For fd, two distinct cases are considered, namely two log-normal distributed

RVs, fd,1 and fd,2, with (E(d), σ(d)) equal to (40, 10) and (70, 20), respectively.6 These

two hypothetical cases are devised to highlight the effect on energy consumption of possible

future technological improvements (which could enable longer CDRs).

6The log-normal PDF has the convenient property of (0,+∞) support. The parameters (40,10) and (70,20)
represent the expected value and standard deviation of the lognormal distribution (i.e., they do not represent
the parameters of the RV’s natural logarithm).
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The electric energy consumption estimation results are provided in Table 3.2. The following

observations confirm a priori expectations: (i) vehicles in rural areas consume more energy than

vehicles in urban areas; (ii) during the weekends, the energy consumption is smaller.

Table 3.2 Daily Energy Consumption Estimation Results (per PEV)

E(htr) E(mcd) miles E(ε) kWh σ(ε) kWh

kWh/mile fd,1 fd,2 fd,1 fd,2 fd,1 fd,2

Urban weekday 0.28 14.70 17.89 4.16 5.06 5.36 7.31

Urban weekend 0.28 11.41 14.10 3.23 3.99 4.98 6.92

Rural weekday 0.31 15.70 20.24 4.88 6.29 6.43 9.10

Rural weekend 0.31 11.92 15.29 3.70 4.75 5.87 8.28

The formulation using RVs also allows calculation of the standard deviation of the daily

energy consumption. This is found by

σ(ε) =
√
E(ε2)− E2(ε)

=
√
E(ξ2)E(h2

tr)E(m2
cd)/η2 − E2(ε) , (3.13)

where RV independence has been assumed. Moreover, E(ξ2) =
∫ 1
0 x

2fξ(x) dx, E(m2
cd) =∫∞

0 x2fmcd
(x) dx, and E(h2

tr) =
∑4

k=1 rkE(h2
tr,k) =

∑4
k=1 rk[E

2(htr,k) + σ2(htr,k)]. These cal-

culations are straightforward to perform once the PDFs have been defined.

The results are provided in Table 3.2. The standard deviations are large compared to the

expected values. Hence, the daily electric energy consumption of an individual PEV cannot

be precisely predicted. However, the results can be utilized to estimate the overall energy

consumption of a PEV fleet. Assuming there are n PEVs, the total daily energy consumption,

Wn =
∑n

i=1 εi, is also a random variable. If the εi’s are assumed independent, then the co-

variance of any two εi and εj is zero.7 Hence, for identically independently distributed εi’s,

E(Wn) = nE(ε), σ(Wn) =
√
nσ(ε), and the coefficient of variation σ(Wn)/E(Wn) is propor-

tional to 1/
√
n. For a fleet size of one million “urban-weekday” PEVs with E(d) = 40 miles,

the energy consumption has E(Wn) = 4,160 MWh and σ(Wn) = 5.36 MWh. In addition,

7In reality, the covariance will not be zero because of external factors, such as the weather or gasoline prices,
which can affect travel demand. However, this is not taken into account in this study.
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according to the central limit theorem, Wn will have an approximately normal distribution

with the above parameters. Note that the estimated electric energy consumption is at the

outlet, excluding transmission and distribution losses.

3.4.3 Sensitivity analysis

Equation (3.10) can be used to gauge the estimation error due to uncertainty in knowing the

true values of the parameters’ expected values; namely, the drivetrain electrification coefficient,

the tractive energy, and—indirectly via the VMT in CD mode—the charge-depleting range.

As a matter of fact, any RV distribution that can be devised about PEVs at this point in time

represents only a “best guess.” (Similarly, the assumed value of η might be incorrect.) Hence,

the true mean values can be related to their estimates as E(x) = x̂ + ∆x. (Also, formally,

η = η̂+ ∆η.) Using a Taylor series expansion of (3.10), the following first-order approximation

of the relationship between relative estimation errors can be obtained:

∆ε

ε̂
≈ ∆ξ

ξ̂
+

∆htr

ĥtr
+

∆mcd

m̂cd
− ∆η

η̂
, (3.14)

where ε̂ = ξ̂ĥtrm̂cd/η̂.

Also, instead of considering only two distinct cases for fd, namely, fd,1 and fd,2, it is

possible to compute the variation of E(mcd) as a function of E(d) and σ(d). This is depicted in

Figure 3.2. It can be observed that the miles driven in CD mode (hence, the absorbed electrical

energy) will generally increase with E(d), whereas σ(d) has a secondary effect on the result.8

It is also interesting to note that the energy consumption will increase only incrementally after

approximately E(d) = 80 miles. Increasing the CDR even further might be beneficial to the

marketability of PEVs, but it will not provide significant benefits to the average driver [41].

The intersection of this surface with the σ(d) = 0 plane is identical to cfr(d)E(m) (using (3.8)

with d = a). This plot reveals that the estimation of the miles driven in CD mode using

the unique value d = E(d) (rather than modeling the CDR as a distributed RV) does indeed

introduce some error; it leads to an overestimation by 5–15%.

8In fact, it can be shown that the gradient vector of this function always points towards increasing E(d) and
decreasing σ(d).
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Finally, one might question the choice of the log-normal distribution for fd, lacking a clear

physical justification. However, it has been found that other probabilistic models, such as the

gamma, the Weibull, and even the uniform distribution, provide remarkably similar results to

the ones shown in Table 3.2 and Figure 3.2.
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Figure 3.2 E(mcd) vs. E(d) and σ(d) for an urban weekday. [Note: The two ‘×’ symbols

correspond to fd,1 and fd,2.]

3.5 Electric Power Consumption

3.5.1 Previous work

The estimation of electric power consumption by PEVs is more complicated than computing

the total energy consumption, because of the inherent difficulty in predicting when a PEV

will be plugged in, and the duration of its connection to the grid. Previous studies have thus

estimated power consumption based on estimates of electric energy consumption, obtained first

using either (3.6) or (3.9), by simply assuming a constant power draw during a predefined time

period [22,23]. To account for all PEVs on the road, the total power is increased proportionally.

Alternative charging scenarios that include some sort of time-of-day dependence have been

devised, such as uncontrolled charging, delayed charging, and off-peak charging [19, 22, 23].
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These can be further classified in accordance with the location of charging into: charging only

at home, delayed charging only at home, charging only at home and work, charging at any

place, etc. In previous work, these scenarios have been analyzed using similar simplifications.

Clearly, this type of methodology leads to unrealistic results. First, it is unreasonable to

expect that all PEVs begin charging simultaneously. Some may be parked with their batteries

fully charged already, and some may be traveling. Second, charging may occur in-between

trips, that is, the charging frequency does not need to be limited to once per day. In general,

this method overestimates the peak value of power consumption [22,23].

3.5.2 Proposed methodology

For an estimation of power consumption, the travel patterns should be taken into account.

The proposed methodology consists of simulating daily trips using the 2009 NHTS data. The

following two scenarios are simulated:

(A) uncontrolled charging any time the vehicle is parked at home, and

(B) uncontrolled “opportunistic” charging at any location (home, shopping mall, work, etc.).

These scenarios might not be completely representative of the actual behavior of PEV drivers;

for instance, it might be unrealistic to expect that drivers would decide to charge their car every

single time they return home. Nevertheless, they represent two possible futures characterized

by extreme cases of public charging infrastructure investment (from minimum to maximum).

In particular, scenario (B) provides an upper bound for PEV energy consumption. Other

scenarios, such as controlled charging (where time of charging is influenced by an electricity

price or other signal) or exchanging batteries at battery stations, are not considered; these can

be addressed in future work.

The charging circuit significantly affects the power consumption curve. Two ac charging

levels have been recently standardized, with a third dc level currently under development [42].

For a normal household circuit breaker and wiring installation, typical options for charging

circuits [35] are shown in Table 3.3, where ‘charger size’ denotes the nominal power consumption

at the wall outlet. It is assumed that a PEV is always charged with a constant power draw—

equal to the charger size. Even though this does not correspond to an actual battery charging
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profile [43], it has been found that this simplification does not affect the results significantly.

The results provided herein will account for the cases where (i) all PEVs utilize a single charger

type, and (ii) PEVs are randomly assigned a home charger type based on an (arbitrarily) pre-

determined ratio, also shown in Table 3.3. For scenario (B), it is assumed that the public

charging infrastructure involves only 6-kW chargers (i.e., the most expensive option).

Table 3.3 Charging Circuits

Charging circuit Charger size (kW) Ratio

120 V, 15 A (Level 1) 1.4 1/3

120 V, 20 A (Level 1) 2 1/3

240 V, 30 A (Level 2) 6 1/3

The proposed methodology proceeds as follows. For each of the four area/day cases con-

sidered, a random vehicle (along with its travel pattern) is selected from the corresponding

set of vehicles in the NHTS. These sets contain all vehicles, even those that do not travel on

a given day. The selected vehicle is probabilistically assigned a tractive energy based on its

type as per Section 3.3. Thus the interdependency between vehicle type and its travel pattern

is now captured. (These two RVs were assumed independent in the analysis of Section 3.4.)

In addition, the vehicle is virtually converted into a PEV by being assigned values of ξ and d

based on the distributions given in previous sections. Then its power consumption throughout

the day is observed using a computer simulation. To initialize the simulations, it is assumed

that all vehicles start their first trip of the day with fully charged batteries, where ‘first trip’

is defined as the first trip that takes place after 4 am. Each simulation starts at the instant

where the vehicle first departs, and ends after 24 hours, even if its battery is not fully charged

at this point in time. In essence, this method generates instances of the stochastic process x(t)

that describes the daily power consumption of a random PEV.

For a fleet of n PEVs charging independently of each other, the overall power consumption

is Yn(t) =
∑n

i=1 xi(t), with E(Yn(t)) = nE(x(t))9 and σ(Yn(t)) =
√
nσ(x(t)). The coefficient

of variation σ(Yn(t))/E(Yn(t)) is equal to σ(x(t))/
√
nE(x(t)). For large n, the central limit

9The reader is cautioned that this notation does not imply an averaging process over time, but rather an
averaging of all possible outcomes of an experiment conducted at a specific point in time.
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theorem suggests that the distribution of Yn(t) will be approximately Gaussian.

According to the law of large numbers, the expected power draw per PEV, E(x(t)) can be

approximated by finding the sample mean of the power consumed by a large number N of PEVs,

MN (x(t)) = 1
N

∑N
i=1 xi(t). This is essentially the procedure followed herein. It is illustrated

using a hypothetical vehicle with parameters ξ = 0.8, htr = 0.25 kWh/mile, and d = 40 miles.

The usable energy initially contained in the fully charged battery is E0 = (0.8)(0.25)(40)/η1 =

8/η1 kWh, where η1 is the battery-to-wheels efficiency. At t0 = 09:57, the vehicle departs from

home with E0 stored in the battery. After traveling a total of m1 = 24.7 miles, the vehicle

returns home at t1 = 11:49, and begins charging at once. The usable energy that remains in

the battery at t1 can be calculated by

E1 =


E0 − (ξ htrm1)/η1 for E0 − (ξ htrm1)/η1 > 0 ,

0 for E0 − (ξ htrm1)/η1 ≤ 0 .

(3.15)

In this case, E1 = 3.06/η1 kWh, and an amount of energy (E0 − E1)/η2 = ξ htrm1/η =

7.35 kWh is required from the outlet to fully recharge the battery, where η2 is the wall-to-

battery efficiency. If a 2-kW charger is used, a complete recharge takes 3 hours and 40 minutes,

so it concludes at t2 = 15:29. Of course, the simulations permit vehicles to begin their next trip

before their batteries become fully charged. These subsequent trips (if any) are simulated in

the same manner. By repeating a simulation for every PEV included in the survey, the sample

mean MN (x(t)) ≈ E(x(t)) is found.

Furthermore, the simulations can be used to find σ(x(t)), and thus to calculate a confi-

dence interval for the power consumption estimation. For the simple case where all PEVs

have a single charger type, rated at c kW, a random PEV’s charging at time t is a Bernoulli

trial: x(t) ∈ {0, c}. So, if p(t) is the probability of it being charged, E(x(t)) = cp(t), and

σ2(x(t)) = c2p(t)(1− p(t)). If there exists a mix of K distinct charger ratings ck, with

k = 1, . . . ,K, and if pk(t) is the probability of a random PEV being charged at a rate ck,

then E(x(t)) =
∑K

k=1 ckpk(t) and σ2(x(t)) =
∑K

k=1 c
2
kpk(t)− (

∑K
k=1 ckpk(t))

2. The probability

pk(t) that appears in the above expressions can be obtained from the simulations.
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It should be noted that the distribution of vehicles by class in the survey is slightly different

from the actual nationwide distribution. Therefore, to improve the accuracy of the estimate,

the power consumption is adjusted by appropriate weight factors (included in the NHTS),

which are calculated for each of the four cases considered.

Simulation results for the two scenarios are shown in Figure 3.3. These curves depict the

expected daily power consumption per PEV on U.S. roads, measured at the “outlet.” (The

curves account for all registered household light-duty PEVs, even those that are not driven on

a given day.) The following observations can be made:

• The load profiles are somewhat different from the ones that have been presented in previous

studies [22,23], which tend to overestimate the peak of the power consumption. The two main

reasons for this are: (i) ignoring the travel probability (see Section 3.2), and (ii) assuming

that PEVs can only charge after ca. 18:00, whereas some PEVs might be plugged-in during

the morning and early afternoon hours.

• During the workweek in scenario (A), the power peaks around 18:00, while people are re-

turning home from work (cf. Figure 3.1). At that time, the number of PEVs being charged

reaches a maximum. In contrast, in scenario (B), three peaks are apparent—around 8:00,

noon, and 18:00—coincident with people arriving at work, driving to and from lunch, and

returning home from work. Interestingly, even though charging can occur anywhere vehicles

can park, the 18:00 peak value is similar.

• During weekends, the load profiles are smoother and have lower peak values than on week-

days.

• The variation with respect to charger size is quite significant. Smaller charger sizes tend to

reduce the peak value of power consumption, but spread the load to longer time periods.

It should be noted that the peaks of the power curves are not proportional to charger size

(e.g., the 6-kW peak is not equal to three times the 2-kW peak). It is interesting to observe

that the expected peak of power consumption per PEV is always less than 1 kW (even with

the 6-kW chargers).

• The difference between the power curves with fd,1 and fd,2 (not shown due to space limita-

tions) is not significant. This occurs because apparently a 40-mile average CDR can satisfy
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most daily travel requirements (cf. Figure 3.2). On the other hand, if the average CDR is

reduced below 40 miles, simulations predict a significant decrease in power consumption.

0

0.2

0.4

0.6
Urban weekday

0

0.2

0.4

0.6
Urban weekend

0

0.2

0.4

0.6
Rural weekday

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2

0.4

0.6
Rural weekend

Hour of day

P
o

w
er

 (
k

W
)

 

 

6 kW 2 kW 1.4 kW mix

0

0.2

0.4

0.6
Urban weekday

0

0.2

0.4

0.6
Urban weekend

0

0.2

0.4

0.6
Rural weekday

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2

0.4

0.6
Rural weekend

Hour of day

P
o

w
er

 (
k

W
)

 

 

6 kW 2 kW 1.4 kW mix

Figure 3.3 Average power consumption per PEV with fd,1. [Top: scenario (A). Bottom:

scenario (B).]
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To assess the impact of a large PEV fleet on a power system, the computed PEV load is

added to the Midwest ISO (MISO) load profile, as shown in Figure 3.4. The fd,1 CDR PDF is

used and a mix of chargers is assumed, as previously described. The PEVs’ power consumption

is converted from the outlet to the substation level, assuming that distribution losses are 5%.

The solid load curves represent the average weekday and weekend load as reported by MISO [44]

in 2009. The number of LDVs in the MISO footprint today is approximately 28 million [45],

with ca. 75% of these in urban areas [34]. About 17% are in the eastern time zone, and

the remaining are in the central time zone. Notably, the impact on power consumption of

one million PEVs on MISO’s system would be relatively small. Further increases will require

additional peaking capacity to be installed, because the peak PEV load will be more or less

synchronous with the peak of the MISO load curve. Therefore, some form of time-dependent

pricing scheme would be greatly beneficial in shifting the PEV load to off-peak periods.
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Figure 3.4 PEV fleet power load superimposed on MISO load curve. [The horizontal axis

shows the hour of day in the central time zone.]
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Lastly, the daily electric energy consumption can be obtained by numerically integrating

the power consumption curve. These results are provided in Table 3.4, which also contains

the results of the analytical computation of subsection 3.4.2 (column labeled ‘Table 3.2’) for

convenience. The following can be observed:

• Energy consumption increases with charger size. This could signify a potentially undesir-

able situation where chargers are inadequately powerful to completely recharge some PEVs

overnight.

• Investments in public charging infrastructure will lead to an increase in electric energy con-

sumption.

• The results of the analytical calculation method of subsection 3.4.2 are consistent with the

simulation results. However, the latter can reveal interesting interactions between charger

size, travel patterns, and CDR.

Table 3.4 Energy Estimation by Integrating Power (in kWh/PEV)

Table Scenario (A) Scenario (B)

3.2 6 kW 2 kW 1.4 kW mix 6 kW 2 kW 1.4 kW mix

U. w/day 4.16 4.24 4.13 4.09 4.15 5.39 5.12 4.94 5.30

U. w/end 3.23 3.22 3.14 3.10 3.16 4.23 3.92 3.80 4.13

R. w/day 4.88 4.82 4.66 4.59 4.69 6.53 6.07 5.84 6.42fd,1

R. w/end 3.70 3.57 3.43 3.41 3.47 4.86 4.46 4.27 4.72

U. w/day 5.06 4.93 4.80 4.72 4.82 5.72 5.46 5.25 5.64

U. w/end 3.99 3.77 3.67 3.59 3.68 4.57 4.35 4.18 4.46

R. w/day 6.29 5.87 5.75 5.60 5.74 7.06 6.65 6.37 6.92fd,2

R. w/end 4.75 4.32 4.15 4.10 4.19 5.36 4.99 4.79 5.17

3.6 Conclusions

In this paper, a theoretical framework for assessing light-duty PEVs as a power system load

has been set forth. The most authoritative source of national travel patterns (i.e., the 2009

NHTS database) was utilized to obtain a PEV load forecast. Uncontrolled PEV charging will

almost certainly increase the power system’s peak load in the U.S.
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This work can become the starting point for incorporating vehicle travel patterns in studies

such as: quantifying the effect that time-dependent pricing of electricity can have on PEV

load leveling; analyzing the impact of the additional PEV load on locational marginal prices;

estimating PEV impacts on greenhouse gas emissions; studying localized effects on power grids

by introducing the spatial distribution of vehicles; and examining the potential of PEVs to act

as distributed generation sources using vehicle-to-grid technologies.
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4. LOAD SCHEDULING AND DISPATCH FOR AGGREGATORS OF

PLUG-IN ELECTRIC VEHICLES

A paper published in the IEEE Transactions on Smart Grid (Special Issue on Transportation

Electrification and Vehicle-to-Grid Applications), vol. 3, pp. 368–376, 2012.

Di Wu, Dionysios C. Aliprantis, and Lei Ying

Abstract

This paper proposes an operating framework for aggregators of plug-in electric vehicles

(PEVs). First, a minimum-cost load scheduling algorithm is designed, which determines the

purchase of energy in the day-ahead market based on the forecast electricity price and PEV

power demands. The same algorithm is applicable for negotiating bilateral contracts. Second,

a dynamic dispatch algorithm is developed, used for distributing the purchased energy to PEVs

on the operating day. Simulation results are used to evaluate the proposed algorithms, and to

demonstrate the potential impact of an aggregated PEV fleet on the power system.

Index Terms

Electric vehicles, power demand, power system economics, smart grids.

Nomenclature

cj Rated power of charger type j

ei Departure time (slot) for the first trip in the morning for PEV i

E Overall energy required to charge all PEVs
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Ei Energy required to charge PEV i

Hi Set of time slots where PEV i will be charged

K Number of slots within the charging period

li Charging time (number of slots) of PEV i

n(l, j, s, e) Number of PEVs with charging duration l, charger type j, arrival slot s, and

departure slot e

N Number of PEVs under the aggregator’s control

N1 Number of PEVs charged with energy purchased through long-term bilateral con-

tracts

N2 Number of PEVs charged with energy purchased in the day-ahead market

pi Charger power rating of PEV i

pi,k Scheduled power for PEV i at time slot k

Pk Total scheduled charging power at time slot k

Rs+1,e(τk) Rank of τk for time slots between s+ 1 and e

si Arrival time (slot) for the last trip at night for PEV i

∆T Duration of time slot

τk Wholesale electrical energy price in time slot k

4.1 Introduction

The transportation sector accounts today for a significant portion of all nations’ petroleum

consumption and carbon emissions. For instance, in the U.S. in 2009, 94% of the transportation

energy was obtained from petroleum, while 63% of the crude oil was imported [46]. This

dependency on dwindling oil resources represents an ever-increasing risk to national security

and poses grave environmental concerns. The electrification of transportation and, in particular,

the development of plug-in electric vehicle (PEV) technology has been recognized as a key part

of the solution to energy and environmental problems worldwide [1,47]. PEVs—either plug-in

hybrid electric vehicles or pure electric vehicles—are equipped with adequate battery energy

storage to travel for several miles using (mostly) electricity, and are recharged from the electric

grid, thus allowing electricity to displace a portion of petroleum.
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The emerging fleet of PEVs will introduce a considerable amount of additional load on the

power system. In the simplest case, this can be treated as a traditional (i.e., uncontrollable)

load, being served whenever a PEV is plugged in, and billed at a normal retail rate. In [48],

the power consumption from a fleet of uncontrolled light-duty PEVs has been estimated based

on the travel pattern obtained from the 2009 National Household Travel Survey (NHTS) [34].

The analysis of [48] and other reports [19–26, 49–51] have predicted that a significant amount

of PEV charging will take place during peak hours when the wholesale electricity price is high.

Moreover, the coincidence between peaks of PEV and non-PEV load will require investments

in generation, transmission, and distribution, in order to maintain the reliability of the power

system. Fortunately, PEVs are more flexible than traditional load, because the majority of

PEV owners return home early in the evening, and may not have a preference about the exact

time that their vehicles will be charged, as long as the batteries are full by the next morning.

To utilize this flexibility, appropriate algorithms for charging control and management must be

designed.

This control will be performed by PEV aggregators, which will be either existing utilities

that will offer new financial contracts specific for PEV loads, or new for-profit entities that will

participate in the wholesale electricity market. A broad array of aggregators is described in [4],

and a conceptual framework to integrate the aggregated PEVs with vehicle-to-grid (V2G)

capability into the grid is proposed in [52]. The PEV aggregator considered herein has a

significantly large customer base so that it can purchase energy at wholesale. The aggregator

could also provide ancillary services to the power system. This has been the focus of previous

work, wherein the possible ancillary services that could be offered by aggregated PEVs have

been reported [4]. For example, controlling PEVs with or without V2G capability to maximize

the revenue from frequency regulation is discussed in [53] and [54], respectively.

In contrast to these previous approaches, where the objective is profit maximization from

ancillary services, this paper focuses on the actions of an aggregator who wishes to maximize

its energy trading-related profits. In this analysis, the contracts with the PEV owners stipulate

that charging will only occur during off-peak hours, e.g., from 10 p.m. to 7 a.m., because

most vehicles are not in use and the wholesale electricity price is generally low during this
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period. Aggregators coordinate and control PEV charging. PEV owners relinquish control

of their batteries’ state of charge, in exchange for a fixed reduced electricity rate. We are

considering a risk-averse aggregator, who would purchase the bulk of its electricity through

long-term bilateral contracts and/or by participating in the day-ahead markets (there are 24

hourly markets); the real-time market would be used for balancing purposes only. Specifically,

it is assumed that this aggregator controls a fleet of N = N1 +N2 PEVs; N1 PEVs are charged

with energy purchased through bilateral contracts, while the remaining N2 PEVs are charged

with energy purchased in the day-ahead market. This split is arbitrary, and in the extreme case,

either N1 or N2 could be zero. Setting N1 = 0 would increase the aggregator’s financial risk,

so it might not be a prudent choice. Also, because the number of PEVs that subscribe to this

aggregator can change on a daily basis, N2 realistically cannot be zero, unless the aggregator

updates its bilateral contracts daily, which is highly unlikely. In any case, it should be noted

that this paper does not delve on the determination of the optimal split between N1 and N2,

but rather on what happens once this split is given. Due to the assumption of a fixed retail rate,

profit maximization is equivalent to minimization of the purchased energy cost. Therefore, this

aggregator would take advantage of the flexibility of the PEV load, and would charge PEVs

with the cheapest possible electricity, which typically occurs during off-peak hours at night.

Also, in the presence of several competing aggregating entities, the reduction of energy cost

would be necessary to gain market share.

This paper has two main objectives:

1. To set forth algorithms that aggregators can use to schedule and dispatch the PEV load

so that their energy cost is reduced (and ideally minimized), using information about the

forecasted charging demand for the coming day. The proposed scheduling algorithm can be

applied for negotiating long-term bilateral contracts, based on the offered electricity price

(especially if this price is time-varying); or for participating in the day-ahead market, based

on the forecasted electricity price. The proposed dispatch algorithm is used to distribute the

purchased energy to the individual PEVs during the operating day. “Scheduling” and “dis-

patch” are familiar terms in power system analysis, applicable to generators in the context

of unit commitment and economic dispatch, respectively. Herein, these terms are applied
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to the charging of PEV batteries. In particular, “dispatch” refers to the determination of

the charging time for each PEV (dynamically, in real time) so that the actual aggregated

power consumption follows the “scheduled” load curve purchased by the aggregator.

2. To identify how an aggregated PEV load would impact the power system, assuming that the

aggregator would operate under the current electric energy market structure. The analysis

shows that the PEV load can have an unusual stepped pattern, which could be detrimental

to the proper operation of the power system. It also suggests that new market mechanisms

might be necessary to provide load-leveling and load-smoothing incentives to aggregators.

The rest of this paper is organized as follows: Section 4.2 outlines assumptions made in

this analysis. In Section 4.3, potential issues with simple uncontrolled off-peak charging are

presented. In Section 4.4, a scheduling algorithm is proposed for minimizing the expected

electric energy cost according to the price variation and the charging demand. In addition,

a dynamical dispatch algorithm is set forth. In Section 4.5, simulation results are discussed.

Finally, Section 4.6 concludes the paper.

4.2 Analysis Assumptions

The proposed algorithms are developed and validated using the actual U.S. travel patterns

as captured by the 2009 NHTS, and the simulation method of [48]. The NHTS statistical

data represent the travel patterns of the U.S. light-duty vehicle (LDV) fleet1, and contain

information on the travel behavior of a national representative sample of U.S. households, such

as mode of transportation, trip origin and purpose, and trip distance. LDV travel accounts for

92% of the highway vehicle miles traveled [30], 76% of the energy consumed by highway travel

modes [31], and 74% of the carbon dioxide emissions from on-road sources [32]. For the purposes

of this analysis, the NHTS database is used to extract statistics of electric energy consumption,

charging duration, and arrival and departure times, under reasonable assumptions of PEV

drivetrain configurations and charger sizes. In the future, an aggregator will have access to

more accurate statistics by monitoring the actual composition, travel pattern, and energy

1The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles
(SUVs), and trucks with gross vehicle weight less than 8,500 pounds [29].
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consumption of its own fleet.

The PEV charging infrastructure will be available at the garages or driveways of PEV

owners’ residences2 and at some public locations, such as parking lots of commercial buildings

and shopping malls. However, it is conceivable that, when charging at public locations, a PEV

driver might be hesitant to permit controlled charging, especially if the driver needs to ensure

that the battery will be charged as much as possible, uninterrupted throughout the duration of

the stop. (A notable exception is the charging that would occur during normal business hours,

when employees’ vehicles would remain plugged in at the parking lot of their workplace.)

Therefore, for simplicity, in this analysis it is assumed that the proposed controlled charging

program is associated only with home charging. Nevertheless, in case it becomes necessary

to account for the charging at public locations as well, the proposed scheduling and dispatch

methods would still apply.

The proposed methods require that the aggregator utilizes techniques for forecasting the

day-ahead electricity price, such as the ones presented in [57–60]. Herein, it is assumed that

day-ahead locational marginal price (LMP) can be forecasted with reasonable accuracy, and the

error associated with the forecast is ignored. It is important to note that the LMP forecast’s

absolute value is not critical. Rather, for minimizing cost, it is the ranking of the hourly LMPs

that is critical, and should be predicted as accurately as possible. In addition, it is assumed

that aggregators’ actions do not affect the relative ranking of hourly LMPs.

Finally, any charging constraints that would arise at the distribution level (e.g., from trans-

former overloading) or distribution system optimization [61] are ignored. This analysis is per-

formed at the bulk power level, and it is further assumed that the aggregator can schedule

arbitrarily large amounts of power. Extending this work to systems with detailed distribution

feeder models is worthwhile, but is left for future study.

2Most probably, people will not consider purchasing a PEV if they cannot charge their vehicle at home.
Chargers are currently available for 120-V or 240-V circuits, both typically available at U.S. residences [55].
Often, PEV manufacturers and the U.S. federal government offer assistance and financial incentives for the
installation of the required equipment [56].
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4.3 Uncontrolled Off-peak Charging

Figure 4.1 depicts the average percentage of vehicles parked at home through a day, calcu-

lated using the NHTS data. As can be seen, more than 90% of vehicles are parked at home

between 9 p.m. and 6 a.m. Recognizing this opportunity, several charging strategies have been

previously proposed for shifting the PEV load to off-peak hours, in order to utilize less ex-

pensive electricity and reduce the peak of the overall load. For example, all the vehicles begin

charging at 10 p.m. in the “delayed charging” scenario of [20]; half of the vehicles are charged

at 10 p.m. and half at 11 p.m. in the “night charge” scenario in [22]; vehicles are only charged

between 12 a.m. and 6 a.m. in the “delayed night charging” scenario in [23]. These studies,

however, do not take into account realistic travel patterns. So, herein, a similar scenario is

considered using the travel pattern obtained from the 2009 NHTS, with charging only allowed

between 10 p.m. and 7 a.m. During this period, PEVs will be charged whenever they are

parked at home until their batteries reach full capacity. Computer simulations are performed

using the method and parameters presented in [48].
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Figure 4.1 Average percentage of vehicles parked at home in 2009.

The simulation results provide the average power consumption that is shown in Figure 4.2 (b).

It can be observed that the resulting peak load per PEV is much higher than the uncontrolled

charging scenario shown in Figure 4.2 (a). This happens because charging tends to concentrate
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at the beginning of the charging-allowed period, whereas it would be naturally distributed with

time if left uncontrolled. This PEV load is also superimposed on MISO’s load curve in Fig-

ure 4.3, for 1 million and 10 million PEVs (which amounts to about one third of the current

LDV fleet size in the MISO area).

These findings contradict the conclusions of previous studies (which are obtained with

simplified travel patterns) that suggest simple-delayed charging strategies are better than un-

controlled charging in terms of reducing the peak load. In addition, even though the cost of

electric energy in this charging scenario would be probably reduced compared to uncontrolled

charging, this is not necessarily the most economic way to charge the PEV fleet. The electricity

cost could be further reduced by optimally shifting PEV charging to periods with the lowest

LMP.
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Figure 4.2 Average power consumption per PEV (in an urban area on a weekday).

The adverse sharp peak can be avoided with a simple modification, namely, by uniformly
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distributing the charging start time over a predefined period (e.g., from 10 p.m. to 12 a.m.).

This leads to lower peaks, as shown in Figure 4.2 (c) and Figure 4.3 (c). In fact, it might

even be possible to solve the inverse problem of finding the distribution of charging start times

that would generate some desirable load pattern. The aggregator would in turn reflect this

distribution to the financial contracts with PEV owners. Although this method would be

rather simple to implement, it would be static and inflexible, and it would not allow dynamic

coordination among PEVs. Also, the peak of the aggregated load would not be synchronized

with the lowest LMP, because this varies on a daily basis.

Other more advanced charging control algorithms have been proposed to fill the overnight

valley, such as the decentralized control strategy described in [62]. However, flattening the

overall load may increase the aggregators’ energy cost in the wholesale electricity market. A

different strategy is required to maximize the aggregators’ profits from energy trading. This is

described in the next section.

4.4 Proposed Algorithms

In the proposed framework, aggregators control PEV charging during the off-peak period

from 10 p.m. to 7 a.m. It is also assumed that they are contractually bound to maximize the

state of charge of the batteries by the departure time declared by each PEV owner3 (unless a

battery cannot be fully charged overnight given its state of charge on arrival and the charger

rating). The charging period is discretized into a finite number of slots. The proposed schedul-

ing algorithm determines the amount of energy to purchase in each time slot, according to

the price (either the bilateral contract price or the forecasted day-ahead LMP) and the PEV

charging demands. On the operating day, aggregators need to dispatch the PEV load according

to the committed load. The dispatch algorithm determines the time slots where each PEV will

be charged.

3It is conceivable that some PEV owners would try to ensure that their vehicle gets charged by reporting false
(i.e., earlier than the actual) departure time. Hence, they must be incentivized to report their true departure
time, or penalized when they consistently report false departure times. The design of such mechanisms would
fall within the aggregator’s responsibility, but is outside the scope of this paper.
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Figure 4.3 PEV fleet power load superimposed on MISO load curve.

4.4.1 Scheduling

Consider an aggregator that is controlling a fleet of Nx PEVs, x ∈ {1, 2}, which are indexed

by i. Let pi denote the charger rating of vehicle i, which belongs to a set {c1, · · · , cj , · · · , cJ},

where cj is the rating of charger type j among a number of charger types J . For a normal

residential wiring installation, typical options for charging circuits [35] are shown in Table 4.1,

where “charger rating” denotes the nominal power consumption (continuous rated power) at the

wall outlet. The “ratio” column shows that these are equally distributed within the hypothetical

fleet of PEVs herein for simulation purposes. It is conceivable that there might exist commercial

charger models with the capability to modulate the charging power from zero to a rated value

based on an external control signal. Nevertheless, in the proposed minimum-cost scheduling
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and dispatch scheme, all PEVs are charged with either zero or maximum rate. In fact, optimal

battery charging follows a varying power profile [43]. However, it has been found that modeling

this profile in detail does not affect the simulation results significantly.

Table 4.1 Charging Circuits

Charging circuit Charger rating (kW) Ratio

120 V, 15 A (Level 1) 1.4 1/3

3.3 (limited by on-board charger) 1/3
240 V, 30 A (Level 2) 6 1/3

The charging period is discretized into K time slots, indexed by k, with the duration of each

time slot equal to ∆T . The parameter ∆T is independent of the rate that market operations

take place (e.g., on an hourly basis for the day-ahead market), and will be on the order of one

minute. Such a fine resolution might be necessary to ensure proper charging of the PEVs, i.e.,

to better accommodate vehicles that arrive or leave at arbitrary times, or whose charging time

is not an integer number of hours. The charging time of PEV i, denoted by li, is defined as

the number of time slots during which charging would take place with full rate pi, under a

simple-delayed charging scenario; in this scenario, vehicles are plugged in as soon as they arrive

home, the only restriction on the charging is that it must take place within a prescribed time

period, and there is no other advanced control whatsoever. Clearly, 0 ≤ li ≤ K. The total

energy required to charge all vehicles is E = ∆T
∑Nx

i=1 pili. Furthermore, let τk denote the price

(either from the bilateral contract or the forecasted day-ahead LMP) during time slot k, and

n(l, j, s, e) denote the number of vehicles with charging time l and charger type j, which arrive

home at time slot s and leave home at time slot e. (If a vehicle leaves home later than K, then

set e = K.) Because a vehicle associated with the parameter set {l, j, s, e} can be charged for

at most e − s time slots (the earliest that charging can start is the s + 1 slot), it follows that

l ≤ e− s.

It is assumed that reliable estimates of n(l, j, s, e) can be obtained from statistics, based

on data that the aggregator can collect on a daily basis from its fleet of PEVs. Herein, such

statistics are generated using the 2009 NHTS data set. For illustration purposes, we consider

the trips of all urban vehicles that traveled on weekdays, and it is assumed that the driving
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patterns of PEVs are similar to those of regular automobiles. Elimination of the vehicles that

did not travel on the survey date (ca. 35% of the total number of vehicles), as well as of those

that for any reason did not return home at the end of the day (ca. 5.8% of the vehicles that

traveled), yields a total of approximately 86,000 vehicles, whose trips are used to generate the

statistics. First, each vehicle is categorized according to its arrival and departure time, using

20 minute-long time slots. This results in the two-dimensional probability distribution shown

in Figure 4.4. As can be observed, the majority of vehicles (ca. 82%) arrive at home before

10:20 p.m., and leave home after 6:40 a.m., but several other bins contain substantial vehicle

numbers as well. It is important to note that the travel patterns differ between these groups of

vehicles. For example, further examination of the NHTS data reveals that vehicles that arrive

home later at night and leave earlier in the morning usually travel longer distances than the rest

(as is intuitively expected); this is depicted by the cumulative distribution functions (CDFs)

of vehicle-miles traveled (VMT) shown in Figure 4.5. Finally, the electrical energy required

to charge the PEVs is computed using the above VMT information and the method described

in [48]; some representative results from these statistics are illustrated in Figure 4.6. The end

result of these calculations is n(l, j, s, e).
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Figure 4.4 Probability of vehicle arrival and departure time. Note: The vehicles in the

10:00-10:20 p.m. arrival time or 6:40-7:00 a.m. departure time category arrived

home before 10:20 p.m. or left home after 6:40 a.m., respectively.
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Figure 4.5 CDF of daily VMT for several combinations of arrival and departure times.

Given τk and n(l, j, s, e), a load scheduling that minimizes the wholesale energy cost is

outlined below as Algorithm 1. (If τk represents the forecasted day-ahead price, then it is the

expected energy cost that is minimized.) The basic idea is to charge each vehicle in the time

slots where the lowest electricity price occurs. PEVs can only be charged when they are parked

(at home), so for each vehicle i only the time slots between si and ei need to be considered.

The time slots are ranked by electricity price from low to high, and the li time slots associated

with the least expensive electricity are selected for charging.

Algorithm 1 solves the following linear program:

min
pi,k

∆T

Nx∑
i=1

K∑
k=1

τkpi,k (4.1)

subject to

K∑
k=1

pi,k = pili, for all i

0 ≤ pi,k ≤ pi, for all i, k

pi,k = 0 for k ≤ si and k > ei, for all i

The solution that is produced is (for all i)

pi,k = pi, for k such that Rsi+1,ei(τk) ≤ li, and (4.2)

pi,k = 0, otherwise. (4.3)
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Figure 4.6 CDF of daily PEV electric energy requirement for several combinations of arrival

and departure times.

This solution corresponds to one of the extreme points on the boundary of the feasible region,

and is optimal by construction. The algorithm outputs a schedule for the minimum-cost power

purchase, Pk. It is possible to use a commercial solver to obtain a numerical solution to this

problem. However, this solution will not have a clear physical significance. On the other hand,

the proposed algorithm, via the use of the ranking function R, provides a way to affect the

shape of the PEV load, as will be demonstrated later.

It is interesting to observe that there might be other equally optimal solutions to this

problem, yielding the same energy cost. For instance, consider a PEV i that has been parked

at home since early in the evening, and that needs to charge for 90 minutes, so li = 90 if

∆T = 1 min. Also, assume that the price remains constant for hour-long intervals (as usual

for the LMP of the day-ahead market). Obviously, this PEV’s charging will be spread over

two hourly intervals (which could be non-adjacent), corresponding to the two lowest LMPs

occurring between si and ei, say, between 1–2 a.m. (the lowest), and 4–5 a.m (the second

lowest). Therefore, this PEV will get charged for all 60 slots between 1–2 a.m., but the

remaining 30 slots can be selected arbitrarily from the 60 slots of the 4–5 a.m. period (there

are
(
60
30

)
combinations if the slots are not contiguous, or 30 different combinations of contiguous

time slots). Alternatively, the PEV could be charged during the entire 4–5 a.m. period, but at
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Algorithm 1 Min-Cost Load Scheduling

1: Input: τk for 1 ≤ k ≤ K, and n(l, j, s, e) for 1 ≤ s < e ≤ K, 0 ≤ l ≤ e − s ≤ K and

1 ≤ j ≤ J .

2: for k = 1 to K do

3: Pk ← 0

4: end for

5: for s = 1 to K do

6: for e = s+ 1 to K do

7: Rank the price τk for s < k ≤ e from lowest to highest. The ranking function is

denoted by Rs+1,e(τk), and takes the values {1, . . . , e− s}. If different time slots have

equal τk, they are ranked according to the index k from low to high.

8: for m = 1 to e− s do

9: Compute the power which should be purchased for the time slot with the mth cheap-

est price among time slots s+ 1 to e, which is

χm ←
J∑
j=1

cj

e−s∑
l=m

n(l, j, s, e) .

10: end for

11: for k = s+ 1 to e do

12: Update the charging power Pk for time slot k:

Pk ← Pk + χRs+1,e(τk) .

13: end for

14: end for

15: end for

16: return Pk

reduced (half) power if this capability is provided by the charger, or for some other combination

of time slots/power level if the battery charging tail end profile is considered. The proposed

Algorithm 1 would use the first 30 slots of the 4–5 a.m. interval, because of its definition of the

ranking function R (see step 7). Various other minimum-cost algorithms, each using a different

slot selection algorithm, can be conceived. This flexibility could be used to provide regulation

services to the power system [54].

The relative ranking of hourly day-ahead LMPs will probably not be affected under a mild

PEV penetration level, say, within the next five to ten years. However, this could occur under

higher PEV penetration levels. In this case, the aggregator would use a modified min-cost
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scheduling algorithm, whose basic idea is as follows: First, PEV load will be scheduled during

the cheapest hour of day, until the price becomes equal to the second cheapest price. After this

point, additional PEV load will be distributed between these two hours of the day. If the PEV

load makes the price reach the level of the third cheapest price, then any additional PEV load

will be distributed over these three hours, and so forth. The use of advanced day-ahead LMP

forecasting algorithms, such as the ones in [57–60], will be again necessary.

4.4.2 Dispatch

The purpose of the proposed dispatch algorithm (Algorithm 2) is to distribute the purchased

energy to the PEVs, with as little deviation from the schedule (Pk) as possible. It is assumed

that the aggregator does not engage in arbitrage. The charger ratings (pi) of all PEVs controlled

by the aggregator are known beforehand. The algorithm keeps running throughout the nightly

charging period, and dynamically updates the list of PEVs and their charging time slots. The

plug-in time (si) and required energy (Ei) are communicated by PEV i to the aggregator as

soon as it is plugged in. Simultaneously, the PEV owners report their expected departure

time (ei). For the vehicles that are expected to depart after the end of the charging period,

the departure time is set to K. The charging duration (li) is calculated based on the above

information, from Ei = ∆T lipi. Decisions are made dynamically in real time for each arriving

PEV, which is assigned the next li least expensive time slots, as long as these slots still have

available power. At time slot k, if k ∈ Hi, the aggregator charges PEV i with rate pi. It should

be noted that Algorithm 2 is not an optimization algorithm. However, its design is related to

Algorithm 1, because it also uses the same ranking function R.

4.5 Simulation Results

Figure 4.7 depicts the average load per PEV (i.e., all PEVs under contract, including those

do not travel or return home) that would be obtained from Algorithm 1 with a hypothetical

day-ahead LMP variation. The Algorithm is run using 1 minute-long time slots, while the price

changes on an hourly basis. As can be observed, at the beginning of each hour, the PEV load

has a relatively large spike that decreases with time, due to those PEVs that finish charging
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Algorithm 2 Dispatch

1: Input: Pk for k = 1, . . . ,K, and pi for i = 1, . . . , Nx.

2: loop

3: if PEV i arrives at home and gets plugged in then

4: Receive {Ei, si, ei}. Calculate li.

5: Rank the time slots {k : si + 1 ≤ k ≤ ei and Pk > 0} according to τk, from lowest to

highest. The rank of slot k is denoted by Rsi+1,ei(τk).

{Pk ≤ 0 corresponds to the case where the purchased power at time slot k has been

exhausted.}
6: Hi ← {k : Rsi+1,ei(τk) ≤ li}.
7: Pk ← Pk − pi, for all k ∈ Hi.
8: end if

9: end loop

before the hour is over. This load shape is quite different from a traditional load variation.

If the penetration of PEVs becomes significant, these abrupt step changes (both upwards but

also downwards at the start of each hour) could be problematic for frequency regulation and

transient system stability. Perhaps a better solution for the power system would be to average

the PEV load throughout the hour. To achieve this, for example, the ranking function R could

be modified so that there is no preference for earlier time slots. This yields the load profile

shown in Figure 4.8.

Algorithm 2 (dispatch) is applied to a set of trips randomly generated based on the NHTS

data, different than the one used for the scheduling algorithm. In particular, the departure of

PEVs at times different from the reported ones is modeled as a Gaussian error term: etruei =

ei +N (0, σ). A 10-minute standard deviation is chosen. Since most of the vehicles leave after

7 a.m., such errors are quite insignificant. Even for those PEVs that depart before 7 a.m., an

earlier departure may not cause a problem, because their charging might be complete before

their actual departure time. The dispatch obtained by Algorithm 2 is shown in Figure 4.7

together with the scheduled load that was previously determined from Algorithm 1. The two

curves are almost identical.

Aggregators would have to purchase the estimated average hourly power consumption as

hourly energy blocks in the day-ahead market (or by a long-term bilateral contract). Hence,
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Figure 4.7 LMP and PEV scheduled load obtained by Algorithm 1. Also shown is the PEV

load dispatch obtained by Algorithm 2, which is almost identical to the scheduled

load curve.

it could be argued that any aggregator would level its hourly load in order to match its actual

consumed power with the amount purchased. This would minimize the deviation of its real-

time load from the purchased power, reducing (and ideally eliminating) potential penalties or

losses incurred from being forced to participate in the real-time markets.

Nevertheless, even this “flatter” load variation is atypical. Even without the pronounced

spikes at the beginning of the hour, the step changes—if large enough—could cause problems

to system frequency regulation. As mentioned in the Introduction, PEV fleets can be used

to provide regulation services to the system to alleviate generation-load unbalance [4, 52–54],

whereas the PEV load shape obtained by the min-cost scheduling algorithm will require addi-

tional regulation at the beginning of each hour from other sources. (This becomes apparent

once the maximization of energy trading-related profits becomes an objective. Previous work

on PEV-related frequency regulation has not identified this issue.) Power systems routinely

handle MW-level step changes in load, for example, from large industrial customers. The po-

tential problem described here stems from the sheer impact of a large aggregate PEV load

(such as several million PEVs in the MISO system that would cause hourly steps on the order

of hundreds of MW) coupled with its controllability. This will tend to synchronize the step
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Figure 4.8 LMP and hourly PEV load obtained by a modified Algorithm 1 that uses an

alternate ranking function, which has no preference for the earlier time slots.

changes at the beginning of the hour among all aggregators in the system, especially if the

prices are calculated on a zonal rather than a nodal basis, or for metropolitan areas with a

single LMP where large concentrations of PEVs would exist. This phenomenon could be made

less pronounced by purchasing the bulk of the energy via long-term bilateral contracts.4 Also,

the difference of LMP prices at different nodes throughout the power system could be benefi-

cial, unless the correlation of LMP time variation is significant throughout the system. A more

accurate analysis that will use LMP calculations obtained from an optimal power flow formu-

lation is left for future study, which should take into account the impact of the additional PEV

load on the LMP levels, whose relative ranking is assumed to be predefined in this analysis.

But regardless of the calculated LMP levels, the resulting waveform of aggregated PEV power

load will probably still have a similar staircase shape, with the bulk of the energy consumed

during the hour of lowest LMP.

Aggregators also have the option to bid a price-sensitive load curve in the day-ahead market,

but this complicates the scheduling process considerably. To see why this is so, consider the

4Applying Algorithm 1 to a bilateral long-term contract with a single off-peak price yields an average power
consumption that is identical to the curve of Figure 4.2 (b). A large step change in load would still occur, but
only once.
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case where the contract between the aggregator and the PEV owners stipulates that PEVs

must be maximally charged overnight. Assume that during hour h, high prices lead to some

PEV load not being served. This lost energy must be acquired during hour h + 1 or later.

However, the price-sensitive bids are submitted one day in advance, and cannot be modified.

This will force an aggregator to acquire the energy deficit in the real-time market, and will

increase its financial risk. (Even so, it is not clear at which hour it would be advantageous to

purchase the deficit.) So, bidding price-sensitive loads might be a problematic strategy.

The currently implemented two-settlement market structure has been devised with the

traditional slowly varying bulk power system load in mind, which has relatively minor real-

time deviations. But an emerging controllable PEV fleet represents an important new constant-

energy load paradigm, which requires a certain amount of electric energy over a specific period

of time, and for which the exact time and rate of power consumption are not critical to the

end-user. Our results seem to suggest that perhaps the existing market mechanisms should be

modified, in order to provide the appropriate incentives to the PEV aggregators, so that the

power system operation is not compromised. For example, it might be beneficial to smoothen

the PEV load variation; however, a hypothetical aggregator today would have no incentive to

do so, and in fact it might be penalized for deviating significantly from the purchased load

level. Perhaps new regulations that impose maximum ramp up/down rates to aggregated PEV

loads are necessary, in addition to the ones already in place for generating units. Alternatively,

it might be beneficial to use the PEV load to fill the overnight valleys of the overall system

load; this has been previously suggested to be one of the major benefits of PEV integration

with the power system. Apparently, this will not be the case if aggregators participate in the

wholesale energy markets, because the obtained load will not have the required pattern that

will exactly level the load curve. The design of appropriate market-based mechanisms remains

an open research question.

4.6 Conclusion

This paper set forth algorithms for the scheduling and dispatch of electric power by aggre-

gators of PEV fleets, whose main objective is the maximization of energy trading profits. The
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aggregators are assumed to operate in the current wholesale electric energy market framework.

The algorithms were developed by taking into account realistic vehicle travel patterns from the

NHTS database. The impacts of such fleets on the bulk power system were estimated with

computer simulations. A major implication of our findings is that current market regulations

and policies associated with PEV load have to be revised, to avoid causing problems to the

power system, and to incentivize its utilization in a synergistic manner in order to improve the

overall system operation, especially for aggregators without interest in ensuring power system

reliability.
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5. ON THE CHOICE BETWEEN UNCONTROLLED AND

CONTROLLED CHARGING BY OWNERS OF PHEVS

A letter published in the IEEE Transactions on Power Delivery, vol. 26, no. 4, pp.

2882–2884, Oct. 2011.

Di Wu, Dionysios C. Aliprantis, and Lei Ying

Abstract

This letter analyzes the decision-making process of owners of plug-in hybrid electric vehi-

cles (PHEVs), when choosing between uncontrolled and controlled charging programs. The

minimization of energy cost leads to a set of outcomes determined by electricity and gasoline

prices, and impacts the electricity rates of PHEV aggregators.

Index Terms

Aggregators, plug-in hybrid electric vehicles.

5.1 Introduction

Owner of plug-in hybrid electric vehicles (PHEVs) will have the option to choose between

two different charging programs: (i) uncontrolled charging (i.e., completely unrestricted, sim-

ilar to any other appliance) with a regular retail electricity price, and (ii) controlled off-peak

charging with a reduced price, offered by PHEV aggregators [4, 52]. Aggregators will coordi-

nate PHEV charging so that it does not occur during peak power system load hours, or so

that it does not overload distribution transformers, and will provide ancillary services to the
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power system, and thus are expected to play a central role in tomorrow’s smart grid. Arguably

the most significant factor affecting this decision will be the total energy cost, consisting of

expenses for electricity and gasoline.

In this letter, the decision-making process of a cost-conscious PHEV owner who is trying

to minimize his/her transportation energy costs is studied. The analysis leads to a set of

outcomes determined by the prices of electricity and gasoline, and yields certain interesting

insights pertaining to the pricing of electricity by PHEV aggregators. It is shown that under

certain conditions, some PHEV owners might prefer uncontrolled charging, thus reducing the

market share of aggregators and the benefits of coordinated PHEV charging to the electric

power system. It should be emphasized that this letter does not delve into the factors that

affect the decision of whether to purchase a PHEV or not; rather it is assumed that this decision

has been already made.

5.2 Decision-Making Process of PHEV Owners

The operation of PHEVs can be classified into the charge-depleting (CD) and the charge-

sustaining (CS) modes [28, 63]. Therefore, the daily vehicle-miles-traveled (VMT), m, can be

split into miles in CD and CS modes, m = mcd +mcs. In the CD mode, the vehicle gradually

consumes the energy stored in the batteries, with either a fraction of or the entire tractive

energy coming from the battery pack. When a minimum state of charge is reached, the CS

mode is activated, and PHEVs operate similarly to conventional hybrid electric vehicles, with

all tractive energy coming from the gasoline in the tank.

Therefore, the daily electric energy consumption at the wall outlet can be estimated by

εe =
ξhtrmcd

ηe
, (5.1)

where ξ ≤ 1 is the fraction of tractive energy from electricity in the CD mode, htr is the required

tractive energy per mile at the wheels, and ηe is the wall-to-wheels efficiency. A method to

estimate εe has been presented in [48].

On the other hand, gasoline can be consumed during both the CD mode (under blended

operation) and the CS mode. If the tank-to-wheels efficiency (ηg) is assumed the same for both
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modes1, the daily gasoline energy consumption is

εg =
(1− ξ)htrmcd + htrmcs

ηg
=
htr(m− ξmcd)

ηg
. (5.2)

Denoting by re the residential retail electricity price for uncontrolled charging ($/kWh), by

eg the energy content of gasoline (36.6 kWh/gallon higher heating value), and by rg the retail

price of regular gasoline ($/gallon), a PHEV’s daily energy cost in the uncontrolled charging

program is expressed

C =
rghtrm

egηg
+ ξhtr

(
re
ηe
− rg
egηg

)
mcd . (5.3)

Here, re/ηe and rg/(egηg) have the physical significance of price of tractive energy (at the

wheels) for electricity and gasoline, respectively. A cost-conscious PHEV owner will try to

minimize C, and it is obvious from (5.3) that—all other things being held constant—this

decision will be based on the relation between electricity and gasoline prices.

When re/ηe > rg/(egηg), it is cheaper to drive PHEVs with gasoline instead of electricity.

The PHEV owner would decide to make mcd = 0 by never charging the vehicle, thus avoiding

consuming any electricity from the grid, and would just keep driving in the CS mode. Con-

versely, when re/ηe < rg/(egηg), the PHEV owner would take advantage of all opportunities

to charge the vehicle (wherever a charging infrastructure is in place: at home, at work, at the

shopping mall, etc.), in order to maximize electricity usage and mcd.

In the U.S., the average residential retail electricity price in 2010 was ca. 0.12 $/kWh, and

is expected to remain at similar levels over the next 25 years [64]. The annual average retail

gasoline price in the U.S. has been higher than 2 $/gallon since 2005, and is expected to increase

to 4–6 $/gallon in the next 25 years (in today’s dollars) [65]. Given that ηe ≈ 0.65–0.70 [48]

and ηg ≈ 0.25–0.3, it can be readily verified that using electricity rather than gasoline to power

PHEVs makes financial sense in most of the U.S. today. For example, in Iowa during 2009,

the average re ≈ 0.10 $/kWh, while the average rg ≈ 2.3 $/gallon, making the tractive energy

price of electricity about 60% that of gasoline. Nevertheless, there are some states where retail

electricity price is quite high. Such an example is Hawaii where, in 2009, the two rates were

1PHEVs may have different tank-to-wheels efficiencies in CD vs. CS mode [63], but this (small) difference is
ignored herein.
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re ≈ 0.24 $/kWh and rg ≈ 3.0 $/gallon, so the cost of moving PHEVs with electricity would

have been about 9% higher.

In the controlled off-peak charging scenario, a PHEV owner relinquishes control of the

battery’s state of charge, in exchange for a reduced electricity rate (r′e < re). In this case,

some charging that normally would have occurred during on-peak hours may not be allowed

by the aggregator, and so a fraction α of the daily VMT may shift from the CD to the CS

mode, hence a greater portion of the tractive energy would be derived from gasoline. Using

the simulation method and parameters of [48], based on the 2009 National Household Travel

Survey, a statistical analysis on α has been performed, revealing that α = 0 for a significant

portion of PHEVs, but reaching values as high as α = 0.5 (or more) for the remaining PHEVs.

The energy cost for controlled charging is (cf. (5.3))

C ′ =
rghtrm

egηg
+ ξhtr

(
r′e
ηe
− rg
egηg

)
(1− α)mcd . (5.4)

The choice of charging program depends on the cost difference

C ′ − C = ξhtrmcd

[
(1− α)r′e − re

ηe
+
αrg
egηg

]
. (5.5)

The owner will benefit from joining the controlled charging program only if C ′ < C, which

requires

r′e < re +
αηe

1− α

(
re
ηe
− rg
egηg

)
= re +R . (5.6)

It is interesting to note that the condition above is independent of (i) ξ, or drivetrain design;

(ii) the tractive energy, related to PHEV weight/type; and (iii) mcd, related to battery size.

In summary, the following four cases are identified:

1. If

re
ηe
>
r′e
ηe
>

rg
egηg

, (5.7)

then the PHEV owner will prefer driving solely on gasoline, and will never charge the

vehicle’s battery. All the miles traveled will be driven in the CS mode.

2. If

re
ηe
>

rg
egηg

>
r′e
ηe

, (5.8)
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then the inequality (5.6) is satisfied. Therefore, the PHEV owner will prefer the controlled

charging program.

3. If

rg
egηg

>
re
ηe
>
r′e
ηe

(5.9)

and (5.6) is satisfied, then the PHEV owner will subscribe to the controlled charging pro-

gram.

4. If

rg
egηg

>
re
ηe
>
r′e
ηe

(5.10)

and (5.6) is not satisfied, then the PHEV owner will join the uncontrolled charging program.

5.3 Concluding Remarks

Based on today’s and forecast energy prices, the most probable situation will be either case 3

or 4 (otherwise, with gasoline price lower than electricity, it is unlikely that PHEVs will become

popular), where the owner’s decision depends on (5.6). A key observation is that setting r′e

slightly below re will not suffice to attract every owner; the two rates must differ by at least

|R| (an owner-specific parameter), which could be substantial. For example, assuming typical

values, ηe = 0.7, ηg = 0.25, and α = 0.2 for a certain driver, and prices re = 0.12 $/kWh and

rg = 3.5 $/gallon, then an aggregator should set its rate r′e < 0.083 $/kWh to attract this owner.

If re represents a discounted overnight rate of a time-of-use program, then the aggregator would

have to reduce its rates further (e.g., re = 0.08 $/kWh leads to r′e < 0.033 $/kWh). On the other

hand, aggregators would be able to increase rates when the price differential between electricity

and gasoline is smaller. Alternatively, (5.6) implies that the aggregator should carefully design

its control algorithms in order to minimize the “leakage” factor α, while avoiding expensive

on-peak charging or overloading distribution circuits.

The average excise tax on gasoline today in the U.S. is 0.48 $/gallon, of which 0.184 $/gallon

is a federal tax that feeds the Highway Trust Fund (HTF), which has not been adjusted for

inflation since 1993. These monies are used to maintain the Interstate Highway System and

state/local roads. Due to the higher fuel efficiency of modern automobiles, the HTF has been
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recently plagued by a severe capital shortage, which will certainly become worse with the advent

of PHEVs, unless this tax is extended to the PHEV owners (as users of the same transportation

infrastructure). If such a tax (on the order of few cents per kWh) were to be imposed equally

on uncontrollable and controllable PHEV load, it would not affect the difference between re

and r′e, but it would affect R (a convergence of electrical and gasoline tractive energy costs

would occur). This would have a positive impact on aggregators’ market share and revenue,

but a negative impact on the transportation costs of individual PHEV owners.
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6. POTENTIAL IMPACTS OF AGGREGATOR-CONTROLLED

PLUG-IN ELECTRIC VEHICLES ON DISTRIBUTION SYSTEMS

A paper published in the Proceedings of the 4th IEEE International Workshop on

Computational Advances in Multi-Sensor Adaptive Processing, San Juan, Puerto Rico, Dec.

13–16, 2011, pp. 105–108.

Di Wu, Chengrui Cai, and Dionysios C. Aliprantis

Abstract

This paper presents potential impacts on distribution systems from light-duty plug-in elec-

tric vehicles (PEVs), when these are under the control of aggregators who desire to maximize

their energy trading-related profits. The electric load characteristics of light-duty PEVs are

developed using the travel pattern from the 2009 National Household Travel Survey. This PEV

load is added to the existing non-PEV load within one of the prototypical feeders developed

by the Pacific Northwest National Laboratory.

Index Terms

Aggregator, plug-in electric vehicles, power distribution, travel pattern.

6.1 Introduction

Plug-in electric vehicles (PEVs) can help reduce worldwide dependence on petroleum and

carbon emissions [1, 47]. Some reports predict one million PEVs on U.S. roads within 5–10

years. The emerging PEV fleet will represent an additional load on the power system. In the
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simplest case, this load can be treated the same as a traditional (i.e., uncontrollable) load,

being served whenever a PEV is plugged in, and billed at a normal retail rate. In this case,

a substantial amount of PEV charging will take place during peak hours [20, 23, 26, 48, 49, 51],

increasing the generation cost, and requiring additional investment in generation capacity to

maintain the reliability level. On the other hand, PEVs are more flexible than traditional

load, because the majority of drivers return home early in the evening, and may not have a

preference about the exact time when their vehicles will be charged, as long as the vehicles are

ready for use by the next morning. To utilize this flexibility, appropriate charging control and

management are required. Such a role could be played by PEV aggregators—either existing

utilities that will offer new financial contracts specific for PEV loads, or new for-profit entities

that will participate in the wholesale electricity market [4]. Understanding the potential impacts

on distribution systems from aggregator-controlled PEVs is important for adapting planning

and operation procedures, thereby accelerating the adoption of PEVs. In particular, this

paper studies potential distribution system impacts from light-duty PEVs under the control of

aggregators whose objective is the maximization of energy trading-related profits.

The rest of this paper is organized as follows: In Section 6.2, key assumptions and assessment

tools are presented. Section 6.3 proposes the evaluation method, where the uncertainty in

the connecting network location and individual PEV daily power consumption are taken into

account. In Section 6.4, simulation results are discussed. Section 6.5 concludes the paper.

6.2 Key Assumptions and Assessment Tools

Aggregated PEVs can be used to provide ancillary services to the power system [4]. Revenue

maximization from frequency regulation (one of the possible ancillary services) has been studied

in [53, 54]. In contrast to previous work, the aggregators considered herein wish to maximize

their profits from energy trading [66]. Such PEV aggregators will purchase the electric energy

at wholesale by participating in the day-ahead markets, and then resell it to PEV owners at a

predetermined fixed rate. The contracts will stipulate that PEVs are restricted to be charged

only during off-peak hours, e.g., from 10 p.m. to 7 a.m. (This is reasonable because most of the

vehicles are not in use and the wholesale electricity is inexpensive during this period.) Also,
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aggregators are required to maximize the state of charge of the batteries within the specified

charging period. As a reward for being restricted to a certain charging period and releasing

the control of charging, PEV owners will receive a fixed retail rate which should be lower than

the normal retail rate, and even lower than off-peak (time-of-use) rate for traditional non-PEV

load. Therefore, the aggregator’s profit will be maximized when the purchased energy cost will

be minimum.

To achieve this, it is assumed that the aggregator utilizes advanced forecasting techniques

for the day-ahead electricity locational marginal prices (LMPs), such as the ones presented

in [57–60]. It is important to note that the LMP forecast’s absolute value is not critical.

Rather, for cost minimization, it is the ranking of the hourly LMPs that is critical, and should

be predicted as accurately as possible [66].

In addition, the aggregator needs the statistics of electric energy consumption, charging

duration, and arrival and departure time of the PEV fleet under control. Such data can be

obtained by monitoring the actual composition, travel pattern, and energy consumption of

the fleet as the penetration of PEVs increases in the future. For this analysis, synthetic data

are generated by using the 2009 National Household Travel Survey (NHTS) database [34] in

conjunction with certain assumptions about PEV drivetrain configuration and charger sizes [48].

It should be noted that this study only considers light-duty vehicles1, which account for ca.

96% of household vehicles. Other vehicles, such as motorcycles, or other types of trucks are

neglected.

The electric distribution system is modeled using one of the prototypical feeders provided

by the Pacific Northwest National Laboratory (PNNL), which has developed a taxonomy of 24

prototypical feeder models that contain the fundamental characteristics of radial distribution

feeders found in the U.S., based on 575 distribution feeders from 151 separate substations from

different utilities across the nation [67, 68]. GridLAB-D [69] is used as a simulation platform.

The PNNL feeder named R1-12.47-4 (feeder No. 4 with 12.47 kV primary distribution voltage

in climate region 1) is selected for evaluation. This feeder serves 793 end-user loads, which

1The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles
(SUVs), and trucks with gross vehicle weight less than 8,500 pounds [29].
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include 652 residential and 141 commercial loads. The feeder is modeled with high fidelity

from the substation down to the individual customer meters, including detailed end-use load

representations (heating, ventilation, and air conditioning, and various other constant power,

current, and impedance loads). It should be noted that some of the provided distribution

transformers by PNNL were found to be improperly rated considering the load they serve,

and had to be changed (their ratings had to be increased). The determination of appropriate

distribution transformer size can be formulated as an optimization problem [70, 71]. In this

study, the distribution transformers are reselected from the standard ratings [72] so that the

insulation life (estimated based on IEEE Standard C57.91 [73]) is roughly no less than the

normal insulation life without any PEV load.

6.3 Evaluation Method

The potential distribution system impacts from aggregator-controlled PEVs are studied for

three PEV penetration levels: 10%, 25%, and 50%. Due to the uncertainty in the network

location and individual PEV daily power consumption, the PEV load will exhibit a large

degree of spatial and temporal diversity. Hence, a stochastic analysis is performed using 100

Monte Carlo simulations for each penetration level. In an uncontrolled charging scenario, the

evaluation of PEV impacts during summer peak-hour days would be critical, because PEV load

is superimposed on the traditional load peaks. However, for aggregator-controlled PEVs, where

charging occurs during off-peak hours, it is not necessary to focus on summer peak-hour days.

So, 100 randomly selected days selected from 2009 are used in the Monte Carlo simulations.

6.3.1 Spatial Diversity

To take into account the uncertainty of a PEV’s connecting location, the probability mass

function (PMF) of number of vehicles for a random household in the U.S. is obtained from [34].

In each simulation, the number of vehicles per residence is randomly generated based on the

PMF in Table 6.1. The probability for a random vehicle to be a PEV is (by definition) the

PEV penetration level.



73

Table 6.1 Vehicles per Household

Veh/HH 0 1 2 3 4 5 ≥ 6

Prob. 0.087 0.323 0.363 0.144 0.053 0.019 0.01

6.3.2 Temporal Diversity

PEV aggregators who desire to maximize their profits from energy trading will schedule

and dispatch the PEV load so that their energy cost is reduced (ideally minimized), using

forecast information about the wholesale electricity price and the charging demand for the

coming day. A PEV load repository is developed using the algorithms proposed in [66] with

the travel pattern obtained from the 2009 NHTS, and certain assumed drivetrain parameters

and charging circuits. This repository includes 141011 daily PEV load curves (including PEVs

that do not travel on that specific day). The daily power consumption of individual PEVs in

the distribution feeder is randomly selected from the repository.
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Figure 6.1 LMP and average PEV load.

Figure 6.1 depicts the average load per PEV within the repository that would be obtained

under the energy cost minimization control strategy with a hypothetical day-ahead LMP vari-

ation. In the day-ahead market, the electricity price changes on an hourly basis. However, the



74

aggregator runs its scheduling and dispatch algorithms at a finer time resolution, say, using

one minute-long time slots. So, all time slots of each hour have equal LMP. Nevertheless, the

earlier time slots are favored because the sooner the vehicle starts charging, the more likely

it can be fully charged by its departure time. Moreover, most PEVs’ charging time is not an

integer number of hours so, at the beginning of each hour, the PEV load has a relatively large

spike that decreases with time due to those PEVs that finish charging before the hour is over.

6.4 Results and Discussion

This section discusses the simulation results regarding to asset loading, customer voltage,

unbalanced phase loading, and system losses.

6.4.1 Loading

The daily peak of the power consumption of this feeder is below 60% of its rating (5334 kVA)

except a small number of days in a year. It is not uncommon to design a feeder in such a way

to ensure the ability to transfer load from adjacent feeders under emergency conditions. Due

to the large amount of remaining capacity, adding PEV load during off-peak hours will not

overload either substation transformer or primary trunks that are far away from the customer

end. For example, the average apparent power consumption (in percentage of the feeder rating)

at the substation under various penetration levels is shown in Figure 6.2.

However, the assets closest to customers are sensitive to overloading because i) no redun-

dant capacity is reserved for reliability purposes; ii) they do not benefit much from spatial and

temporal diversity [49]. For example, the average apparent power consumption (in percent-

age of the rating) for transformer 14—a center-tapped (3-wire single-phase) transformer that

steps voltage from 7.2 kV down to 120 V and 240 V for 30 residential houses—under various

penetration levels is shown in Figure 6.3. While exceeding normal ratings will not necessarily

result in an immediate device failure, it does effectively reduce the insulation lifespan of the

transformer [73]. In [25], it was shown that a distribution transformer’s yearly failure rate could

increase from 10% to 17%, which would increase utilities’ expenses.
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Figure 6.2 Average apparent power consumption at substation.
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Figure 6.3 Average apparent power consumption for transformer 14.

6.4.2 Voltage Levels

The ANSI standard C84.1 [74] requires that the service voltage2 remains within five percent

from the nominal value (114∼126 V) at the customer level. Without PEVs and under mild

2Service voltage is the voltage at the point where the electrical system of the supplier and the electrical
system of the user are connected.
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penetration levels, such a requirement is satisfied for all the residential customers within the

distribution system in all the simulations. However, low-voltage violations are detected for

50% penetration level. Figure 6.4 shows the minimum voltage of the distribution system in

one simulation. As can be seen, the voltage is lower than 114 V for some residential customers

for approximately 25 minutes, and occurs in 9 out of 100 simulations. This indicates that

aggregator-controlled PEVs could create voltage problems.
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Figure 6.4 Minimum voltage within the distribution system.

6.4.3 Phase Unbalance

Although the actual distribution feeders are typically unbalanced in nature, aggregator-

controlled PEVs could exacerbate this issue during the charging period. As an example,

apparent power consumption in each phase at the substation from one simulation is shown

in Figure 6.5. The load unbalance deteriorates the performance of the distribution system.

Unbalanced loads cause voltage asymmetry which is harmful for customers’ three-phase load,

excessive losses and heating in three-phase electric machines and transformers, and inefficient

utilization of feeder capacity [75]. Zero-sequence currents resulting from the unbalanced loads

can cause not only extra power losses in neutral lines but also protection and interference prob-

lems [76]. In addition, zero-sequence currents may interfere with neighboring communication
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circuits and induce voltages in gas pipelines through inductive coupling [77]. Possible measures

to mitigate the above negative impacts include reactive power compensation [78] and feeder

reconfiguration [79].
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Figure 6.5 Average apparent power consumption in each phase.

6.4.4 Losses

The added PEV load will increase the system’s ohmic losses. However, for the feeder under

study, it is found that the distribution losses are less than one percent of the overall power

consumption. (This low percentage is consistent with what is reported in [61].) The additional

losses from charging PEVs are negligible. It should be noted that the losses could be higher

for other distribution systems.

6.4.5 Recommendations

These negative impacts could be mitigated by modifying the control strategy. The perfor-

mance metric of interest (such as asset loading, customer voltage, or system losses) could be

perhaps incorporated into the optimization constraints or the objective function. The desired

power consumption of each individual PEV from the optimization results can be realized by

modulating the charging power magnitude (for chargers with such capability) or adjusting the
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charging duration (turning the chargers on and off) [54]. However, this can reduce the aggre-

gators’ profits from energy trading. Without suitable incentives (or regulations), aggregators

(especially those who do not have an interest in maintaining the distribution system’s reliabil-

ity) will have no motivation to modify their control strategy. Finally, the associated impact in

battery lifespan from frequent charging cycles is another concern.

6.5 Conclusion

This paper proposes a stochastic simulation method to evaluate the potential distribution

system impacts from aggregator-controlled PEVs. The simulation results indicate that appro-

priate optimization and control algorithms might be beneficial in order to avoid the negative

impacts caused by the PEV load.
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7. MODELING LIGHT-DUTY PLUG-IN ELECTRIC VEHICLES FOR

NATIONAL ENERGY AND TRANSPORTATION PLANNING

A paper to be submitted

Di Wu and Dionysios C. Aliprantis

Abstract

This paper presents models of light-duty plug-in electric vehicles, appropriate for conducting

long-term national-level planning studies of the energy and transportation sectors. Four models

of varying degree of complexity are set forth. Parameters for the models are obtained from a

variety of sources, including the U.S. National Household Travel Survey. Three case studies of

integrated energy and transportation planning are performed to illustrate portfolios of optimum

investments in the two sectors over a 40-year horizon, with and without the introduction of

plug-in electric vehicles in the fleet.

Index Terms

Energy planning, infrastructure, plug-in electric vehicles.

Nomenclature

av Equivalent all-electric range of a plug-in electric vehicle (PEV) of technology

type v.

costVehInvv(t) Investment cost (in today’s U.S. dollars) per light-duty vehicle (LDV) of tech-

nology type v at time t ∈ TLDV.
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dE LDV
i (t) Demand for energy from LDVs at node i (i ∈ Nelec or i ∈ Ngas) at time t

(t ∈ Telec or t ∈ Tgas).

dLDV
j (t) Demand for LDVs (cumulative number) at node j ∈ NLDV at time t ∈ TLDV.

dv Charge-depleting range (CDR) of a PEV of technology type v.

eelec(dv, ξv) Average daily electric energy demand (from the high-voltage transmission

system) per PEV of CDR dv and fuel displacement factor (FDF) ξv.

egas(dv, ξv) Average daily gasoline demand (gallons) per LDV of CDR dv and FDF ξv;

could represent gasoline demand of conventional and hybrid LDVs, which

have dv = 0.

ej,v(t) Average energy demand per LDV of technology type v at node j ∈ NLDV at

time t (t ∈ Telec or t ∈ Tgas).

fx Probability density function (PDF) of continuous random variable x, or prob-

ability mass function (PMF) of discrete random variable x.

fx|y Conditional PDF (or PMF) of random variable x given y.

G Vehicle group, according to annual miles traveled.

htr,v Tractive energy per mile at the wheels for a vehicle of technology type v.

I[·] Indicator function that equals to 1, if the condition in the bracket holds, or

0, otherwise.

m A vehicle’s miles traveled on a given day.

mcd(m, dv) Miles traveled in charge-depleting mode for a PEV of CDR dv that traveled

m miles on a given day.

mavg
cd (dv) Average (per PEV of CDR dv) daily miles traveled in charge-depleting mode.

mcs(m, dv) Miles traveled in charge-sustaining mode for a PEV of CDR dv that traveled

m miles on a given day.

mavg
cs (dv) Average (per PEV of CDR dv) daily miles traveled in charge-sustaining mode.

M A vehicle’s annual miles traveled.

MPGv Fuel economy (miles per gallon) for vehicle of technology type v. For hybrid

electric vehicles, this represents the fuel economy in charge-sustaining mode.

Nelec Set of electricity network nodes.
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Ngas Set of gasoline network nodes.

NLDV Set of LDV network nodes.

N i
LDV Subset of NLDV containing nodes that create an energy demand at node i

(i ∈ Nelec or i ∈ Ngas).

r Real discount rate.

t Vector that defines time for subsystem s, t = [t1, t2, . . . , tzs ] ∈ Ts. The

dimension of the vector (zs) varies among subsystems.

Telec Domain of time for the electricity subsystem.

Tgas Domain of time for the gasoline subsystem.

TLDV Domain of time for the LDV subsystem.

Ts Domain of time for subsystem s. The domain is divided into zs levels of time

scales, i.e., Ts = [1, . . . ,T1]×[1, . . . ,T2]×[1, . . . ,Tzs ], where zs can vary among

subsystems. For example, in this study, for the natural gas subsystem, time is

divided into “years” and “months”; for the electricity subsystem, simulation

time is divided into “years”, “months”, and three subdivisions of a month

(see Section 7.2).

v Vehicle technology type, v ∈ V.

vehCumj,v(t) Cumulative number of LDVs of technology type v at node j ∈ NLDV at

time t ∈ TLDV.

vehInitj,v(t) Number of remaining LDVs of technology type v at node j ∈ NLDV at time t ∈

TLDV from the initially existing ones, decreasing monotonically over time.

vehInvj,v(t) Investment (number) in new LDVs (i.e., new LDVs produced) of technology

type v at node j ∈ NLDV at time t ∈ TLDV.

vehLifev(t) Lifetime (years) of an LDV of technology type v produced at time t ∈ TLDV.

V Set of LDV technologies, including conventional gasoline vehicles, hybrid elec-

tric vehicles, plug-in hybrid electric vehicles, and pure electric vehicles.

ηv Energy conversion efficiency for PEVs of technology type v, from high-voltage

electricity to kinetic energy at the wheels.

ξv Fuel displacement factor (FDF) in charge-depleting mode for PEVs of tech-
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nology type v, which represents the fraction of tractive energy obtained from

the battery pack in charge-depleting mode.

7.1 Introduction

In the United States, the two largest consumers of energy are the electricity and trans-

portation sectors. To power the electric grid, approximately 40 Quads of energy are ab-

sorbed annually, obtained from a mix of primary energy sources such as coal, natural gas,

and uranium, whereas transportation uses approximately 27 Quads, mostly extracted from

petroleum [80]. Notably, as of today there is very little interdependence between the two sec-

tors, since petroleum provides but a fraction of the overall electricity in the U.S., and the power

grid provides very little energy for transportation purposes. However, this is bound to change

in the U.S. and other nations with the electrification of the transportation sector, which will

involve the introduction of potentially millions of plug-in electric vehicles (PEVs) in the fleet of

light-duty vehicles (LDVs). A PEV can be either a plug-in hybrid electric vehicle (PHEV) or

a pure battery electric vehicle (EV). LDVs are defined as cars and light trucks, including mini-

vans, sport utility vehicles, and trucks with gross vehicle weight less than 8,500 pounds [29].

They account for the majority of highway vehicle miles traveled, energy consumed by highway

travel modes, and carbon dioxide emissions from on-road sources.

A major consequence of such a technological shift will be the reduction of our dependence on

petroleum, which is an insecure and generally unsustainable energy source, and a correspond-

ing increase of our dependence on the electric grid and its primary energy sources, including

renewable resources such as hydro, wind, and solar energy. Hence, further investments will be

necessary in the electric grid to support this additional load, and the operational costs of the

electricity sector will change according to the mix of generation technologies adopted. On the

other hand, the investment costs in the transportation sector will be different than the ones

that would be incurred by conventional vehicles. Moreover, emissions from vehicle tailpipes

will shift to power plants, thus affecting the net emissions of the integrated system.

This work sets forth four PEV models appropriate for studying the national energy and

transportation infrastructures for long-term planning purposes in an integrated manner. The
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models are implemented within an advanced planning tool called NETPLAN that has been

recently developed at Iowa State University [81–83]. NETPLAN utilizes models of an array of

power generation technologies, and numerous details about the existing energy transport and

storage networks as well as the transportation system in the U.S. The proposed PEV models

could be adapted for other planning software, such as the MARKAL/TIMES suite [84], the

National Energy Modeling System (NEMS) [85], and the Regional Energy Deployment System

(ReEDS) [86], which currently do not have this kind of modeling capability.

Previous related system-level work on the integration of PEVs with the power system can

be classified according to the problem that has been addressed as follows: (i) charging control

strategies and algorithms with various objectives [53, 54, 61, 66, 87–89]; (ii) load estimation

at the distribution level [90–93]; and (iii) load estimation at the transmission level [21–23,

48, 51, 94–96]. The methods and results in the first two categories are not appropriate for

studying the long-term national-scale planning problem at hand. The studies in the third

category are more suitable, even though the level of modeling therein usually corresponds to

the simplest of the four models that are proposed in this paper (Model 0.0). Furthermore, PEV

models have not been expressly developed for studying the energy and transportation sectors

in an integrated manner. For instance, the LDV submodule of the transportation module of

NEMS [97] estimates the gasoline consumption of PEVs, without explicitly accounting for their

electricity consumption.

The paper is organized as follows: Section 7.2 briefly describes the modeling approach of

the integrated energy and transportation systems of NETPLAN. In Section 7.3, four LDV

models for national energy and transportation planning are presented. Section 7.4 illustrates

the implementation of the most advanced model. In Section 7.5, three case studies are discussed.

Section 7.6 concludes the paper.

7.2 Modeling approach background

The modeling framework of NETPLAN permits long-term planning analyses at the national

scale of the energy and transportation systems in an integrated fashion. This is depicted

within the dashed frame in Figure 7.1, wherein the energy system includes coal, natural gas,
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Figure 7.1 Interdependent energy and transportation systems.

electricity, and petroleum subsystems, the transportation system includes freight and passenger

transportation, and “other sectors” refers to the residential, commercial, and industrial sectors.

Details about NETPLAN can be found in [82,83,98,99], so only a brief description is provided

here.

The integrated system is modeled using networks defined by nodes and arcs. Within the

energy system, nodes are used to represent points where the law of conservation of energy is

enforced; they correspond to geographical region and type of energy. For example, natural

gas and electricity demand at the same location is modeled using two separate nodes. Arcs

connect nodes, and represent energy conversion paths (e.g., power plants) or geographical flows

(e.g., natural gas pipelines). Arc flows are limited by their designated capacity, which can be

increased by investment. The freight transport system is modeled as a multicommodity flow

network, where flows are measured in tons. Energy conversion or transport is modeled to occur

within infrastructures (e.g., power plants and natural gas pipelines). However, the modeling of

commodity movements involves either infrastructures (e.g., rail and roads) or fleets (e.g., trains

and heavy-duty trucks), resulting in two layers: multicommodity flows that are limited by fleet

capacities, and fleet flows that are limited by infrastructure capacities. Although nodes and

arcs could be formed at an arbitrary level of granularity, usually aggregations are used. The

dimensions of the energy and transportation networks used in this study to model the U.S.
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systems are provided in Table 7.8 on page 99.

This type of network modeling leads to the formulation of a linear program that minimizes

the present value of the combined energy and transportation infrastructures’ investment and

operational costs over a specified period of time (on the order of years or decades), under con-

straints related to meeting demands on energy and transportation while satisfying the networks’

capacity constraints:

minimize present value of {investment + operational} costs

subject to

Energy demand,

Transportation demand,

Capacity constraints of energy network,

Capacity constraints of transportation network.

(7.1)

The integrated system cost in the objective function accounts for: investments in the energy and

transportation infrastructures; cost of primary energy extraction at the sources; operational

costs of power plants including labor and maintenance (O&M costs); and operational costs of

the transportation sector. In particular, fuel costs are accounted for at the sources and during

the transportation of the primary energy carriers. Therefore, the retail cost of electricity or

the fuel expenses at the pump of individual vehicle drivers are not calculated. The decision

variables include capacity investments in energy infrastructure, transportation infrastructure,

and transportation fleets (such as trains, heavy-duty trucks, and LDVs), and operational flows

of energy and freight.

In NETPLAN, rather than selecting a single time step that is small enough to capture the

dynamics of the smallest subsystem, time steps of different size are used for each subsystem in

order to capture the essential dynamics and to eliminate the burden of redundant simulation

details [83, 100]. The longest time scale is in terms of years (i.e., t1 has units of years); this

is common to all subsystems. A yearly time step is chosen for the coal subsystem due to

its relatively slow dynamics. A monthly time step is chosen for the natural gas subsystem

due to its faster dynamics. However, for the dynamics of the electric system, a time step
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of one month is inappropriately large. For example, if such a time step were to be used,

one could only use monthly average electric demands to represent load levels. The resulting

model would be unable to represent periods of high demand when relatively more expensive

peaking units (typically, natural gas plants) are committed. Therefore, the model will tend

to overestimate the generation from coal-fired units and underestimate the generation from

natural gas units. An hourly time step would be able to take most of the demand variability into

account. Nevertheless, due to weak time coupling and redundant operating conditions [101],

hours with a similar demand level can be aggregated to reduce the computational burden.

This leads to the well known load duration curve (LDC), which is obtained by ordering the

demand data in descending order of magnitude, rather than chronologically. Here, the LDC is

discretized into three parts as described in Section 7.5, which represent the “time steps” of the

electrical subsystem (strictly speaking these do not represent steps in time).

7.3 LDV modeling approach

The LDV technologies considered include conventional gasoline vehicles (CVs), hybrid elec-

tric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and pure electric vehicles (EVs).

However, the proposed methods could be used for other vehicle technologies, such as natural

gas, hydrogen fuel cell, and biodiesel vehicles, by estimating their energy demand and adding

it to the appropriate network. A yearly time step is selected for the LDV subsystem, whose

domain of simulation time is denoted by TLDV.

The proposed LDV models are classified with respect to two aspects, namely:

1. whether the share of each vehicle technology type among new LDVs is exogenously provided,

or in other words, whether the numbers of new LDVs of every technology type at each node

over time (vehInvj,v(t)) are external input parameters or decision variables;

2. whether LDV groups are formed to represent different travel patterns.

The four models proposed for LDVs are outlined in Table 7.1. The models are assigned a

numerical designation as x.y, with x and y ∈ {0, 1}. The choice of model is left to the user,

who might be willing to adopt a lower ranked model and thus sacrifice accuracy due to lack of
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Table 7.1 Classification of proposed LDV models

Is vehInvj,v(t) a decision variable?
Are LDV groups formed to repre-

sent different travel patterns?

Model 0.0 No No

Model 0.1 No Yes

Model 1.0 Yes No

Model 1.1 Yes Yes

data or for increased computational efficiency.

The total investment cost for LDVs can be expressed as

costLDVInv =
∑

t∈TLDV

∑
j∈NLDV

∑
v∈V

(1 + r)−t1costVehInvv(t)vehInvj,v(t) , (7.2)

which is added to the total cost of the integrated system. NETPLAN minimizes the present

value of cost using a constant real discount rate r [102]. The parameters r and costVehInvv(t)

are specified by the user. In Models 0.0 and 0.1, vehInvj,v(t) is an input parameter; in Models

1.0 and 1.1, it becomes a decision variable.

The cumulative number of vehicles for each technology type v ∈ V at node j ∈ NLDV at

time t ∈ TLDV can be expressed as

vehCumj,v(t) = vehInitj,v(t) +
∑

t′∈TLDV

vehInvj,v(t
′) · I

[
0 ≤ t1 − t′1 < vehLifev(t

′)
]

, (7.3)

where vehInitj,v(t) and vehLifev(t) are user-specified. The LDVs create demand for electricity

and gasoline, and thus affect the underlying infrastructure.

The demand for electric energy (or gasoline) at node i ∈ Nelec (or i ∈ Ngas) during time

τ ∈ Telec (or τ ∈ Tgas) from LDVs on the road during time t ∈ TLDV (obviously, t1 must be

equal to τ1) can be expressed as

dE LDV
i (τ ) =

∑
j∈N i

LDV

∑
v∈V

ej,v(τ )vehCumj,v(t) , (7.4)

where the per-vehicle energy demands ej,v(t) are used-defined. This is added to the energy

demand from other consumers at the corresponding electricity (or gasoline) node.

In Models 0.0 and 0.1, since vehInvj,v(t) is exogenously provided, the calculations described

by (7.2) through (7.4) can be performed prior to solving the optimization problem. The result-
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ing costLDVInv enters the objective cost function as a constant term, and dE LDV
i (τ ) is added

to the energy demand at the corresponding network nodes.

In Models 1.0 and 1.1, the vehInvj,v(t) are decision variables, which affect the objective

function via (7.2). The following constraints are added to ensure that the cumulative demand

for LDVs at each node j ∈ NLDV at time t ∈ TLDV can be met:

∑
v∈V

vehCumj,v(t) = dLDV
j (t) , (7.5)

where vehCumj,v(t) is expressed in (7.3), and dLDV
j (t) is an input parameter.

It should be noted that the LDV nodes j in Models 0.0 and 1.0 correspond to distinct

geographical regions. But in Models 0.1 and 1.1, where LDV groups are formed to repre-

sent different travel patterns, each node j corresponds to a particular vehicle group within a

geographical region.

7.3.1 Model 0.0

Model 0.0 represents the simplest formulation, where vehInvj,v(t) is exogenously specified.

Forecasts of vehInvj,v(t) can be found in [103, 104]. Alternatively, one can use the forecasted

total LDV sales in conjunction with the projected CV, HEV, and PEV market penetration

(such as the ones in [105] and [22]) to obtain CV, HEV, and PEV annual sales first. The

expected PEV composition from an array of PEV technology types (e.g., PHEV20, PHEV40,

PHEV60, EV100) is then used to estimate vehInvj,v(t). The designation ‘PHEVav’ implies

that the vehicle’s equivalent all-electric range is av miles [27,28,106].

The operation of PEVs can be divided into the charge-depleting (CD) and charge-sustaining

(CS) mode [28, 63]. In CD mode, the vehicle is gradually depleting the electric energy of its

battery pack. The total distance a PHEV can travel in CD mode with a battery initially fully

charged is defined as its charge-depleting range (CDR). This is determined with standardized

testing procedures that are based on predetermined driving cycles [107]. Here, to simplify the

analysis, the “average” vehicle is considered, so that all parameters (except the miles driven)

correspond to their average values over the fleet. For the purposes of long-term national-

scale planning, this approximation should be sufficient. When the minimum state of charge
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is reached, a switch to the CS mode occurs, where the vehicle is operated similarly as an

HEV. The CD mode can be further classified as pure EV or blended mode, according to the

drivetrain design. In EV mode, all tractive energy is derived from electricity; in blended mode,

the internal combustion engine occasionally assists the electric motor in supplying the tractive

energy. The fuel displacement factor ξv represents the fraction of tractive energy obtained

from electricity in CD mode for technology type v. Therefore, a vehicle’s CDR is related to its

equivalent all-electric range by [28]

dv =
av
ξv

. (7.6)

Here, ej,v(t) is estimated using the analytical method proposed in [48], where the average

electric energy demands of different technology types are estimated using the travel pattern

obtained from the 2009 U.S. National Household Travel Survey (NHTS) [34]. Assuming that

the charging frequency is once per day (overnight) and that batteries are fully charged in the

morning, the miles traveled in CD mode can be expressed as a function of miles traveled (m)

and CDR (dv) by

mcd(m, dv) =


m for m ≤ dv ,

dv for m > dv .

(7.7)

The miles traveled in CS mode are

mcs(m, dv) =


0 for m ≤ dv ,

m− dv for m > dv .

(7.8)

Hence, the average (per vehicle) daily miles traveled in CD mode are

mavg
cd (dv) =

∫ dv

0
xfm(x) dx+ dv

∫ ∞
dv

fm(x) dx , (7.9)

and the average daily miles traveled in CS mode are

mavg
cs (dv) =

∫ ∞
dv

(x− dv)fm(x) dx . (7.10)

In Model 0.0, vehicle groups of different travel patterns are not formed, and each technology

type is assumed to be evenly distributed among LDVs irrespective of travel patterns. Therefore,

the function fm used in (7.9) and (7.10) is the PDF of daily miles traveled by all vehicles in

the NHTS.
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The average daily electric energy demand from the high-voltage transmission grid per vehicle

of technology type v is

eelec(dv, ξv) =
ξvhtr,vm

avg
cd (dv)

ηv
, (7.11)

where htr,v is the average tractive energy per mile at the wheels, and ηv is the grid-to-wheels

efficiency. The average daily gasoline demand per vehicle of technology type v is

egas(dv, ξv) =
(1− ξv)mavg

cd (dv) +mavg
cs (dv)

MPGv
. (7.12)

The average daily gasoline demand of conventional gasoline and hybrid electric vehicles is

obtained by dividing the average daily miles traveled by their fuel economy.

Once egas(dv, ξv) is known for each technology type v, the annual gasoline demand per LDV

for each node j ∈ Ngas (ej,v(t)) can be readily obtained by multiplication. Similarly, the electric

energy demand over a subdivision of a month per PEV at each node j ∈ Nelec (also denoted by

ej,v(t)) is found using the average daily electric energy consumption per vehicle (eelec(dv, ξv))

and an assumed distribution of charging energy among the subdivisions of the month (charging

is not uniform, but mostly occurs overnight).

7.3.2 Model 0.1

In Model 0.0, LDVs are not grouped according to their travel pattern, and it is assumed that

all technology types are evenly distributed among new LDVs irrespective of travel patterns.

In reality, however, different PEV technology types will not penetrate evenly among LDVs

with different travel patterns. It is reasonable to expect that LDV buyers will determine their

preferred vehicle type based on their travel needs, and other factors such as income, vehicle

price, fuel cost, environmental awareness, acceleration or other vehicle performance parameters,

vehicle design, comfortableness, safety considerations, brand preference, etc. Therefore, it is

expected that the penetration level of each technology type will vary among vehicle groups

with distinct travel patterns. Nevertheless, the problem of understanding LDV buyers’ choices

[108–110] is very complicated and beyond the scope of the present study. Here, a simple model

is used to capture the relation of a vehicle’s technology type to its travel demand.
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The determination of travel demand is complicated because vehicles do not travel the same

on a daily basis. For instance, some vehicles may travel 40 miles on weekdays but less than

5 miles during the weekend, or vice versa. However, the NHTS records vehicle trips for only one

designated sample day for each vehicle, which does not suffice to represent the travel pattern of

each individual vehicle in its entirety. To deal with this difficulty, the best estimate of annual

mileage provided in the 2009 NHTS Version 2.1 [111] is used to group vehicles with distinct

travel patterns. In order to capture the interdependency between vehicle type and travel

pattern, vehicles with similar annual miles traveled (M) are grouped together. As a result,

now LDV network nodes j correspond to combinations of groups and geographical regions.

In order to obtain vehInvj,v(t), a conditional probability mass function (PMF) of group

given the vehicle technology type, denoted by fG|v, can be assigned. Then, new LDVs of each

technology type are distributed among vehicle groups based on fG|v, resulting in vehInvj,v(t)

(recall that the index j in this model corresponds to a particular vehicle group in a region).

Alternatively, a conditional PMF of vehicle type given the group, denoted by fv|G, can be

assigned. For a given grouping, fG can be readily obtained from the NHTS. In this case, the

total LDV sales for each group and region every year (
∑

v vehInvj,v(t)) can be obtained using a

forecast of LDV sales in conjunction with fG, and vehInvj,v(t) is found using the assumed fv|G.

(For simplicity, it is assumed that all PMFs are the same among all geographical regions.)

It should be noted that vehicle grouping is based on the annual miles traveled M . Since

vehicle charging is performed on a daily basis, and vehicles travel differently every day, annual

data is not particularly useful when one needs to determine the daily consumption of electricity

and gasoline. In other words, the division of daily miles traveled m into mcd and mcs is not

readily found using M . Replacing m by M/365 will misrepresent the variance of daily miles

traveled, and will lead to an overestimation of electric energy demand and an underestimation

of gasoline demand from PHEVs. An illustrative example is provided in Table 7.2. As can be

seen, mcd and mcs need to be determined on a daily basis, and cannot be estimated using the

total miles traveled over a week (154 miles), since using the average miles traveled (22 miles)

would yield the wrong answer (the split would be 20 miles in CD mode vs. 2 miles in CS mode

instead of 15 miles and 7 miles, respectively).
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Table 7.2 Miles traveled in CD and CS modes for a PHEV with CDR of 20 miles

Day m mcd mcs

Mon 15 15 0

Tue 15 15 0

Wed 23 20 3

Thu 15 15 0

Fri 26 20 6

Sat 60 20 40

Sun 0 0 0

Total 154 105 49

Average 22 15 7

In order to estimate ej,v(t), the travel pattern of each vehicle group (fm|G) is extracted

first using NHTS data. The formulas of (7.9) through (7.12) are still valid, but fm|G rather

than fm should be used. Model 0.1 considers the correlation between the technology type of

new LDVs and travel pattern more carefully. The conditional PMF fG|v or fv|G is proposed

to capture this interdependency, which in turn enters into the estimation of vehInvj,v(t) and

ej,v(t). Presently, however, only a hypothetical “best guess” function fv|G or fG|v can be used.

7.3.3 Model 1.0

In Model 1.0, the composition of new LDVs added to the fleet is not exogenously predefined,

and so vehInvj,v(t) is added to the set of decision variables. Since LDV groups are not formed to

represent different travel patters, each LDV network node corresponds to geographical location

only. The demand for LDVs at node j during time t is modeled as an input parameter, denoted

by dLDV
j (t), which can be estimated based on historical and projected LDV sales. The method

for estimating ej,v(t) is the same as in Model 0.0.

7.3.4 Model 1.1

Model 1.1 is an improvement over Model 1.0, because LDVs are grouped according to annual

miles traveled. Each LDV network node j represents a geographical region and vehicle group

combination. This allows vehicle technologies to penetrate in different percentages among LDV

groups, and therefore enables NETPLAN to identify the optimal composition of LDVs in a less
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Table 7.3 Vehicles grouped by annual mileage

Annual mileage Percentage of total LDVs

Group 1 less than 10,000 miles 54%

Group 2 between 10,000 and 20,000 miles 34%

Group 3 20,000 miles and above 12%
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Figure 7.2 CDF of daily miles traveled for different vehicle groups.

constrained manner than Model 1.0. The estimation of dLDV
j (t) is based on fG and total

demand for LDVs in each geographical region. The estimation of ej,v(t) proceeds in the same

manner as in Model 0.1.

7.4 Model implementation

In this section, Model 1.1 is used as an example. LDVs are divided into three groups based

on their annual miles traveled, namely, less than 10,000 miles, between 10,000 and 20,000 miles,

and more than 20,000 miles, representing vehicles with low, medium, and high travel demand.

The PMF fG can be obtained from NHTS data, as in Table 7.3. This is later (in step 3 of

subsection 7.4.1) used to calculate dLDVj (t) based on the total LDV demand. Next, the travel

pattern is extracted for each group. For example, the cumulative distribution function (CDF)

of daily miles traveled for each vehicle group is shown in Figure 7.2. These travel patterns are

later used (in subsection 7.4.3) to estimate ej,v(t).
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7.4.1 Estimation of LDV demand

Depending on the modeling granularity of the electric and petroleum subsystems, demand

for LDVs can be modeled either at the state level or at a regional level, such as the supply

regions used in NEMS, which are based on the regions defined by the North American Elec-

tric Reliability Corporation [85]. Here, the latter approach is used, using the energy system

developed in [83], where the electricity subsystem is based on NEMS regions.

The estimation of vehInitj,v(t) and dLDVj (t) proceeds in three steps:

1. First, data are obtained for the entire U.S., i.e., estimates of
∑

j

∑
v vehInitj,v(t) and∑

j d
LDV
j (t).

The historical and projected LDV sales can be found in [112] and [103], respectively. The

expected vehicle lifespan is ca. 14 years for conventional gasoline vehicles, derived from data

in [112]. The estimates thus obtained of the existing conventional gasoline vehicles and the

cumulative demand for LDVs in the U.S. over the planning horizon are shown in Figure 7.3.
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Figure 7.3 Existing conventional gasoline vehicles and LDV demand in U.S.

2. Second, the distribution of LDVs among regions is found.

The present distribution of LDVs among different States can be found in [113], and can

be used to obtain the LDV distribution among the NEMS regions, as shown in Table 7.4.

Here, it is assumed that the ratio of LDV demand among regions will remain the same over

the planning horizon. Hence, the existing CVs and total LDV demand over the planning
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horizon are found for each region.

Table 7.4 LDV distribution among NEMS regions

Region Percentage

East Central Area Reliability Coordination Agreement (ECAR) 12.2%

Electric Reliability Council of Texas (ERCOT) 7.6%

Mid-Atlantic Area Council (MAAC) 9%

Mid-America Interconnected Network (MAIN) 6%

Mid-Continent Area Power Pool (MAPP) 5.8%

New York Power Pool (NY) 4.4%

New England Power Pool (NE) 4.9%

Florida Subregion of SERC (FL) 6.7%

Southeastern Electric Reliability Council Excluding Florida (STV) 14.7%

Southwest Power Pool (SPP) 5.7%

Northwest Pool (NWP) 6.2%

Rocky Mountain and Arizona-New Mexico Power Areas (RA) 3.1%

California-Southern Nevada Power Area (CNV) 13.7%

3. Third, the number of LDVs in each group of each region is determined.

The number of initial CVs and the demand of LDVs for each group in each region in each

year are obtained using the percentages listed in Table 7.3. Alternatively, one can use the

travel pattern of LDVs within each region rather than the average national travel pattern

to group vehicles, which could lead to more accurate results. The number of vehicle groups

could also vary, but the method remains essentially the same.

7.4.2 Alternative LDV technologies

The LDV technologies considered here are listed in Table 7.5. LDV cost is estimated using

information found in [114–116] and the prices of PEVs commercially available today. It is

assumed that the cost of vehicle technologies—except CVs—will linearly decrease with time

during the first 20 years due to advances in technology, and will remain the same for the

remaining years of the study. The lifespan is assumed to be vehLifev(t) = 14 years for all

v ∈ V. Battery replacement costs for PEVs over their lifespan can be included in the original

investment cost.
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Table 7.5 Vehicle technology parameters

Cost (thousand $)
Technology ξv dv Year 1 Year 20

Conventional N/A N/A 24 24

HEV N/A N/A 28 26

PHEV20 0.8 25 35 31

PHEV40 0.85 44 41 34

PHEV60 0.9 60 50 36

EV100 1 100 45 35

Table 7.6 Daily electricity (kWh) and gasoline (gallon) demand per LDV

Group 1 Group 2 Group 3
Technology Elec. Gas. Elec. Gas. Elec. Gas.

CV N/A 0.94 N/A 1.65 N/A 2.27

HEV N/A 0.64 N/A 1.14 N/A 1.56

PHEV20 4.10 0.29 6.14 0.60 6.79 0.97

PHEV40 5.80 0.17 9.41 0.36 11.06 0.65

PHEV60 6.79 0.12 11.39 0.25 14.03 0.47

EV100 9.20 N/A N/A N/A N/A N/A

7.4.3 Estimation of gasoline and electricity demand

The fuel economy and the tractive energy per mile are estimated on a fleet-wise basis,

i.e., by averaging the parameters of different kinds of vehicles (cars, SUVs, minivans, pick-up

trucks) according to the fleet composition. The average fuel economy for CVs is 22 miles per

gallon, based on information found in [29]. The average LDV tractive energy for PEVs is

htr,v = 0.31 kWh/mile, based on information found in [25,35,36]. Since the energy content per

gallon of gasoline is ca. 33.7 kWh [117] and the tank-to-wheels efficiency is ca. 0.25–0.3 [118],

the fuel economy of HEVs and PEVs in charge-sustaining mode is MPGv = 32 miles per

gallon. This is consistent with data about available HEV models found in [119]. Furthermore,

it is assumed that the efficiencies of charger, battery (roundtrip), on-board power electronics,

traction motor, and mechanical transmission plus accessory loads (e.g., air-conditioning, on-

board electronics) are: 95% [25], 92% [37], 95% [25, 38], 92% [38], and 88% [39], respectively;

losses within distribution systems are assumed to be 3%; this results in an overall grid-to-wheels

efficiency for PEVs of ηv = 65.2%. The estimated daily energy demands ej,v(t) are shown in
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Table 7.6. Here, it has been assumed that EV100 technology will only penetrate vehicles

in Group 1, whose drivers would not need to modify their driving behavior substantially to

accommodate their limited electric range (see Figure 7.2).

7.5 Case studies

In this section, Model 1.1 is used in a 40-year planning study of the U.S. energy and

transportation infrastructures. Three interesting case studies are presented:

Case 1: All LDVs are conventional gasoline vehicles over the planning horizon.

Case 2: The vehicle technologies listed in Table 7.6 are considered using Model 1.1.

Case 3: Same as Case 2 with an additional constraint imposed on net greenhouse gas (GHG)

emissions from electricity generation and LDVs.

The data of Section 7.4 are used. The modeling assumptions and data reported in [83]

are adapted for the other components of the U.S. energy and transportation systems. For the

electricity subsystem, the existing capacity, capacity factors, and economic parameters (shown

in Table 7.7) for various generation technologies are updated to reflect the current state using

statistics from [120]. The other subsystems are used without any modification whatsoever.

In particular, no investments or improvements are considered for the coal and natural gas

subsystems, nor for electricity transmission lines; the existing petroleum network is simplified

assuming a single node connected to an unlimited supply due to the lack of publicly available

data. A summary of the system network model is shown in Table 7.8.

Here, the LDC in each region is divided into three blocks (the first block has the highest load

level), as in Table 7.9. The magnitude of each block is the average load during the corresponding

time period, varying among nodes in the electricity subsystem. The LDCs among regions have

been obtained based on data customized for Iowa State University from the Ventyx Velocity

Suite [121]. PEV charging is assumed to take place mostly during off-peak hours, which leads

to the distribution shown in Table 7.9. The real discount rate is 5% and the annual non-PEV

load growth rate is 1%.
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Table 7.7 Electricity generation technologies and parameters

Technology Overnight capital Fixed O&M per year Variable O&M

(million $/GW) (million $/GW) ($/MWh)

PC 2,844 29.67 4.25

IGCC 3,221 48.90 6.87

NGCC 1,003 14.62 3.11

CT 665 6.70 9.87

Nuclear 5,335 88.78 2.04

Hydro 3,076 13.44 0

Inland wind 2,000 28.07 0

Offshore wind 5,975 53.33 0

Oil 1,270 15.67 3.21

Solar PV 3,000 16.70 0

Solar Thermal 4,692 64.00 0

Geothermal 4,141 84.27 9.64

PC = Pulverized coal

IGCC = Integrated gasification combined cycle

NGCC = Natural gas combined cycle

CT = Combustion turbine

PV = Photovoltaic

All studies are solved using NETPLAN [122], which utilizes IBM ILOG CPLEX Concert

Technology [123] to perform the linear optimization. The cost minimization problem is a linear

program with ca. 1.47 million decision variables and 745 thousand inequality constraints (the

exact number depends on the case study). The problem is solved by an Iowa State University

server with 24 2.67-GHz CPUs and 47 GB of RAM. The solution time varies between 40

minutes and 1.5 hour for Case 1, between 50 minutes and 2 hours for Case 2, and between 1.5

and 2.5 hours for Case 3.

The model is validated by comparing the simulation results in year 1 (the same initial point

for all three cases) with the actual data from 2009. Table 7.10 lists the initial generation capacity

from different primary energy sources in the simulation, which is the sum of the capacity in

each region (input parameters). Table 7.10 also juxtaposes simulation results in year 1 with the

actual data in 2009 regarding electricity generation and GHG emissions from different primary

energy sources. In particular, data for the capacity and electricity generation in 2009 were

obtained from [120], while the corresponding CO2 emissions were obtained from [124]. Non-
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Table 7.8 Nodes and arcs by subsystem

Subsystem Type Size

Coal Production 24 nodes

Demand 46 nodes

Natural gas Production 25 nodes

Demand 50 nodes

Pipelines 108 arcs

Import pipelines 9 arcs

Storage 30 nodes

Electricity Generation 168 arcs

Demand 13 nodes

Transmission lines 19 arcs

Import transmission 8 arcs

Petroleum Gasoline 13 nodes

Diesel 13 nodes

Freight Transportation 95 arcs

LDV Demand 13 (region) nodes

Table 7.9 Load duration curves blocks and PEV load distribution

1st 2nd 3rd

Duration 10% 40% 50%

PEV load distribution 0 20% 80%

CO2 GHG emissions from electricity generation are not considered here since they account for

less than 1% of total GHG emissions in the electricity sector.

As can be seen in Table 7.10, in year 1, generation and emissions from coal are overestimated,

whereas they are underestimated for natural gas and other energy sources. This is mainly

because only three blocks are used to represent the LDCs. In consequence, this reduces the

time period of high load level and shifts some generation from natural gas and other primary

energy sources to coal. With increased granularity in the LDC representation, the simulation

results are expected to become closer to the actual data at the expense of computational burden.

For example, representing the LDC by four blocks will increase by ca. 359 thousand the number

of decision variables and by ca. 140 thousand the number of constraints. According to [125],

the total GHG emissions from LDVs are 1.11 billion metric tons carbon dioxide equivalent

(BMTCO2e). In the simulation, the GHG emissions from LDVs in year 1 are 1.07 BMTCO2e,
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Table 7.10 Capacity, generation, and CO2 emissions in year 1 vs. 2009 data

Capacity (GW) Generation (TWh) Emissions (MMT)
Description Year 1 2009 Year 1 2009 Year 1 2009

Coal 319 314 2,086 1,756 1,911 1,742

Natural gas 408 401 548 921 210 373

Nuclear 103 101 805 799 N/A N/A

Hydro 78 79 275 273 N/A N/A

Others 102 130 124 201 9 45

Total 1,010 1,025 3,838 3,950 2,130 2,160

only 3% less than the actual data for 2009.

7.5.1 Case 1

Case 1 represents a business-as-usual scenario wherein all LDVs are assumed to be CVs over

the next 40 years, without introducing HEVs or PEVs. Consequently, all the energy for LDVs

is uniquely derived from petroleum. The annual gasoline consumption is shown in Figure 7.4,

and is proportional to the LDV demand (cf. Figure 7.3).
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Figure 7.4 Annual gasoline demand from LDVs in Case 1.

In this case, the minimum total cost of the integrated system is 18.33 trillion in today’s

U.S. dollars. The total GHG emissions from electricity generation and LDV tailpipes over the

next 40 years are 128.7 BMTCO2e. Here, time value of GHG emissions [126] is not considered,

and the above number is the sum of annual GHG emissions over the planning horizon.
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Figure 7.5 displays generation capacity mix over the planning horizon. Extra capacity

(15% of the peak load) is reserved for each region. The cumulative hydro generation capacity

is capped due to limited suitable sites, but new hydro generation plants are allowed to be built

when old ones retire. The maximum cumulative capacity of nuclear generation in each region

is assumed to be twice as high as today’s capacity. Generally, delaying the investment in new

generation helps to reduce the present value of total cost. Therefore, an investment will not be

made unless the existing capacity cannot meet the demand. At the beginning of the planning

period, as existing generation units retire, investments in nuclear, coal, and natural gas units

are made in order to meet the load. Under strict cost minimization, no investments in wind

are made for the first 24 years. Investment in wind is observed after year 24, due to a further

increase in load and since expansion of the coal subsystem is not allowed. Natural gas units

contribute increasingly to the required generation capacity, but at low capacity factor since

natural gas is more expensive (in terms of dollars per MMBTU) than other energy sources. (It

should be noted that natural gas prices in the U.S. have decreased considerably over the last

couple of years, and are now almost comparable to coal prices. These results were generated

using slightly older data, when natural gas was still twice as expensive as coal.)
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Figure 7.5 Generation capacity mix over time in Case 1.

Figure 7.6 displays the annual GHG emissions from electricity generation and LDV tailpipes.
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As can be seen, without HEVs and PEVs, GHG emissions from LDVs increase slightly over the

planning horizon, proportionally to the LDV demand (cf. Figure 7.3). GHG emissions from

electricity generation decrease at the beginning of the planning horizon due to the investment

in nuclear plants that replace coal and natural gas units.
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Figure 7.6 Annual GHG emissions (CO2 equivalent) in Case 1.

7.5.2 Case 2

In Case 2, all the vehicle technologies listed in Table 7.6 are considered using Model 1.1.

The resulting minimum cost is $17.32 trillion, 5.5% less than Case 1. The total GHG emissions

are 116.5 BMTCO2e, 9.6% less than Case 1. These results demonstrate that HEV and PEV

technology can help to reduce both system cost and GHG emissions substantially.

The national LDV fleet composition over time is shown in Figure 7.7, which indicates that

HEV technology is the most economical in the near future, with PEVs penetrating the market

in later years. The optimal LDV fleet composition per vehicle group is shown in Figure 7.8.

As CVs are gradually retired, investment in new LDVs must be made in order to satisfy the

demand. New LDVs can be selected among CVs, HEVs, and PEVs. If CVs are selected, then

capital cost is minimum but fuel cost is maximum. Switching from CVs to HEVs and then

to PEVs increases the capital cost but reduces the fuel cost. Because the reduction in fuel
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cost depends on the travel pattern, it can be observed that the optimal composition of LDVs

varies among groups. The additional electricity consumption due to PEV charging increases

not only capital and O&M costs in the electricity sector, but also the cost of extracting and

transporting primary energy sources (e.g., coal and natural gas). It should be noted that the

optimal composition of LDVs also varies slightly across regions (not shown here due to space

limitations) even among vehicles of the same travel pattern; this is because electric energy costs

vary among regions. The annual gasoline demand in Figure 7.9 drops as the penetration of

HEVs and PEVs rises, whereas electricity demand is increased significantly. At the end of the

planning horizon, electricity consumption from PEV charging accounts for 12% of the total

electricity consumption.
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Figure 7.7 LDV fleet composition over time in Case 2.

Figure 7.10 displays the generation capacity mix over the planning horizon. PEVs increase

the electricity load, especially during off-peak hours. Compared with Case 1 (cf. Figure 7.5),

the capacity of geothermal and wind energy increases, and NGCC generation capacity decreases

slightly.
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Figure 7.8 LDV fleet composition in each group over time in Case 2.
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Figure 7.9 Annual gasoline and electricity demand from LDVs in Case 2.
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Figure 7.10 Generation capacity mix over time in Case 2.
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Figure 7.11 Annual GHG emissions (CO2 equivalent) in Case 2.

Figure 7.11 displays annual GHG emissions from electricity generation and LDV tailpipes.

As the degree of electrification in LDVs increases, GHG emissions from LDV tailpipes drop

significantly over the years. Although the additional electricity consumption due to PEV

charging leads to increased CO2 emissions from the electricity sector, the total GHG emissions

still decrease compared with Case 1.
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7.5.3 Case 3

In Case 3, an additional constraint related to total annual GHG emissions is added. This is

based on the emissions reduction target proposed in the U.S. Congress, as derived by [99], which

corresponds to a linear decrease to ca. 26% of year-1 emissions in year 40. This is imposed as

an upper bound on total GHG emissions from electricity generation and LDVs.

In this case, the minimum cost of the integrated system is $17.47 trillion, only 0.9% more

than Case 2. The total GHG emissions are 81.8 BMTCO2e, 29.7% less than Case 2. Compared

with Case 2 (cf. Figure 7.7), the degree of electrification of LDVs in this case increases slightly

due to the additional constraint imposed on GHG emissions, as can be seen in Figure 7.12.

Compared with Case 2 (cf. Figure 7.9), the annual gasoline (electricity) demand is further

decreased (increased) over the time horizon, as shown in Figure 7.13. For comparison purposes,

Figure 7.14 illustrates the variation of system cost vs. GHG emissions from power plants and

LDV tailpipes for the three cases.
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Figure 7.12 LDV composition over time in Case 3.
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Figure 7.14 System cost and GHG emissions from power plants and LDV tailpipes.

Figure 7.15 displays the generation capacity mix over the planning horizon. Due to addi-

tional constraints on GHG emissions, compared with Case 2 (cf. Figure 7.10), a significant

amount of generation capacity is shifted from coal to wind (mostly) as well as CT and NGCC

(to a lesser extent). Figure 7.16 shows the annual GHG emissions from electricity generation

and LDV tailpipes. As can be seen, GHG emissions from LDV tailpipes further decrease com-

pared with Case 2. However, the majority of GHG emissions reduction comes from the shifting

of electricity generation from coal to renewable sources (wind and solar).
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Figure 7.15 Generation capacity mix over time in Case 3.
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7.5.4 Discussion

The case studies demonstrate the degree of interdependence between the energy and trans-

portation systems, especially after the introduction of PEVs, and the importance of performing

joint analyses. However, it is rather unrealistic to expect that an optimization by a single cen-

tral entity of the LDV fleet composition in terms of cost and sustainability can be performed

in a country like the U.S. The same argument can be made for the other decision variables,

e.g., investments in different types of generation plants, or the fleet of highway trucks. Such

decisions are made by individual market participants, and will be different from the optimal

solutions obtained from NETPLAN. Nevertheless, these solutions should be interpreted as

targets that could be achieved with the right planning and appropriate policy decisions [82].

Policies that can help approach the desired optimal solution (such as production tax credits for

wind generation, carbon taxes, or tax credits for PEV buyers) have been discussed in [127–130].

Certainly, modeling the national energy and transportation systems over such a long-term

planning period is an ambitious goal. The case study results should not be construed as

definitive but as indicative. Our main objective is to provide the mathematical framework and

basic modeling approach for incorporating PEVs in such studies. There are several aspects of

NETPLAN that could be further expanded or improved, as discussed in [83]. For example,

distribution-level investments have not been accounted for (e.g., for serving traditional non-PEV

or PEV load) when calculating the total system investment cost. Neither have we accounted

for transmission expansion investments, or environmental externalities.

7.6 Conclusion

This paper set forth LDV models for national energy and transportation planning studies.

The models were parameterized using an array of publicly available data, and three case studies

were presented. The results indicate that HEVs and PEVs can help to reduce the cost of the

integrated system, and can play a significant role in an effort to realize an aggressive reduction

target for GHG emissions. In future work, the proposed LDV models could be used to identify

optimal energy and transportation infrastructure designs under multiple objectives, including
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more detailed metrics of sustainability and resiliency.
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8. CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

First, a novel power electronics topology was proposed for grid-to-vehicle or vehicle-to-grid

power flow. This could be an enabling technology for active participation of PEVs in the

“smart grid,” allowing for instance PEVs to participate in ancillary service markets or to act

as distributed energy resources in micro-grids.

However, the main contributions of this dissertation are related to system-level analysis.

To this end, we used the most authoritative source of national travel patterns (i.e., the NHTS

database) as a means to assess the impacts of fleets of PEVs on the electric power system. Our

results were markedly different from previous work, because of the more careful consideration

of the vehicles’ travel patterns. Furthermore, we found that uncontrolled PEV charging will

almost certainly increase the power system’s peak load in the U.S.

In addition, algorithms were set forth for the scheduling and dispatch of electric power by

aggregators of PEV fleets, under the premise that their main objective would be the maximiza-

tion of energy trading profits. A major implication of our findings is that aggregator-controlled

PEVs could cause problems with system frequency regulation under current market regulations

and policies, due to a possible synchronization of the charging start times of massive numbers

of PEVs. We also discovered certain interesting facts about the pricing of electricity by PEV

aggregators, most notably that off-peak charging rates must be set substantially lower than

normal rates in order to attract owners.

Another important contribution is the development of PEV models for use in national

energy and transportation planning studies. Our findings indicate that PEVs can help reduce

the cost of the integrated system, and can play a significant role in efforts to achieve aggressive



112

reduction targets for carbon dioxide emissions.

Finally, at the distribution level, we proposed a simple stochastic simulation method for

simulating feeders with PEVs.

8.2 Directions of Future Research

This dissertation is not without limitations. For future research, we propose the following

directions:

• Cost comparison between vehicle-to-grid (V2G) and dedicated energy storage systems.

PEVs can participate in the market for various ancillary services to the power system, as

reported in [4]. Most of these can be realized to some extent through controlling vehicle

charging, without requiring V2G capability. Nevertheless, V2G would further increase the

capacity of the ancillary service that a PEV fleet could provide (e.g., for frequency regulation

and non-spinning reserve). Moveover, with V2G technology, the battery energy storage

of PEVs can be controlled to shift load from peak to off-peak hours. However, vehicle

batteries are not designed for power system support, since their main function is to assist

in propelling the vehicle. V2G-based ancillary services would reduce the lifespan of PEV

batteries further than their normal wear-and-tear, so the associated cost should be carefully

evaluated. Alternatively, these ancillary services could be provided using dedicated energy

storage systems. It would be of interest to perform a comprehensive comparison of cost-

effectiveness between the two schemes.

• Operating framework and strategies for PEV aggregators who participate in both energy

and ancillary markets.

PEV aggregators could provide various ancillary services to the power system. Revenue

maximization from frequency regulation through controlling PEVs with or without V2G

capability is discussed in [53] and [54], respectively. On the other hand, this dissertation

examined the actions of an aggregator who strives to maximize his energy trading-related

profits only. It is reasonable to expect that PEV aggregators would prefer to maximize the

combined revenue from both energy trading and ancillary services. This would require the
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formulation of an integrated optimization problem with constraints accounting for realistic

travel patterns, charging circuit rates, and even from local distribution feeders. The ag-

gregators could also engage in arbitrage through charging PEVs during off-peak hours and

discharging them during peak hours. Appropriate financial contracts should be designed so

that costs associated with battery lifespan reduction due to V2G services is recovered.

• Modeling PEVs in unit commitment.

In the U.S., ca. 50% of generating capacity participates in wholesale power markets [131].

Nevertheless, a significant portion of electricity is still managed by vertically integrated

utilities (in the U.S. and worldwide), which control the entire process of power generation,

transmission and distribution. In an electricity market, the PEV load would be represented

by PEV aggregators who would be bidding in the day-ahead market in a similar fashion as

other load serving entities. Therefore, as far as a market operator or balancing authority

is concerned, the unit commitment problem would be formulated and solved in the same

manner as previously. However, a vertically integrated utility could obtain the right to

control the PEV load through special financial contracts with PEV owners. An interesting

problem is how to reformulate the unit commitment problem so that flexible PEV load is

appropriately modeled and utilized.

• Coordinating PEVs with other distribution energy resources to improve the performance of

distribution systems.

The efficiency and reliability of distribution systems can be improved by coordinating PEVs

with other distributed energy resources (DERs), such as distributed generation, demand

response, and energy storage systems. For example, PEV charging could be controlled

to follow the power generation from intermittent distributed wind and solar generation.

The design of such systems would require investments in communication infrastructure, and

devising appropriate centralized or distributed control strategies.
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[82] J. McCalley, E. Ibáñez, Y. Gu, K. Gkritza, D. Aliprantis, L. Wang, A. Somani, and

R. Brown, “National long-term investment planning for energy and transportation sys-

tems,” in Proc. IEEE Power Energy Soc. Gen. Meet., Minneapolis, MN, Jul. 2010.

[83] E. Ibanez, “A multiobjective optimization approach to the operation and investment of

the national energy and transportation systems,” Ph.D. dissertation, Iowa State Univer-

sity, 2011.

[84] Energy Technology Systems Analysis Program. MARKAL and TIMES model

documentation. [Online]. Available: http://www.iea-etsap.org/web/Documentation.asp

[85] U.S. Energy Information Administration. The national energy modeling system: An

overview. [Online]. Available: http://www.eia.gov/oiaf/aeo/overview/electricity.html

[86] National Renewable Energy Laboratory. Regional Energy Deployment System (ReEDS).

[Online]. Available: http://www.nrel.gov/analysis/reeds

[87] S. Acha, T. C. Green, and N. Shah, “Effects of optimised plug-in hybrid vehicle charging

strategies on electric distribution network losses,” in Proc. IEEE Power Energy Soc.

Transm. Distrib. Conf. Expos., New Orleans, LA, Apr. 2010.

https://flowcharts.llnl.gov/energy.html
http://www.ece.iastate.edu/research/research-projects/netscore-21.html
http://www.ece.iastate.edu/research/research-projects/netscore-21.html
http://www.iea-etsap.org/web/Documentation.asp
http://www.eia.gov/oiaf/aeo/overview/electricity.html
http://www.nrel.gov/analysis/reeds


123

[88] M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill, “Coordinated scheduling of residen-

tial distributed energy resources to optimize smart home energy services,” IEEE Trans.

Smart Grid, vol. 1, no. 2, pp. 134–143, Sep. 2010.

[89] N. Rotering and M. Ilic, “Optimal charge control of plug-in hybrid electric vehicles in

deregulated electricity markets,” IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1021–1029,

Aug. 2011.

[90] A. Maitra, J. Taylor, D. Brooks, M. Alexander, and M. Duvall, “Integrating plug-in-

electric vehicles with the distribution system,” in Proc. IEEE Electr. Distrib. - Part 1,

CIRED 2009. 20th Int. Conf. Exhib., Prague, Czech Republic, Jun. 2009.

[91] C. Farmer, P. Hines, J. Dowds, and S. Blumsack, “Modeling the impact of increasing

PHEV loads on the distribution infrastructure,” in Proc. HICSS 43rd Hawaii Int. Conf.

Sys. Sci., Jan. 2010.
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