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(Abstract) 

Along with the growth of electricity demand and the penetration of intermittent renewable 

energy sources, electric power distribution networks will face more and more stress 

conditions, especially as electric vehicles (EVs) take a greater share in the personal 

automobile market. This may cause potential transformer overloads, feeder congestions, 

and undue circuit failures. 

Demand response (DR) is gaining attention as it can potentially relieve system stress 

conditions through load management. DR can possibly defer or avoid construction of 

large-scale power generation and transmission infrastructures by improving the electric 

utility load factor. This dissertation proposes to develop a planning tool for electric utilities 

that can provide an insight into the implementation of demand response at the end-user 

level. The proposed planning tool comprises control algorithms and a simulation platform 

that are designed to intelligently manage end-use loads to make the EV penetration 

transparent to an electric power distribution network. The proposed planning tool computes 

the demand response amount necessary at the circuit/substation level to alleviate the stress 

condition due to the penetration of EVs. Then, the demand response amount is allocated to 

the end-user as a basis for appliance scheduling and control. 

To accomplish the dissertation objective, electrical loads of both residential and 

commercial customers, as well as EV fleets, are modeled, validated, and aggregated with 

their control algorithms proposed at the appliance level. 
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A multi-layer demand response model is developed that takes into account both concerns 

from utilities for load reduction and concerns from consumers for convenience and privacy. 

An analytic hierarchy process (AHP)-based approach is put forward taking into 

consideration opinions from all stakeholders in order to determine the priority and 

importance of various consumer groups.  

The proposed demand response strategy takes into consideration dynamic priorities of the 

load based on the consumers’ real-time needs. Consumer comfort indices are introduced to 

measure the impact of demand response on consumers’ life style. The proposed indices can 

provide electric utilities a better estimation of the customer acceptance of a DR program, 

and the capability of a distribution circuit to accommodate EV penetration. 

Research findings from this work indicate that the proposed demand response strategy can 

fulfill the task of peak demand reduction with different EV penetration levels while 

maintaining consumer comfort levels. The study shows that the higher number of EVs in 

the distribution circuit will result in the higher DR impacts on consumers’ comfort. This 

indicates that when EV numbers exceed a certain threshold in an area, other measures 

besides demand response will have to be taken into account to tackle the peak demand 

growth. 

The proposed planning tool is expected to provide an insight into the implementation of 

demand response at the end-user level. It can be used to estimate demand response 

potentials and the benefit of implementing demand response at different DR penetration 

levels within a distribution circuit. The planning tool can be used by a utility to design 

proper incentives and encourage consumers to participate in DR programs. At the same 

time, the simulation results will give a better understanding of the DR impact on scheduling 

of electric appliances. 
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1. Introduction 

1.1. Background 

The advent of the smart grid has brought about many challenges and opportunities that 
allow the operation of traditional electric power systems to be more secure, reliable and 
efficient. The smart grid is a vision that makes this possible – at the transmission and 
distribution levels – the integration of various distributed energy sources, smart sensors and 
frequency monitoring devices, intelligent substation and distribution equipment, as well as 
– at the customer level – the use of smart appliances at home.  

With the smart grid, it is possible to perform load control using innovative demand 
response algorithms. This in turn helps alleviate power system stress conditions. Although 
the term ‘demand side management’ has been widely used since the 1980’s, the term 
‘demand response’ has recently been introduced together with the smart grid concept. 
Demand response is a customer action to control loads to meet certain peak reduction and 
energy savings targets. With demand response, the customer chooses what loads to be 
controlled and for how long. This is different from Demand Side Management (DSM) 
where loads are controlled by the electric utility and customers have no control beyond the 
initial consent.  

Recently, demand response has gained tremendous attention as it can potentially benefit 
power systems by relieving system stress conditions and possibly deferring or avoiding 
construction of large-scale power generation and transmission infrastructures. Federal 
Energy Regulatory Commission (FERC) has published a national action plan on demand 
response in 2010 that is designed to identify: “(a) requirements for technical assistance to 
States to allow them to maximize the amount of demand response resources that can be 
developed and deployed; (b) requirements for implementation of a national communication 
program; and (c) analytical tools, information, model regulatory, model contracts and other 
support for all stakeholders”.[1] In the FERC’s national action plan on demand response, 
several technical research issues have been identified as knowledge gaps. These issues 
include for example: 

- Better understanding of the optimal amount of consumer versus demand response 
provider control of appliances. 

- A study of how long demand response resources can be expected to provide resource 
adequacy and reliability benefits compared with other resources, such as generation, 
transmission, and storage. 

- A study of how demand response resources can be dispatched to support and balance 
variable generation from renewable energy. 
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According to a thorough literature search, there are still many knowledge gaps in the area 
of demand response. This dissertation puts an emphasis on the design of the demand 
response strategy that takes into consideration consumer’s comfort, convenience and 
privacy at a power distribution level.  

1.2. Objectives and Scope of the Dissertation 

The objective of the dissertation is to propose a planning tool for electric utilities that can 
provide an insight into the implementation of demand response at an end-use level. The 
proposed planning tool comprises control algorithms and a simulation platform that are 
designed to intelligently manage end-use loads and make the EV penetration transparent to 
an electric power distribution network. An analytic hierarchy process (AHP) based model is 
adopted to take into consideration opinions from multiple stakeholders. This is in order to 
determine the priority and importance of various demand categories, e.g. residential homes, 
office buildings, restaurants, and schools. The proposed demand response strategy also 
includes the control algorithms at the appliance level, considering their dynamic priorities 
based on the consumers’ real-time needs. The uniqueness of this work is the design of the 
multi-layer demand response strategy that takes into account consumers’ comfort and 
convenience, as well as respecting consumers’ privacy.  

To accomplish the dissertation objective, electrical loads of both residential and 
commercial customers are modeled, and their control algorithms are proposed at the 
appliance level. Controllable loads of interest include space heating/cooling (for both 
residential and commercial customers), as well as water heating, and clothes-drying loads 
(for residential customers). Electric Vehicles (EVs) are included as one load type that can 
be controlled as well. The proposed planning tool can be used to estimate demand response 
potentials and the benefit of implementing demand response at different DR penetration 
levels within a distribution circuit. The planning tool can be used by a utility to design 
proper incentives and encourage consumers to participate in DR programs. At the same 
time, the simulation results will give a better understanding of the DR impact on scheduling 
of electric appliances. 

The proposed work includes the following tasks: 

Task 1: Create a load profile for a distribution circuit that comprises both residential and 
small commercial customers. Industry and large commercial customers are not in the scope 
of this study. Specifically, the subtasks include: 

a) Develop simulation models of residential controllable loads, including space 
heating/space cooling, water heater, and clothes dryer, and validate the developed 
models.  

b) Develop simulation models of small commercial controllable loads, which are of 
the space heating/cooling type, and validate the developed models. 

c) Create non-controllable load profiles from the historical industry-accepted 
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database. 
d) Create a single house/single commercial load profile and diversify the inputs to 

obtain the distribution network load profile. This is the aggregation of the 
residential and commercial loads at the distribution level. 

Task 2: Develop EV models and EV fleet load profiles that represent EV penetration into a 
distribution power system. Specifically, the subtasks include: 

a) Develop EV models that represent the charge characteristics of EVs available in 
the U.S. market today, including GM Chevy Volt, Nissan Leaf and Tesla Roadster. 

b) Diversify the inputs (e.g. driving patterns, which determines EVs’ charge stages 
after driving, charging start time, and charging rate) and develop the load profile 
of the EV fleet at the distribution level. 

Task 3: Develop an approach for multi-layer demand response. Specifically, the subtasks 
include: 

a) Define a multi-layer demand response structure. 
b) Calculate load-shedding allocation at the distribution circuit level. This includes 

the determination of load shedding allocation for different consumer groups using 
AHP; and the determination of load shedding allocation for each consumer unit 
within the same consumer groups. 

c) Design a demand response strategy at the appliance level. 

Task 4: Perform simulations to show the applicability of the proposed planning tool to 
study the impact of demand response on load shape changes and consumer comfort. 

1.3. Contributions 

1.3.1. Modeling of Distribution Network Loads 

This dissertation proposes the detailed load models at the appliance level with 1-minute 
time interval for both residential and commercial buildings. The load models are validated 
against real data from different sources. The aggregated load profiles are created based on 
randomization of individual building data (e.g. house structure, hot water usage…), which 
is not available in the existing literature. The contribution in this part is the validated load 
models that are useful as a building block for demand response-related simulations and 
analyses in a distribution network. 

1.3.2.  Modeling of EV Penetration 

This dissertation proposes EV models with 5-minute time interval and aggregated to create 
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a fleet charge profile based on different driving patterns and randomized charge starting 
times. The contribution in this part is the development of the EV fleet charge profile to 
create realistic situations for load shape change with EV penetration. This work will be 
used to study the impact of EV penetration on a distribution network. 

1.3.3. Design of Demand Response (DR) Strategy 

This dissertation proposes a multi-layer demand response strategy, which has advantages 
over existing DR strategies that are mainly arbitrary, e.g. direct load control (DLC), which 
do not guarantee the desired load shape changes.  

From the utility side, the proposed approach keeps the utility informed of the demand as 
well as provides the confidence in load reduction when there is a demand limit. From the 
consumer side, the demand response is performed within buildings, leaving the customers 
with freedom to decide their load priorities and convenience preferences, which also helps 
to maintain customer privacy. 

Simulations of the demand response strategy will provide a basis for studying how 
demand-side resources can be controlled to support a demand limit request.  

1.3.4. DR Potential Analysis 

For all demand response programs, consumer comfort is always a concern since people 
don’t want their lifestyles to be disturbed. To expand demand response to a larger scale, 
consumer comfort must be highlighted to encourage their participation, especially from the 
residential sector. Generally speaking, the price-based demand response leaves consumers 
with many options to decide their response strategies. However, some of the 
incentive-based demand response may be arbitrary, providing no room for consumers to 
manage their own load based on their preferences.  

This dissertation proposes a method to analyze the demand response impact on the 
consumer comfort level. This approach is unique, and will provide a better understanding 
of the demand response potential in a distribution network. In other words, this can provide 
an estimate of how much demand response can be performed to accommodate EV 
penetration or tackle other power system stress conditions without violating a preset 
consumer comfort range. 

The analysis can benefit utilities by helping design proper incentives to encourage 
consumers to participate in DR programs; and provide consumers better understandings of 
trade-offs to enroll in a DR program so that they can manage their electricity usage 
accordingly. 
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2. Literature Search 

This chapter summarizes the literature search into two categories: the background 
information and the in-depth information. The background information section provides the 
basic information about smart grid, demand response (DR), electric vehicles (EVs) and 
analytic hierarchy process (AHP). The in-depth information section covers the research 
done in areas of demand response strategies and EV penetration into electric power systems. 
The knowledge gaps are identified in the last section. 

2.1. Background Information 

2.1.1. Smart Grid  

Over the past 50 years, social and economic developments have resulted in the increase in 
several requirements and challenges to the electricity network. These include the needs for 
more reliable electric power services, the integration of digitally controlled devices and 
renewable energy as well as the needs for mitigating the increased cyber security threats. 
As most of the implementations in the power industry today are still based on the 
traditional technology available 120 years ago, the power grid is inevitably facing the 
modern challenges with a traditional system. 

In response to the worldwide challenges in the power industry, smart grid is increasingly 
recognized as a perfect way to improve the energy efficiency of producing and using 
electricity in homes, businesses, and public institutions. Many believe that a smart grid is a 
critical foundation for reducing greenhouse gas emissions and transitioning to a low-carbon 
economy. Smart grid is also considered as a platform that allows an easier integration and 
higher penetration of renewable energy. 

As stated by the DOE’s general report ‘The Smart Grid: An Introduction’, a smart grid 
‘uses digital technology to improve reliability, security, and efficiency of the electric 
system: from large generation and delivery systems to electricity consumers and a growing 
number of distributed-generation and storage resources’ [2]. 

The smart grid definition is based upon the descriptions found in the Energy Independence 
and Security Act of 2007. The term “Smart Grid” refers to a modernization of the 
electricity delivery system so it monitors, protects and automatically optimizes the 
operation of its interconnected elements – from the central and distributed generator 
through the high-voltage network and distribution system, to industrial users and building 
automation systems, to energy storage installations and to end-use consumers and their 
thermostats, electric vehicles, appliances and other household devices. [3] 

The National Energy Technology Laboratory (NETL) provides the framework for the smart 
grid – ‘A System View of Modern Grid’, which is also widely accepted as the concept and 
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guideline for other participants in the field of smart grid. 

A. Characteristics of Smart Grid 

According to NETL [4], a smart or modern grid should have the following seven principle 
characteristics:  

1) Self-healing. The smart grid should be able to monitor its operation, detect, analyze 
and solve the problems and identify the potential problems to prevent the system 
collapse. When needed, it should be able to restore the services to its loads. The 
self-healing grid will minimize the disruption of service. 

2) Consumer participation. In a modern smart grid, the consumers could be well 
informed of the prices and the load situations by the intelligent components. Therefore 
the consumers are able to balance between their demands and the electricity system’s 
needs. The demand management, decision making, real time pricing will be needed to 
realize this function in the smart grid. 

3) Attack resisting. The smart grid shall allow the power system to be more resilient, 
minimizing the consequence of an attack and restoring the system as soon as possible.  

4) High power quality for 21st century needs. The smart grid shall minimize the 
harmonics, distortion, imbalance, sags and spikes during the power delivery. The 
feature will require more advanced components such as Flexible AC Transmission 
Systems (FACTS), Dynamic Voltage Restorers (DVR) and Static VAR Compensator 
(SVC). 

5) Accommodation of all generation and storage options. The smart grid shall enable the 
integration of renewable energies like solar and wind, which are cleaner but might be 
more fluctuated. This will reduce the dependence on the fossil fuels and allow the 
system to be more environmental friendly.  

6) Market enabling. The smart grid shall bring in more participants and options to make 
the system more efficient. It requires but is not limited to the technologies of 
distributed generations, real time pricing and customer responses. The planning and 
support system are also critical to make the market work. 

7) Optimizes assets and operates efficiently. This is to realize the functions of the modern 
grid at minimum cost. It requires network and component assessment, optimization 
algorithms and anticipatory decision making. 

B. Key technologies 

Modern technologies are needed to support the seven key features motioned above. The 
technologies involved in smart grid as stated in Title XIII of 2007 Energy Independence 
and Security Act (EISA) [5] could be roughly put into five key categories:  

1) Integrated Communications, including high-speed, fully integrated, two-way 
communication technologies for real-time information and power exchange and an 
open architecture to create a plug-and-play environment that secure networks grid 
components to talk, listen and interact. 
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2) Sensing and Measurement, which will enhance power system measurements and 
enable the transformation of data into information in support of advanced protective 
relaying. They enable consumer choice and demand response, and help relieve 
congestion. 

3) Advanced Components play an active role in determining the grid’s behavior. Their 
applications will produce higher power densities, greater reliability and power quality, 
enhanced electrical efficiency producing major environmental gains and improved 
real-time diagnostics. 

4) Advanced Control Methods will be applied to monitor essential components, enabling 
rapid diagnosis and timely, appropriate response to any event. They will also support 
market pricing and enhance asset management and efficient operations. 

5) Improved Interfaces and Decision Support are wide, seamless, real-time use of 
applications and tools that enable grid operators and managers to make decisions 
quickly. Decision support with improved interfaces will amplify human decision 
making at all levels of the grid. 

C. Prototypes of Smart Grid 

There are evidences indicating that today’s grid is efficient, smart, and intelligent at the 
transmission level. However, at the distribution and customer levels, there are needs for a 
“smart grid” which will provide opportunities for energy efficiency and better integration 
of distributed generation including renewables to reduce carbon emission [6]. Several 
researchers have been working on developing a smart distribution power system and many 
prototypes have been built for study.  

In 2007, the Advanced Research Institute of Virginia Tech brought forward the concept of 
an Intelligent Distributed Autonomous Power System (IDAPS) [7], which emphasized 
coordinating “customer-owned” DER’s (EV included) for residential and commercial 
consumers.  

A prototype of a “Perfect Power” system has also been built in the campus of Illinois 
Institute of Technology upon the High Reliability Distribution System design developed by 
S&C Electric [8]. The system focuses on the redundancy of electricity supply and 
management of the campus electricity distribution and usage including coordination with 
ComEd and the PJM ISO to provide ancillary services and demand response.  

Utilities also join forces to build the smart grids at distribution level, among which 
SmartGridCity™ of Xcel Energy is the nation's first fully integrated smart grid community 
and will boast the largest and densest concentration of the emerging technologies to date. 
[9] 

Besides the projects mentioned above, there are many other project in process or under 
review. Some smart grid related demonstration projects taking hold following the Recovery 
and Reinvestment Act of 2009 have been listed in the Smart Grid Information Clearing 
House [10] built in Advanced Research Institute of Virginia Tech. 
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2.1.2. Demand Response (DR)  

2.1.2.1. Demand Response Concept and Category 

According to the definition by the U.S. Department of Energy (DOE) in its February 2006 
report to Congress [11], “demand response” is:  

“Changes in electric usage by end-use customers from their normal consumption patterns 
in response to changes in the price of electricity over time, or to incentive payments 
designed to induce lower electricity use at times of high wholesale market prices or when 
system reliability is jeopardized.” 

The definition is also used by Federal Energy Regulatory Commission (FERC) in their 
“National Action Plan on Demand Response” [1]. In the above-mentioned report, DR falls 
into two basic categories. Fig.  2-1 shows the role of demand response in electric power 
system planning and operation: 

1) Price-based demand response (also called Time-based DR):  
a) Real-time pricing (RTP); 
b) Critical-peak pricing (CPP); 
c) Time-of-use (TOU) tariffs. 

2) Incentive-based demand response [12]: 
a) Direct Load Control (DLC); 
b) Interruptible/curtail able service (I/C); 
c) Demand Bidding/Buy Back; 
d) Emergency Demand Response Program (EDRP); 
e) Capacity Market Program (CAP); 
f) Ancillary Service Markets (A/S); 

 

Fig.  2-1 Role of Demand Response in Electric System Planning and Operation 
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Utilities will provide different DR policies with regards to the specific situations in their 
serving areas and even for one utility multiple policies may be provided for customers to 
choose from. Generally speaking, both categories are considered “demand response” in a 
broad sense. In a narrow sense, the actions in the first category are from bottom up, 
initialized by consumers, which is typically referred to as “demand response” while the 
actions in the second category are from top down, initialized by utilities, which is typically 
referred to as “demand side management” (DSM).  

2.1.2.2. Demand Response Development 

The electric utility planning process has traditionally consisted of first forecasting the 
future demand for electricity, then determining the optimal supply-side options to meet the 
demand [13]. While this kind of demand driven planning became more and more difficult 
due to the increase of total demand and load variety, utilities started to consider managing 
load to match the supply several decades ago, which initiated the demand side management 
(DSM).  

DSM is the utility activity that influences the customer load shape, which is performed in 
different ways to achieve different goals[14, 15, 16]. As larger consumers may bring more 
significant demand reduction results with low cost, DSM started with industry consumers 
and then gradually expanded to commercial and residential sectors. Of all the demand side 
management methods, the most straight-forward one is the direct load control (DLC), 
which is also the first one brought into use. Since the 1980s, DLC has been widely used by 
utilities for load shaping and it is still in use at many electric utilities in the US and abroad. 
Some of the early utility experiences have been reviewed in reference [17]. It is obvious 
that DLC can fulfill the task to reduce part of the demand when the supply is limited. 
However, DLC may bring significant customer inconvenience since it is a one direction 
command from utility to customer, thus it cannot take into consideration customers’ 
real-time situation when the program is performed. 

The development of the DSM is not smooth. Data from Energy Information Administration 
(EIA) plotted in Fig.  2-2 DSM Actual Peak Load Reductions[18] shows that the DSM actual 
peak load reduction was high in the late 1990s and gradually dropped in the early 2000s, 
which may indicate that fewer DSM programs were offered and many utilities were turning 
away. There was a turning point after 2004 and the DSM peak load reduction grew fast 
both in load management and energy efficiency. Up until 2008, the peak load reduction was 
already over 30,000 MW, higher than 1998, which was the golden time for DSM before 
2004.  
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Fig.  2-2 DSM Actual Peak Load Reductions 

Apparently, a renewed interest is back on demand side management due to higher 
incentives such as the demand growth, technology development and nation wide 
recognition. According to a DOE report [11], a number of initiatives after 2004 indicated 
that federal and state policymakers, regional grid operators and utilities started putting 
efforts into strengthening DSM capability. Almost at the same time, a smart grid is also 
going from concept to practice, started with an advanced metering system, which provides 
better infrastructures, more options and a wider range for DSM, or generally called, 
demand response. 

Recently, along with the development of the smart grid, demand response is also stepping 
into a fast growing stage. Many projects with various concerns and different DR program 
designs have been deployed, indicating that demand response is becoming more and more 
mature and practical. 

2.1.2.3. Estimation of Demand Response Potential 

In order to estimate the nationwide demand response potential in 5 and 10-year horizons, 
the FERC’s National Assessment of Demand Response Potential [19] develops four 
scenarios of such potential to reflect different levels of demand response programs. These 
scenarios are:  

1) Business-as-Usual (BAU): assuming the existing demand response programs 
(interruptible rates, curtailable loads and DLC) to be continued unchanged over the 
next ten years. 

2) Expanded Business-as-Usual: assuming the BAU is expanded to all states with 
higher participation, partial deployed AMI and small percentage (5%) of dynamic 
pricing available. 

3) Achievable Participation: assuming full scale AMI deployment by 2019 and 
dynamic pricing is default for more than 60% of consumers while other consumers 
will chose alternative demand response programs 
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4) Full Participation: assuming full scale AMI deployment, dynamic pricing and 
cost-effective technologies for all consumers 

The results under the four scenarios illustrate how the demand response potential varies 
according to certain variables. Fig.  2-3 illustrates the differences in peak load starting with 
no demand response programs and then comparing the four scenarios. The peak demand 
without any demand response is estimated to grow at an annual average growth rate of 1.7 
percent, reaching 810 gigawatts (GW) in 2009 and approximately 950 GW by 2019.  

 
Fig.  2-3 Peak Demand Forecast by Scenario 

It can be seen from the picture that the peak demand can be reduced by varying levels of 
demand response under the four scenarios. Under the highest level of demand response, it 
is estimated that from 2009 to 2019, the peak load will almost stay at the same level. Peak 
demand reduction can reach 20% percent. Therefore the amount of demand response 
potential that can be achieved increases as one moves from the Business-as-Usual scenario 
to the Full Participation scenario.  

The Electric Power Research Institute (EPRI) has a similar but less aggressive estimation 
for demand response and energy efficiency potential. In EPRI’s report [20], the base line is 
set according to EIA’s 2008 Annual Energy Outlook. The annual energy usage will grow by 
1.07% through 2008 to 2030 while the peak demand will grow by 1.5% each year.  

Three types of potentials are defined and studied in EPRI’s report:  

1) Technical potential: assuming that all homes and businesses (100% customer 
acceptance) adopted the most efficient, commercially available technologies and 
measures, regardless of cost.  

2) Economic potential: assuming that all homes and businesses (100% customer 
acceptance) adopted the most widely-proved cost-effective technologies. 

3) Achievable potential: by refining the economic potential with various barriers for 
customer acceptance. 

a) Maximum achievable potential: applying a market acceptance rate on the 
economic potential estimation. Considering only the barriers with perfect 
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information like financial barriers. 
b) Realistic achievable potential: considering existing market, financial, 
political, and regulatory barriers and recent utility experience and reported 
savings. 

Fig.  2-4 shows the potential of peak demand saving by maximum and achievable 
potentials. 

 

Fig.  2-4 Potential for Peak Demand Savings from Energy Efficiency and DR 

Even though EPRI’s estimation is less aggressive, the results still provide a hint that DR 
and energy efficiency will provide considerable peak demand savings, which may help 
delay or prevent new constructions for conventional power system infrastructure. 

2.1.2.4. Demand Response Initiatives in the United States 

There are hundreds of smart grid projects going on all over this country and more around 
the world, many of which are demand response related. The demand response initiatives 
are mainly led by the government and national laboratories, as well as the private sector 
(ISO/RTOs and utilities). As mentioned in the above section, demand response is 
developing through these studies and projects, from which DR goes from concept to 
practice. 

1) Government and National Laboratories 
a) GridWiseTM Testbed Demonstration – Pacific Northwest National Laboratory 

(PNNL) 

GridWise[ 21 ] is a term coined at PNNL referring to various smart grid 
management technologies based on real time electronic communication and 
intelligent devices that are expected to mature in the near future. With the help of 
these technologies and proper management, the new construction of conventional 
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power grid infrastructure should be deferred or even prevented in step with the 
load growth anticipation.  

The GridWise Testbed Group was formed in 2004 to facilitate a field 
demonstration of the GridWise technologies developed by PNNL. The 
demonstration is composed of two major projects: The Olympic Peninsula Project 
and the Grid FriendlyTM Appliance Project.  

The Olympic Peninsula Project [22] is to demonstrate the economic dispatch of 
demand response and distributed energy resources with real-time two-way 
communications of cost information and end-use value of electrical services. The 
results showed that the distribution congestion was well managed. At the same 
time, the market based control through internet was tested and the peak loads 
could be reduced. Also the back up generations turned out to be valuable resources 
in the economic dispatch. 

The Grid FriendlyTM Appliance (GFA) Project [23] is to demonstrate how well the 
GFA can help improve the grid frequency stability by shedding residential load for 
a short time during frequency drop (heavy loading time) without having obvious 
impacts on the end-users. The controllers and their appliances were installed and 
monitored for more than a year at residential sites at three locations in Washington 
and Oregon. The controllers and their appliances responded reliably to each 
shallow under-frequency event—an average of one event per day—and shed their 
loads for the durations of these events. Appliance owners reported that the 
appliance responses were unnoticed and caused little or no inconvenience for the 
homes’ occupants. 

b) PIER Demand Response Research Center (DRRC) [24] - Lawrence Berkeley 
National Laboratory (LBNL) 

The main objective of the Center is to develop, prioritize, conduct, and 
disseminate multi-institutional research that develops broad knowledge to 
facilitate DR.  

The research in the center on demand response includes:  

- Load response for reliability purposes; 
- Direct load control, partial or curtailable load reductions; 
- Complete load interruptions; 

    - Price response by end-use customers; 
    - Dynamic pricing: real-time pricing (RTP), coincident peak pricing (CPP), 

time-of-use rates (TOU); 
- Demand bidding or buyback programs; 

The center is working on many demand response related projects and has 
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published a series of important reports/papers on: 

- Commercial building demand response 
- Automated Facility Demand Response 
- Demand Shifting with Thermal Mass 
- Industrial Demand Response 
- Programmable Communicating Thermostat (PCT) Reference  
- Program and Tariff Analysis: Dynamic Electricity Pricing and Demand 

Response  
- Demand Response Spinning Reserve Demonstration Project 

2) State-level Demand Response Initiatives [1] 

California is very aggressive in demand response, maintaining a leadership position for a 
long time. As early as 1978, TOU pricing was introduced for large commercial and 
industrial customers by California Energy Commission. In addition, regulations for 
appliance and building energy consumption have kept the per capita electricity use in 
California lower than the U.S. average level during the past three decades. 

California’s Energy Action Plan developed after the energy crisis in 2000~2001 specified a 
loading order of resources: first, energy efficiency; second, demand response; third, 
renewable energy sources; and finally, conventional generation options [25]. 

The Energy Action Plan also set a target reduction in peak demand of 5 percent for 2007. 
At the same time, the California Public Utilities Commission (CPUC) approved business 
cases for the deployment of advanced metering initiatives (AMI) by all three utilities [26] 
and then made dynamic pricing the default tariff for all nonresidential customers who were 
part of AMI.  

The nation’s first comprehensive test with dynamic pricing was carried out by California, 
known as the Statewide Pricing Pilot, which involved approximately 2,500 residential and 
small commercial and industrial customers, starting from 2003. The results of the Statewide 
Pricing Pilot provided information about the likely amount that customers would lower 
their peak demand at different price levels, both with and without enabling technologies. In 
addition, a large number of participants chose to stay with the experimental rates despite a 
new metering charge, indicating that participants were satisfied with the experimental rates. 
[27] 

2.1.3. Electric Vehicle (EV) 

2.1.3.1. EV Type and Concept 

According to the National Renewable Energy Laboratory (NREL) [ 28 ], a plug-in 
hybrid-electric vehicle (PHEV) is a hybrid-electric vehicle (HEV) with the ability to 
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recharge its electrochemical energy storage with electricity from an off-board source (such 
as the electric utility grid). Fig.  2-5 [29] shows the pictures of battery electric vehicle (BEV, 
i.e. EV), HEV and PHEV.  

   
Fig.  2-5 BEV, HEV and PHEV 

For a more detailed definition, the Institute of Electrical and Electronics Engineers (IEEE) 
defines a plug-in hybrid electric vehicle as any hybrid electric vehicle which contains at 
least: (1) A battery storage system of 4 kWh or more, used to power the motion of the 
vehicle; (2) A means of recharging that battery system from an external source of electricity; 
(3) An ability to drive at least ten miles (16 km) in all-electric mode, while consuming no 
gasoline.[30] Important PHEV related glossary definition can be found from Appendix B of 
Department of Energy’s PHEV R&D plan. [31] 

2.1.3.2. EV Working Mechanisms 

Fig.  2-6 [32] shows two schematics of possible EV architectures: series and parallel. A 
series drive train architecture powers the vehicle only by an electric motor using electricity 
from a battery. The battery is charged from an electrical outlet, or by the gasoline engine 
via a generator. A parallel drive train adds a direct connection between the engine and the 
wheels, adding the potential to power the vehicle by electricity and gasoline simultaneously 
and by gasoline only.  

 
Fig.  2-6 Basic PHEV Drive-train – Series (EV) vs. Parallel Design 

Toyota is developing a plug-in version of the Prius to be available in 2012, which will have 
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a parallel drive train. General Motors’s Chevy Volt comes with a series architecture, which 
is actually considered an electric vehicle (EV). 

For any given architecture, an EV can operate in one of two modes: charge sustaining (CS) 
or charge depleting (CD), which are illustrated in Fig.  2-7. In practice, for the consideration 
of battery life and safety, the maximum state of charge (SOC) may not reach 100 percent, 
and the minimum SOC is kept higher than 0 percent. The difference between the maximum 
and minimum SOC is known as the usable depth of discharge (DOD), which varies across 
battery and vehicle designs.  

In Fig.  2-7 [33], the battery is “fully” charged (from an electrical outlet) to 90 percent SOC 
at the beginning of the cycle. For a distance the EV is driven in CD mode, during which 
time the vehicle is powered by the energy stored in the battery and the battery’s SOC is 
gradually getting lower. Once the battery is depleted to its minimum SOC (about 25% in 
this figure), the vehicle switches to CS mode. In CS mode the vehicle depends primarily on 
the gasoline engine and the SOC is kept around its minimum level. The battery and electric 
motor are used to increase the efficiency of the gasoline engine, like an HEV. 

  

Fig.  2-7 Illustration of Typical EV Discharge Cycle 

Small cycles, or “waves,” can be seen in the SOC during the CS operation, where the 
battery takes on energy from the engine driven generator or from regenerative braking and 
uses the energy in the electric motor to improve the efficiency of engine operation. The 
vehicle remains in CS mode until the battery is plugged in again to recharge. The distance a 
fully charged EV can travel in CD mode before switching to CS mode is called CD range. 

2.1.3.3. EV Market Trend 

According to data from the Energy Information Administration (EIA) on petroleum in 2010 
[34,35] about 62% of domestically used crude oil is refined into gasoline. High petroleum 
prices, high emissions from gasoline powered vehicles, and dependence on foreign oil, all 
contribute to a well known national problem [36].  
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Transportation accounts for two-thirds of the oil demand in the US, and this sector relies 97 
percent reliant on oil [37]. Plug-in hybrid electric vehicles have recently emerged as a 
promising alternative that uses electricity to displace a significant fraction of fleet 
petroleum consumption [38]. Based on Tony Markel’s analysis, petroleum reductions 
exceeding 45% per vehicle can be achieved by EVs equipped with electric range of 20 mile 
or more energy storage[39].  

As shown from the EPRI/NRDC’s report of Environmental Assessment of EV40, annual 
and cumulative GHG emissions are reduced significantly across each of the nine scenario 
combinations projected in the report. EVs deliver the largest global warming reductions 
compared to other cars and trucks when they are charged with renewables, such as wind 
and solar, or power plants that capture and dispose of their global warming pollution.  

From the economic point of view, at current average U.S. energy prices- that is, with the 
annual average cost of gasoline about $3/gallon [41] and national average electricity price 
about 10¢/kWh [42]- an EV runs on an equivalent of 50¢/gallon in its all-electric range 
with the reasonable assumption that the gas mileage is 25mile/gallon and electric mileage 
5mile/kWh. Furthermore, the electric drive systems has a higher efficiency. The overall 
efficiency of EVs would be 22.5%~45% [43,44,45] as compared to the typical 20% for 
gasoline-powered vehicles. 

As EVs move toward commercialization, they are expected to reach a high market share in 
several decades. In an analysis of the EV projected for 2020 and 2030 in 13 regions of the 
United States, ORNL researchers used a projection of 25% market penetration of hybrid 
vehicles by 2020 including a mixture of sedans and sport utility vehicles.46 Fig.  2-8 shows 
the projected market share of PHEV from ORNL report. 

  
Fig.  2-8 Projected Market Share of PHEVs and Projected Number of PHEVs Sold per Year 

Other research may provide less aggressive estimation, but still shows a promising EV 
market share. According to the data from the Electric Power Research Institute (EPRI) and 
the Natural Resources Defense Council (NRDC) [40], even the lowest EV penetration case 
shows 20% share of the 2050 New Vehicle Market. In the presentation provided by 
Argonne National Laboratory in EVS 22, they expected that in 2030 EV annual sales 
would reach 2.7 million and there will be 27 million EVs on the road, which meant 9% of 
the nearly 300 million vehicles.47 For the nearer future, Morgan Stanley forecasts sales of 
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1.2 million hybrids by 2015 with 250,000 Plug-in hybrids [48], which is the most 
conservative estimation indicating only 1‰ market share of EVs according to the vehicle 
sales data from 2009 U.S. Transportation Energy Data Book [49]. However, the report still 
states that the introduction of EVs in 2010 will have the “potential to revolutionize the auto 
industry.” 

Virtually every major auto manufacturer in the world, along with several smaller outfits, is 
developing EVs and Plug-In America is tracking their progress. [50] 

In December 2008, BYD Auto started selling the world's first mass-produced plug-in 
hybrid vehicle, the BYD F3DM, made for the domestic Chinese market [51]. Right now the 
Toyota Prius can be commercially converted to a plug-in hybrid by CalCars [52] and a 
number of third-party companies. The PHEV Toyota Prius is expected to be offered in 2012 
[53]. The Prius PHEV version will be powered by lithium-ion batteries. Nikkei news 
reported that Toyota will start series production of the Prius PHEV version in 2012, and the 
estimated price is USD 48,000 [54]. General Motors started to sell Chevrolet Volt in 
December, 2010 [55].Volkswagen also staged the world debut of its XL1 diesel plug-in 
PHEV prototype at the Qatar Motor Show in early 2011. [56]. Volvo's diesel plug-in [57] 
and Ford's PHEV-30 Escape SUV, already being used in utility fleets, are scheduled to be 
available to the general public in 2012. On a smaller scale, EVs have been sold as 
commercial passenger vans, utility trucks, general and school buses [58], motorcycles [59], 
scooters [60], and military vehicles [61]. Table  2-1 [62] summarizes the EV characteristics 
and introduction dates released by major automobile manufacturers. 

Table  2-1 PHEVs Announced by Major Automobile Manufacturers 

 

2.1.3.4. Definition of PHEV-X and Battery Requirements 

PHEV designs are commonly described according to CD range. The common notation is 
PHEV-X, where X is the distance in miles. According to California Air Resources Board’s 
definition, X is the total miles that can be driven before the gasoline engine turns on for the 
first time, also known as all-electric range (or zero-emissions range) [63]. By this definition, 
a fully charged PHEV-10 could be driven for the first 10 miles without using any 
petroleum. 
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Another important point for PHEV design and notation is the assumed drive cycle schedule 
used to estimate CD operation and CD range. A drive cycle is a pattern of changing 
accelerations, speeds, and braking over time used to test fuel economy, as well as battery 
performance. A cycle usually repeats one or more schedules designed by the U.S. 
Environmental Protection Agency (EPA) [64]. The Urban Dynamometer Driving Schedule 
(UDDS) is most common, established by the EPA to simulate city driving conditions. This 
schedule includes many accelerations and decelerations over a 23-minute period, with an 
average speed of 20 miles per hour. The federal highway schedule (HWFET) is typically 
used to simulate highway driving conditions under 60 mph. The Federal Test Procedure 
(FTP) is composed of the UDDS followed by the first 505 seconds of the UDDS. It is often 
called the EPA75. California EPA Air Resources Board LA92 Dynamometer Driving 
Schedule, often called the Unified driving schedule, was developed as an emission 
inventory improvement tool. Compared to the FTP, the LA92 has a higher top speed, a 
higher average speed, less idle time, fewer stops per mile, and a higher maximum rate of 
acceleration. LA92 is recently considered to be more suitable to describe today’s aggressive 
driving.  

The USABC adopted the requirements proposed by the PHEV Battery Work Group and 
included them as goals in a request for proposals to developers of PHEV batteries [65]. 
Table  2-2 [66] is the final version of the PHEV battery requirements, targets, and goals as 
posted on the USABC Web site.  

Table  2-2 USABC Requirements of End of Life Energy Storage Systems for PHEVs 

Characteristics at EOL 
(End of Life) 

Units 
High Power/Energy 

Ratio Battery 
High Energy/Power

Ratio Battery 

Reference Equivalent Electric Range  miles 10 (PHEV-10) 40 (PHEV-40) 

Peak Pulse Discharge Power (10 sec) kW 45 38 

Peak Regeneration Pulse Power (10 sec) kW 30 25 

Available Energy for CD Mode, 10 kW Rate kWh 3.4 11.6 

Available Energy for CS Mode kWh 0.5 0.3 

Minimum Round-trip Energy Efficiency  % 90 90 

CD Life / Discharge Throughput Cycles/MWh 5,000 / 17  5,000 / 58 

CS HEV Cycle Life, 50 Wh Profile  Cycles  300,000 300,000 

Calendar Life, 40°C  year 15 15 

Maximum System Weight  kg 60 120 

Maximum System Volume Liter 40 80 

Maximum Operating Voltage Vdc 400 400 

Minimum Operating Voltage Vdc >0.55 x Vmax  >0.55 x Vmax 

System Recharge Rate at 30°C  kW  1.4 (120V/15A)  1.4 (120V/15A) 

Max. Current (10 sec pulse) Amps 300 300 

The above table has summarized four of the five main attributes considered by the USABC 
for PHEV batteries: power, energy capacity, life (calendar and cycle) and cost. Safety is 
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another important factor because batteries store energy and contain chemicals that can be 
dangerous if discharged in an uncontrolled manner. The USABC’s battery goals do not 
include specific safety objectives, although safety is implied in goals of longevity and 
operation temperature.  

2.1.4.  Analytic Hierarchy Process 

“The Analytic hierarchy Process (AHP) is a basic approach to decision making. It is 
designed to cope with both the rational and intuitive to select the best from a number of 
alternatives evaluated with respect to several criteria.” [67]. Fig.  2-9 shows a three level 
hierarchy. 

 

Fig.  2-9 A Three-level Hierarchy 

In the decision making process, the simple pair wise comparisons are carried out to form a 
judgment matrix. The Eigen vector will be used to decide overall priorities for ranking the 
alternatives. [67] 

AHP is being used in many areas for evaluation, resource allocation, forecasting, decision 
making and so on [68]. In this paper, AHP is adopted to decide the demand reduction 
allocations among different consumer groups when there is a demand limit.  

2.2. In-depth Information 

2.2.1.  Research on Distribution Load Modeling 

Load modeling has been attracting interest for several decades now. The scale ranges from 
appliance to large power grid. IEEE has provided a bibliography for load models for power 
flow and dynamic performance simulation, in which the methodologies are categorized by 
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the model type (i.e. static, dynamic, others) [69]. This bibliography has covered almost all 
relevant load modeling works in late 20th century. 

The classical load model defined “load” as functions of voltage and frequency, which has 
been referred to as “static” [70]. Then “dynamic” load models have been developed for 
transient studies. Simultaneously, some works were focusing on physically based load 
models, especially on heating, ventilation, and air conditioning (HVAC) loads [71] and 
water heating loads [72] for evaluation or analysis of the demand management strategies. A 
physically-based methodology for synthesizing the hourly residential HVAC load was 
developed in reference [71] and tested against utility data. The model captures the 
thermodynamic principles of the building structures and the diversification is created by 
random distribution functions when building the distribution network load profile. It should 
be noted that these kinds of load models have already started to take into account the 
customers’ behavior. [73] 

References [74,75,76] presented models that are built from statistical data taken from of 
surveys and historical measurements, with which proper random functions are designed for 
aggregation diversity. 

2.2.2.  Research on Electric Vehicle 

2.2.2.1. EV Charge and Discharge Profile 

Before we look into the EVs impacts on the power system, it is very important to 
understand their grid-to-vehicle charge (G2V) and vehicle-to-grid discharge (V2G) 
characteristics. Many researchers have been seeking ways to model EVs penetration into 
the power system. As EV is much more flexible than household loads and they can perform 
as both loads and sources, it is not easy to get an accurate curve of an EV fleet charging and 
discharging, nor there is any historical data we can take as reference since EVs haven’t 
been widely received in the mass market. However, single EV G2V and V2G profiles can 
be acquired thus the fleet behavior can be modeled based on the “plug-in” time. 

The power demand on the grid for charging EVs will be a function of the voltage and 
amperage of the connection to the grid. The capacity of the battery will then determine the 
length of time it will take to recharge the battery. 

Dr. Mark S. Duvall’s presentation [77] at the DOE Plug-in Hybrid Electric Vehicles 
Workshop reviewed several characteristics for evaluating EV impacts on the grid. Duvall 
shows that there are many options for connecting vehicles to the grid. A comparison of 
times required for recharging is given in Table  2-3 [77]. It shows that large battery packs 
(for longer range) would increase the time required for charging. 
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Table  2-3 Charging Times Required for PHEV20 for 20% – 100% SOC 

PHEV-20 Battery Size Charge Circuit Charging time 
Compact Sedan 5.1 kWh 120VAC/15A 3.9-5.4 hrs 
Mid-size Sedan 5.9 kWh 120VAC/15A 4.4-5.9 hrs 
Mid-size SUV 7.7 kWh 120VAC/15A 5.4-7.1 hrs 
Full-size SUV 9.3 kWh 120VAC/15A 6.3-8.2 hrs 

On the other hand, higher voltage or amperage would reduce the charge time, which is 
usually called quick charge.  

Timing of EV plug in is very critical. The optimum time for utilities is typically at night 
when demand is relatively low while consumers are likely to prefer the time as soon as they 
are within easy access to a plug. For the analysis in ORNL’s report [46], they use the 
weighted average charging profile, which is a rough aggregation. For each region, the 
hourly demand from the curve is multiplied by the number of EVs on the road to get the 
hourly addition to the system electrical load. They assumed that for the evening charge half 
of the vehicles were plugged in at 5pm and half at 6pm. For the night charge half were 
plugged in at 10pm and half at 11pm. They then remained plugged in until fully charged. 
The resulting weighted average profile is shown in Fig.  2-10 [46].  

 
Fig.  2-10 Weighted Average Charging Profile 

There are various ways for utilities to modify customer choices, including pricing schemes 
favoring night-time charging or mandatory regulation on vehicle charging with contract 
incentives. Technically, the intelligence could be in the charger and/or in the vehicle itself.  

Other than conventional evening or night charge, consumers could also recharge at their 
places of work, giving them additional range. Utilities and businesses could even install the 
infrastructures like a “charging meter” to allow consumers to plug in anywhere and have 
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the cost of purchased power added to their bills. NREL has brought forward four typical 
scenarios for EV fleet G2V charge with different daily charge strategies, shown in Fig.  2-11 
[78]. The charging profiles are all for EV fleet charge and show a probability function for 
the charge start time with variance from a certain time point. The first one shows the 
scenario that people tend to charge their EVs as soon as they get home from work. The 
second one illustrates the central charge time delayed to 10 pm. The third one is the 
scenario for off-peak charge, which will vary according to different electricity rate 
schedules. The last one is showing an opportunity-charging scenario which means as long 
as EVs are parked, they may choose to charge. 

 
Fig.  2-11 Four Potential Daily Recharge Strategies 

As cars are parked over 90% of time [79], the charging profiles can be very complicated 
considering all the scenarios mentioned above and multiple control strategies.  

Unlike G2V, V2G is not a basic need of EVs. In contrast, V2G is a behavior called by 
control signals. Therefore the V2G discharge profiles are usually designed according to the 
need of the power grid within the battery capability boundaries, which explains why there 
is no previous work that models V2G discharge curve.  

For fleet EV behavior, a paper by the University of Washington [80] uses four typical EV 
charge profiles for their analysis, listed as uniform, home-based, off-peak and V2G, which 
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was shown as negative charge. Fig.  2-12 [80] illustrates the four profiles. Here V2G is 
considered as negative G2V charge. 

 

Fig.  2-12 Typical Daily Load Profiles of EV 

All profiles are averaged to reflect a fleet behavior and normalized to make the total energy 
drawn from the power grid in one year equal to 1.0. The paper ranked these four load 
profiles from high to low of feasibility for people’s everyday charging as: home-based > 
V2G > off-peak > uniform. 

In practice, an EV battery will not be allowed to charge over its upper limit (about 80%) or 
discharge below its lower limit (about 30%) due to the concern of battery life. Therefore 
when the V2G is performed, the energy management system should take the battery 
constrains into consideration. 

The deployment of EVs has the potential to have substantial positive impact on the electric 
power system from the aspects of increasing electric energy consumption to fill the demand 
valley, offsetting petroleum fuels with other energy sources, adding additional regulation 
capability, and assisting in emergency capacity (these last benefits will require specific 
additional capabilities of the grid/vehicle interface). This positive impact is mitigated with 
the fact that the existing electric power system infrastructure may not be ready to deal with 
the increased demand and new patterns of consumption and power flows in the power grid 
[Error! Bookmark not defined.].  

2.2.2.2. Potential Threats 

A lot of researchers have optimistically claimed that EVs will not increase the system peak 
much, instead, they will fill the load valley, which is good for system operation [81,Error! 
Bookmark not defined.,38,82]. The PNNL Report in 2007 indicated that, “The U.S. electric 
power infrastructure…could generate and deliver the necessary energy to fuel the majority 



 25

of the U.S. light duty vehicle fleet.” [83] 

According to the Electric Power Research Institute (EPRI), more than 40% of U.S. 
generating capacity operates overnight at a reduced load, and it is during these off-peak 
hours that most EVs could be recharged. Recent studies by EPRI [84] show that if EVs 
replace one-half of all vehicles on the road by 2050, only an 8% increase in electricity 
generation (4% increases in capacity) will be required. 

However, a thorough simulation analysis of EV penetration into the regional power grid 
from ORNL [46] shows the situation may not be that optimistic. Without proper incentives, 
we cannot simply assume people will charge their cars during the period when utilities 
want them to charge. EV quick charge at evening can create much higher new peaks by 
2030. In this case, all regions will need additional generation to serve the extra demand. 
Table  2-4 [46] shows the increase in the annual peak for each region using the evening 
quick charge scenario in 2020 and 2030. (The projected EV numbers can be found in Fig. 
 2-8). 

Table  2-4 Increase in Annual Peak Demand with EV Charging at 6 kW in the Evening 

2020 2030 
 Peak Increase 

(GW) 
Peak Increase 
(%) 

Peak Increase 
(GW) 

Peak Increase  
(%) 

ECAR 5.2 4.2 19.3 14.7 
ERCOT  3.5 4.5 10.9 12.7 
MAAC  4.3 6 15.3 19.4 
MAIN  6.4 10.1 16.9 24.4 
MAPP  2.5 7.4 6.9 18.5 
NPCC-NY  2.4 6.9 7.9 21.8 
NPCC-NE  1.6 4.9 7.4 21.7 
FRCC  3.3 5.3 10.2 13.7 
SERC  6.4 3.1 25.9 10.8 
SPP  0.6 1.2 2.7 4.9 
WECC-NW 3.2 6.9 9.4 17.9 
WECC-RMP/ANM  1.3 2.3 4.2 6.4 
WECC-CA  5.6 9 20.7 27.9 

In the scenarios in ORNL’s report [46], even though the total energy demand increase from 
EVs is in the range of 1~5%, the peak capacity demand can be as high as 28%. Although 
that is the worst case, still there is possibility it may happen, which will result in challenges 
to the nationwide power generation and transmission, including equipment investment, 
generation dispatch, human resource and many other aspects. 

Other than the long-term problem of congestion and exceeding capacity, we also have 
short-term challenges to deal with. As the population is much larger in a metropolitan area 
than in a rural area, the EV adoption may also show a cluster effect [85]. Even though the 
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generation and transmission may be fine with the increasing demand, the distribution 
networks serving areas with high population density still have to assume the burden of 
feeding the large number of EVs plugged in.  

2.2.2.3. Potential Benefits 

A. Economic Opportunities 

Clearly, there are many potential benefits that EVs bring to the power system. The most 
straightforward one is that the higher adoption of EVs will bring higher revenues to most of 
the utilities. According to EIA’s data, an average retail electricity price 11.36 ¢/kWh [86], a 
typical PHEV-20 with 6kWh battery capacity and daily charge will bring additional 
revenues of about $250 per annum for every single EV in service. This is 62.5 million 
dollars per year even with the most conservative estimation from Morgan Stanley’s report 
of 1‰ EV penetration into the market in 2015. 

Another opportunity for utilities in California to take advantage of is the recently released 
“Proposed Regulation to Implement the Low Carbon Fuel Standard (LCFS)” [87]. The 
power that a utility firm sells to refuel EVs may be considered a fuel, thereby allowing 
utilities to receive offset credits for each watt sold, which they can then sell to high 
emissions fuel makers at a profit.  

A recent report from PJM pointed out that a centralized control of EV fleet charging can 
reduce the energy cost that would otherwise be incurred from adding EVs to the system. 
However, as a comparison, the report showed that a distributed intelligence platform with 
time-of-use (TOU) rate will not provide significant benefit. [88]  

B. Regulation Opportunities 

1) Valley Filling: EVs have the valuable characteristic of being a deferrable load. Daily EV 
recharging can be scheduled for “off-peak” time, which is called valley filling. Fig.  2-13  
[83] shows a stylized load profile for one day during peak season together with generation 
dispatch profiles and total installed capacity. The shaded area is the under-utilized capacity 
available for charging EVs, which will in result better utilization of installed capacity. 

 
Fig.  2-13 Stylized Load Profile for a Typical Summer Day 
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The maximum potential to accommodate EVs varies by NERC regions, depending on the 
load profiles, the present capacity utilization and the mix of generation capacity. On 
average, the PNNL study [83] concludes that the existing U.S. electric system could 
accommodate 74% of the light-duty vehicle fleet for 24-hrs valley filling while 43% for 
night charge. 

2) Compliance with Renewable Portfolio Standards: According to EPA, Renewable 
Portfolio Standard (RPS) provides states with a mechanism to increase renewable energy 
generation using a cost-effective, market-based approach that is administratively efficient. 
An RPS requires electric utilities and other retail electric providers to supply a specified 
minimum amount of customer load with electricity from eligible renewable energy 
sources.[89] 

However, since the most used renewable sources are intermittent, meeting the RPS is a big 
problem for many utilities. EVs’ flexibility thus provides a possible solution for utilities to 
comply with the RPS when regulated as “supply-driven” demand, which means when there 
is enough renewable energy supply, EVs can be recharged from the power grid, otherwise 
the charging need to cease to balance the demand with supply 

2.2.2.4. EV for Ancillary Services 

Electric-drive vehicles have within them the energy source and power electronics capable 
of producing the 60Hz AC electricity that powers our homes and offices. When connections 
are added to allow this electricity to flow from cars to power lines, we call it "vehicle to 
grid" power, or V2G [90]. 

There are many debates on V2G. The series publications from University of Delaware, 
Newark drew conclusions that Vehicle-to-grid power could provide a significant revenue 
stream that would improve the economics of grid-connected electric-drive vehicles and 
further encourage their adoption. It would also improve the stability of the electrical grid 
[91,92,93]. However, many of these papers ignore the downside of V2G operation; namely, 
reduced battery life, additional infrastructure cost, safety issues, etc. 

In the evaluation report for V2G for PJM, the authors claimed that the most economic entry 
for V2G is the market for ancillary services (A/S), among which frequency regulation is of 
the highest value, of about $40/MW per hour. Another market of interest is spinning 
reserves, or synchronous reserves, with values in the range of $10/MW per hour, but much 
less frequent dispatch. The primary revenue in both of these markets is for capacity rather 
than energy, and both markets are well suited for batteries as a storage resource because 
they require quick response times yet low total energy demand. When there is large number 
of parked V2G EVs, they can provide support to a distribution system at the time of 
overloading or accommodation for intermittent renewable resources [94]. 

According to the estimations from CET of U.C. Berkeley, every percent of the Light Duty 
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Vehicle Fleet (LDVF) replaced by electric vehicles under a load aggregation and control 
system adds 1,040 MW of loads that can be regulated to reduce demand and avoid 
initiating ancillary services. At the average ancillary price this represents additional annual 
revenues of $364M per annum per 1% of the LDVF for an electric vehicle operator in a 
competitive power market or a comparable level of cost savings to a vertically integrated 
utility. However, they also believe that V2G will not become a reality in the short term due 
to the lack of the supporting standards and the smart grid infrastructures. Besides, the 
unjustified benefits for utilities and customers, the complexity of the V2G control and the 
concerns on battery life based on current battery technologies are also obstacles for the 
applications of V2G. [85]  

2.2.2.5. V2G Control and Calculations 

To provide ancillary services, the Vehicle to Grid (V2G) function has to be enabled by 
regulation policies, advanced power electronic technologies, and necessary infrastructures. 

Up until now, there hasn’t been much research on V2G control. An NREL paper focusing 
on the intersection of renewable electricity generation and electric vehicles has highlighted 
the limitations and opportunities for renewable energy resources to fuel electrified vehicles 
[95].  

In the NREL paper, three promising fleet charge-control methods are proposed and 
demonstrated: 1) price-signal-based charging, 2) load-signal-based charging and 3) 
renewable-energy-based charging. The three control algorithms are compared with a 
baseline of 4.8kW opportunity charging. V2G has been discussed as a negative charge in 
the control strategies of 1) and 2) whenever the real-time electricity price is lower than an 
EV's offering price. In 3) EVs are charged according to the availability of renewable 
resources, V2G excluded. Three scenarios (12 sub-scenarios) with different EV adoption 
rates, different annual renewable energy percentages and different battery costs have been 
studied based on LA load data. The conclusions indicate that properly designed real-time 
pricing structure is sufficient to offset battery wear impacts when battery costs fall below 
$600/kWh when EVs are allowed to perform V2G. 

2.2.3.  Research on Demand Response 

2.2.3.1. Demand Response Barriers and Benefits 

1) Barriers 

In the FERC demand response assessment [19], a number of barriers need to be overcome 
in order to achieve the estimated potential of demand response in the United States by 2019. 
The most significant ones are:  
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a) Regulatory Barriers:  
i. Lack of a direct connection between wholesale and retail prices. 

ii. Measurement and verification challenges.  
iii. Lack of real time information sharing. 
iv. Ineffective demand response program design. 
v. Disagreement on cost-effectiveness analysis of demand response.  

b) Technological Barriers. 
i. Lack of advanced metering infrastructure.   

ii. High cost of some enabling technologies.  
iii. Lack of interoperability and open standards.  

c) Other Barriers. 
i. Lack of customer awareness and education.   

ii. Concern over environmental impacts. 

To overcome the barriers, encouraging this expansion of demand response programs and 
wide adoption of dynamic pricing, FERC staff recommends that efforts should be put on 
consumer education, utility collaboration, market coordination, program diversification, 
technology and standards development, financial incentives and dynamic tariff design. 

2) Demand Response Benefits 

According to the DOE report on demand response benefits analysis [11], the most 
important benefit of demand response is improved resource-efficiency of electricity 
production due to closer alignment between customers’ electricity prices and the value they 
place on electricity. This increased efficiency creates a variety of benefits, which fall into 
four groups:  

a) Participant financial benefits: bill savings and earned incentive payments.  
b) Market-wide financial benefits: driving production costs and prices down for all 

wholesale electricity purchasers due to the use of the most cost-effective 
generation; reducing the costs of power supply in the long term and eventually 
passing some of the benefits to the consumer bill savings. 

c) Reliability benefits: reduce the costs and inconvenience of consumers due to the 
improvement of system security and adequacy. 

d) Market performance benefits: mitigating suppliers’ market power of raising power 
prices significantly above production costs. 

Similar to the suggestions made to over come demand response barriers described in 
FERC’s assessment report, the DOE report offers recommendations to encourage demand 
response nation-wide, which includes a) the improvement of price and incentive based 
demand response by dynamic tariff design and program diversification; b) the adoption of 
new technologies; c) the integration of demand response into resource planning; and d) 
collaboration between utilities. 
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2.2.3.2. Price-Based Demand Response 

Many of the existing and planned projects are fostering the price-based demand response 
therefore extensive studies have been conducted on tariff design, consumer strategies and 
load reshape analysis. 

LBNL has been doing research on the price-based demand response in industrial, 
commercial and residential buildings. Reference [ 96 ] is an overview report on 
opportunities, barriers and Actions for industrial demand response in California including 
the previous auto-DR review, industry willingness study and practical analysis. References 
[97,98,99,100] and other related reports focus on demand response for different industries 
with detailed strategies and load shape analysis.  

Reference [101] provides an overview of DR strategies in commercial buildings. Some 
detailed demand response strategies are provided for large and small non-residential 
customers in response to CPP in a series of technical reports [102,103,104,105]. In the 
reports, most focuses have been laid on Heating, Ventilating, and Air Conditioning (HVAC) 
and lighting systems, for which detailed shifting and shedding strategies are provided.  

For residential demand response, reference [106] provides a scope study to summarize and 
evaluate the existing methods. The report recommends that the regression-based load 
comparison is a reasonable approach to accurately estimate demand response to 
dispatchable events, which leads to further use of the approach for residential demand 
response estimation based on load data collected from an experiment or on-going program. 

In the GridWise Testbed Olympic Peninsula Project [22], the data was based on an 
experimental shadow market reflecting realistic wholesale costs and incentives to relieve 
the feeder congestion. Consumer groups are given a flat rate, a TOU rate a CPP rate and a 
RTP rate respectively for study purposes. As the project mainly involves residential HVAC 
and water heater loads, a programmable thermostat named “GoodWattTM” is used to 
receive the price signal and try to avoid a high pricing period. The most important saving 
tip for consumers is not to override the automatic control of the smart thermostat unless 
necessary. 

Other than the pilot field studies being conducted in national laboratories, many other 
analytic studies are going on all over the world. Analysis on the impacts of TOU rates on 
load shape considering certain elasticity of electricity demand has been reported in [107]. 
[108,109,110,111] focus on benefit optimization for consumers and utilities while [112] 
works on designing reasonable DR strategies. 

Critical peak pricing is another important type of tariff for demand response. Reference 
[113,114] both discussed the optimal decision in reply to critical peak pricing based on 
models of electricity demand elasticity. 

While much of the research is focused on strategy design and tariff analysis, reference [115] 



 31

brings forward the concerns of the potential problems that may be caused by large scale of 
DR implementation, in which the coincidence response have to be taken into consideration 
in further Research and pilot projects. 

2.2.3.3. Incentive-Based Demand Response 

According to the categorization from DOE, incentive based demand response includes 
many kinds of programs: DLC, Interruptible/curtail able service (I/C), Demand 
Bidding/Buy Back, EDRP, Capacity Market Program (CAP), Ancillary Service Markets 
(A/S). Generally speaking, the incentive based demand response can be considered as a 
program that request consumers to hand in the load control rights to utilities with some 
contracted limits and incentives. Some of the DR in this category has been conducted for 
decades, used to be referred to as demand side management (DSM), like DLC.  

This category requires more effort from the utility side to take into consideration the system 
reliability, economic dispatch, consumer comfort and so on.  

As a type of mature incentive-based demand response, DLC has been thoroughly studied. 
Reference [116] used the Monte Carlo Method to build a dynamic model for DLC and 
generations with which the simulations results show that DLC is a very effective form of 
load management method. Many control methods have been proposed based on different 
optimization objectives [117,118,119,120]. References [121,122,123] report studies on 
HVAC DLCs while [124,125] target water heater DLCs focusing on modeling and control 
strategies with consideration of consumer comfort zone. 

Reference [126] presents the results from a two-year study of industrial and commercial 
response to interruptible/curtailable (I/C) rate programs. The analysis indicates that I/C can 
provide significant load relief and the consumer compliance is good. The paper suggests a 
sliding credit instead of fixed credit to consumers with different load factors. 

Reference [127] performs assessment of demand bidding comprehensiveness and pointed 
out the problems that should be taken into consideration in a competitive electricity pool. 
After that, some research has been conducted on the design of demand bidding (DB) 
strategies [ 128 , 129 , 130 ]. Recent use of agent technologies and the advanced 
communications provide new DB opportunities in a dynamic way [131,132].  

Emergency Demand Response Program (EDRP) is an incentive-based DR with a shorter 
time between the notification and the actual event, which means the “emergency”. EDRP 
has been mainly used for congestion relief [133,134] and spinning reserve [135]. The 
research is mainly focused on the analysis of the system impact. 

2.2.3.4. Demand Response for Ancillary Services 

According to FERC definition, the ancillary services are those functions performed by the 
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equipment and people that generate, control, and transmit electricity in support of the basic 
services of generating capacity, energy supply, and power delivery [136]. 

FERC specifically recognized six key ancillary services in its landmark Order 888 (FERC 
1996): (1) Scheduling, System Control and Dispatch Service; (2) Reactive Supply and 
Voltage Control from Generation Sources Service; (3) Regulation and Frequency Response 
Service; (4) Energy Imbalance Service; (5) Operating Reserve – Spinning Reserve Service; 
and (6) Operating Reserve - Supplemental Reserve Service. [137]  

Table  2-5 [137] lists the key real-power ancillary services, which the ISOs generally 
purchase in the competitive markets.  

Table  2-5 Key Real-Power Ancillary Services 

Service Description 
Service 

Response Speed Duration Cycle Time 

Online resources, on automatic generation control, that can respond rapidly to system
operator requests for up and down movements; used to track the minute-to-minute 
fluctuations in system load and to correct for unintended fluctuations in generator output 
to comply with Control Performance Standards (CPSs) 1 and 2 of the North American 
Electric Reliability Council (NERC 2006) 

Regulating 
Reserve 

~1 min Minutes Minutes 

Online generation, synchronized to the grid, that can increase output immediately in 
response to a major generator or transmission outage and can reach full output within 10 
min to comply with NERC’s Disturbance Control Standard (DCS) 

Spinning 
Reserve 

Seconds to <10 min 10 to 120 min Hours to Days 

Ancillary services account for 5-10% of electricity cost, or $12 billion per year in the US, 
80% of which is for regulation and spinning reserve. [94]  

Theoretically, most short-term quick response DR can provide ancillary services as shown 
in Fig.  2-1. For real world implementation, PJM opened its Synchronized Reserves and 
Regulation Markets to demand response resources in 2006, in which EnerNOC was the 
first to bid. Reference [138] explains how demand resources are being integrated into the 
PJM ancillary service markets. Reference [139] provides a brief introduction of the 
EnerNOC demand response platform. 

The GridWise Testbed Grid FriendlyTM Appliance (GFA) Project [23] is another example of 
the ancillary services. Fifty residential electric water heaters and 150 new residential 
clothes dryers were modified to respond to signals received from under-frequency, 
load-shedding appliance controllers. Each controller monitored the power-grid voltage 
signal and requested that electrical load be shed by its appliance whenever electric 
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power-grid frequency fell below 59.95 Hz.  

2.2.3.5. Demand Response Strategy Design 

Based on the previous discussion, demand response strategies have already been studied 
together with the tariff design and load impact analysis.  Generally speaking, the strategies 
for price-based DR are trying to avoid the peak pricing period while the strategies for 
incentive-based DR are trying to meet certain system requirements by utility control. 
Strategies for both DR categories have to take into consideration the consumer comfort as 
well as the system adequacy and economic dispatch. Energy efficiency appliances will also 
help to reduce the demand. According EIA’s data of DSM on industry, half of the saving 
comes from energy efficiency improvement. 

According to the studies from LBNL, PNNL and other related papers, HVAC can be an 
excellent resource for load savings because they take a large share of load in commercial 
buildings and can be shut down for a short while without immediate impacts on the 
building occupants. For HVAC systems, the DR strategies include zone control, air 
distribution, and central plant, in order of recommended priority to achieve these goals: 1) 
Global Temperature Adjustment of Zones; 2) Systemic Adjustments to the Air Distribution 
and/or Cooling Systems. 

The water heater is another type of “controllable loads”, which has been studied and 
controlled since almost 20 years ago in the DLC programs. Considered as a thermal mass, 
water heater has a control strategy and effect similar to that of HVAC. Mainly the concerns 
on room air temperature are changed to concerns on the hot water temperature. The 
advantage of water heater control over HVAC is that the power consumption in kW of a 
water heater is usually higher than an air conditioner, which provides a higher potential of 
peak demand reduction. 

The electric clothes dryer is a large load in a residential house. On average, the energy 
consumption in kWh is not very high. However, when it is in use, the demand in kW may 
even be higher than a water heater. At the same time, it also has the characteristic that 
short-term shut down may well go unnoticed. The GridWise Testbed Grid FriendlyTM 
Appliance (GFA) Project takes clothes dryers as one of the responsive load for the 
frequency support and most consumers report no obvious impact. Therefore clothes dryer 
heating coil can be listed as one of the DR strategies.  

Lighting DR strategies tend to be simple and provide constant, predictable demand savings. 
As the controls of lighting systems are more noticeable, they should be carried out 
selectively and carefully, considering the immediate impacts on occupants. For lighting 
systems, the DR strategies in increasing order of sophistication are listed as: zone switching; 
fixture switching, lamp switching, stepped dimming, continuous dimming. Another 
possible choice is to change the lights to CFLs or LEDs to reduce both the demand in kW 
and energy consumption in kWh, which may involve the cost-benefit analysis for the 
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device changes and bill savings. 

DR strategies targeting other devices such as refrigerators and ovens have also been studied 
though not widely accepted. Further study can be conducted on those areas. However, 
consumers’ convenience has to be kept in mind always when designing the DR strategies 
no matter what the category. 

2.2.3.6. Analysis Tools for Demand Response 

1) eQuest [140] 

eQuest is a sophisticated, yet easy-to-use building energy analysis tool. This tool is a 
combination of a building creation wizard, an energy efficiency measure (EEM) wizard, 
and a graphical reporting as well as a widely recognized and trusted DOE-2 simulation 
engine.  

DOE-2 can predict the energy use and cost for all types of buildings. It uses a description of 
the building layout, constructions, operating schedules, conditioning systems (lighting, 
HVAC, etc.) and utility rates provided by the user, along with weather data, to perform an 
hourly simulation of the building energy consumption and to estimate utility bills. 

2) EnergyPlus [141] 

EnergyPlus is an energy analysis and thermal load simulation program. Based on a user's 
description of a building from the perspective of the building's physical make-up and 
associated mechanical and other systems, EnergyPlus calculates heating and cooling loads 
necessary to maintain thermal control set-points, conditions throughout a secondary HVAC 
system and coil loads, and the energy consumption of primary plant equipment.  

Key capabilities: 

- Integrated, simultaneous solution; 
- Sub-hourly, user-definable time steps; 
- ASCII text based weather, input, and output files; 
- Heat balance based solution technique; 
- Transient heat conduction; 
- Improved ground heat transfer modeling; 
- Combined heat and mass transfer; 
- Thermal comfort models; 
- Anisotropic sky model; 
- Advanced fenestration calculations; 
- Day lighting controls; 
- Atmospheric pollution calculations. 

3) GridLAB-D™  from PNNL [142] 
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GridLAB-D™ is a flexible simulation environment that can be integrated with a variety of 
third-party data management and analysis tools. The core of GridLAB-D™ has an 
advanced algorithm that simultaneously coordinates the state of millions of independent 
devices, each of which is described by multiple differential equations. The advantages of 
this algorithm over traditional finite difference-based simulators are: 1) it handles unusual 
situations much more accurately; 2) it handles widely disparate time scales, ranging from 
sub-seconds to many years; and 3) it is very easy to integrate with new modules and 
third-party systems. 

At its simplest, GridLAB-D™ examines in detail the interplay of every part of a 
distribution system with every other. It becomes an essential tool that enables industry and 
government planners to design more effective and efficient programs to manage load 
growth and improve system reliability. 

The residential end-use modeling details are described in reference [143] including water 
heater, lights, dish washer, microwave, refrigerator, internal heat gains and house (HVAC). 

4) Demand Response Quick Assessment Tool (DRQAT) [144] 

The demand reduction potential and cost saving with building DR vary tremendously with 
building type and location. This assessment tool will predict the energy and demand saving, 
the economic saving, and the thermal comfort impact for various demand response 
strategies based on the most popular feature and capabilities of EnergyPlus. 

User inputs include: basic building information such as building type, square footage, 
building envelope, orientation, utility schedule, etc. The assessment tool will then use the 
prototypical simulation models to calculate the energy and demand reduction potential 
under certain demand response strategies, such as pre-cooling, zonal temperature set up, 
and chilled water loop and air loop set points adjustment.  

5) Demand-Limiting Assessment Tool (DLAT) [145] 

The Demand-Limiting Assessment Tool (DLAT) evaluates the peak demand reduction, 
utility cost savings, and comfort impacts associated with the use of building thermal mass 
for pre-cooling and demand limiting for a limited number of prototypical small commercial 
buildings. The program performs hourly calculations with fairly detailed models of the 
buildings and equipment. The user inputs include: building type and size; location; 
occupancy schedule; utility rates; equipment type and efficiency; demand-limiting control 
parameters.  

With this simulation tool, relative demand reductions, cost savings, and comfort impacts 
associated with the alternative control strategies are expected be similar for similar building 
types. 
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2.2.4. Research on System Analysis and DR Evaluation 

1) System Analysis  

As demand response can perform load reshape, system analysis has been conducted by 
some previous research. Some of the research focus on the general assessment of DR 
benefits or barriers, which will cover part of the system analysis like DOE’s and FERC’s 
reports [11,19]. Others may be more specific, focusing on issues like reliability, adequacy, 
security and so on.  

Reference [146] introduces a simplified framework for analyzing forms of demand-side 
management considering Incentive structures, methods of actuating demand-side response, 
and information exchange requirements. Reference [147] proposes a computationally 
efficient simulation approach to quantify the impacts of DR resources on market 
performance, generation dispatch, transmission usage, environment and other system 
variable effects.  

More specifically, reference [148] concludes that the price-based DSM can improve the 
system security by congestion relief. Reference [135] analyzes system reliability 
considering expected energy not served (EENS) and spinning reserve cost with EDRP as a 
source of ancillary service.  

2) DR Evaluation 

As consumers’ participation is very critical to the implementation of demand response 
programs, a lot effort has been put on the consumer encouragement. From the consumer 
side, demand response programs have been studied, evaluated or analyzed based on 
consumers’ comfort level [149]. Reference [150] points out that the consumer comfort zone 
(thermal comfort and air quality) should not be affected during a DR program. Some DR 
strategies are also designed with consideration of consumers’ comfort [151,152,153].  

2.3. Conclusions and Knowledge Gaps 

This chapter summarizes the literature search and identifies the knowledge gaps from four 
aspects: load modeling, EV penetration, demand response strategies and system analysis 
with demand response.  

2.3.1. Load Modeling 

Much work has been done on load modeling at different levels in different time scales. 
Models that provide daily, monthly or annual load curves for a large service area are good 
for the study of electric power grids at the transmission level. As the number of consumers 
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grows, the fluctuations in each consumer can be canceled when aggregated with other 
consumers. These top-down models represent average load curves of a specific area, which 
are impossible to study the impact of demand response when appliance-level loads cannot 
be controlled. 

For loads to be controllable to evaluate the demand response strategies, the bottom-up 
models should be developed that are based on characteristics of each loads, and of 
short-time interval, e.g. minutes. The previous work has covered some of this area and 
provides valuable references. However, there is a need for more realistic usage profiles and 
methodologies for aggregation. 

Demand response analysis tools have been discussed in the literature review already 
presented. The building energy simulations tools, like DOE-2 and EnergyPlus, only provide 
the building energy consumption estimation. This will not help in simulations and analysis 
of real-time demand response. DLAT is an hourly based simulation tool, which is too rough 
for many types of loads such as HVAC, water heater, etc. However, there is something to 
learn from the analysis methodology in the tool. 

Detailed load models at the appliance level or building level are typically used for control 
of a specific type of load, (e.g. air conditioner). The time intervals are usually shorter, 
depending on the input data. With a dynamic model, the control is realizable. However, 
these models are usually limited to the building level, like DRQAT, which cannot provide 
utilities with a general idea of the loading level of the distribution networks in their service 
areas.  

For the study of a distribution network, a detailed load model which starts from the 
appliance level and aggregates to the feeder level or substation level will be more 
beneficial. As many appliances are only run for several minutes, hourly data is too rough 
for appliance control, therefore the model should be of short time interval (1~10 minutes). 

GridLAB-D is the closest option to address the problem. It provides detailed load models 
for each appliance, and load aggregation of a distribution network. Based on the PNNL 
description, the load modeling methodologies are also very similar to the work in this 
dissertation. However, GridLAB-D doesn’t provide the external data such as building 
structures and hot water usage profiles. Therefore it requires data input for the models to 
run realistically. (Default data for one type of load and for one building are provided but 
will not have diversity without different inputs.) 

For subsequent studies on demand response, a set of detailed load models by appliance 
with randomized inputs for feeder load aggregation are proposed in this dissertation. The 
models for controllable loads (i.e. HVAC, water heater, clothes dryer and EV) are dynamic, 
and thus can fulfill the task of demand response simulations and analysis. The demand 
aggregation will reveal realistic diversities among different buildings and distribution 
circuits. 
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2.3.2. EV Penetration 

1) Impact of EV Penetration into the Distribution Network with DR 

In FERC’s National Action Plan on Demand Response, FERC has identified the study of 
how plug-in hybrid electric vehicles interact with demand response programs as one of the 
research gaps.  

Most of the research on EVs’ penetration into the power system is based on fixed charge 
profiles which are not controllable. Though there have been different assumptions such as 
evening charge or off-peak charge, EV charge time is still in lack of flexibility. EV charge 
time and charge rate should be flexible for a realistic study. 

There is the need to perform analysis of EV penetration into the distribution network and 
the interaction with existing loads. In one possible scenario, EV can be considered as one 
of the household loads and included in the appliance list that can perform demand response.  

2) EV V2G control  

Many Research on V2G for EV fleet are considering EV batteries as a simple energy 
storage system (ESS) from which energy can be drawn according to signals such as price or 
demand limit. However, there are many factors will affect the V2G performance such as 
battery life concerns and consumers’ driving patterns. 

In a more realistic way, EV is a specific load which can feed back to the smart grid. The 
fleet control has to take into consideration EV owners’ preferences, the driving patterns, 
and battery SOC. 

2.3.3. Demand Response Strategies 

Incentive-based DR has been used for a long time in different forms, which provides 
utilities with some demand reduction when there is a demand limit. According to the 
literature search, the traditional incentive-based DR may either be arbitrary (e.g. direct load 
control, ancillary services, etc.) or not in real-time response (e.g. emergency demand 
response program, demand bidding, etc.). Without full knowledge of each customer’s 
power consumption situation, the traditional incentive-based DR cannot guarantee the 
demand reduction amount. At the same time, some of the incentive-based DR cannot 
respect consumers’ convenience. Even the comfort factor is taken into account during the 
strategy design, the privacy and different consumer preferences are still left out of the 
consideration with the incentive-based DR. 

On the other hand, in the smart grid environment, price-based DR has been fostered to 
support customers to respond to the given price signal. Price-based demand response is a 
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bottom-up approach, in which consumers’ convenience and privacy are respected. However, 
with this mechanism, the DR results are highly dependent on consumers’ reaction, which 
brings utilities more uncertainty on the load shape change. For Time-of-use rate (TOU) and 
critical peak pricing (CPP), there is also the problem of new peak demand creation after the 
“peak period”.  

Some previous work only focuses on demand response strategies for the commercial and 
industrial consumers. In fact, the demand for electricity required by residential consumers 
should not be simply neglected because they constitute a large share of the total electricity 
consumption.  

There is definitely a need to develop a demand response strategy to keep the advantages 
from both price-based and incentive-base DR and eliminates their disadvantages. The 
strategy should provide utilities with trustworthy control results (i.e. load shape change 
according to demand limit) while respect consumers’ convenience and privacy. The DR 
strategy should be suitable for both commercial and residential sectors. Furthermore, there 
is the need for better understanding of DR impacts on consumers’ comfort level and 
reasonable DR potential, which have not been addressed in the previous works. 

2.3.4. System Analysis and DR Evaluation 

According to the literature search, there has been some work on system analysis with 
demand response. However, most of them are for large area power grid. The analysis does 
not reveal DR impacts on a distribution network, which is of more concern to the end users. 

Demand response potential evaluation has been performed in a general way described in 
Section  2.2.3. The consumer comfort has been taken into consideration in the analysis of 
DR impacts and strategy design. However, there hasn’t been much concern on non-thermal 
dynamic loads such as clothes dryer and EVs, which should be consider as important as the 
thermal comfort. Moreover, to emphasize the consumer side and foster the participation, 
DR potential evaluation based on consumers’ convenience level is needed in the 
distribution network. 
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3. Modeling of Residential and Commercial Loads 

This chapter describes the load modeling methodology at both appliance level and 
distribution circuit level for residential and commercial buildings. The load models are 
demand-response enabled thus can be controlled by DR signals. The work in this chapter 
sets the basis for the following DR operation and analysis.  

3.1. Load Categorization 

In general, a distribution network is referred to as all distribution-level components located 
downstream of a distribution substation.  

Hourly load curves of an average household or commercial building are available from the 
RELOAD database [154] which is used by the Electricity Module of the National Energy 
Modeling System (NEMS) [155]. The hourly load curve data are available for twelve 
months (January to December), and three-day types (typical weekday, typical weekend and 
typical peak day).  

Based on the RELOAD database, residential loads can be classified by the following nine 
load categories:  

- Space cooling  
- Space heating  
- Water heating  
- Clothes drying  
- Cooking  
- Refrigeration  
- Freezer  
- Lighting  
- Others  

For commercial buildings, the load types vary according to the building types and activities 
[156]. Major commercial building loads include: 

- Space cooling  
- Space heating  
- Water heating  
- Lighting  
- Others  

For the purpose of this study, all residential and commercial loads are classified into two 
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categories: controllable and critical [112]. Controllable loads are defined as the loads that 
can be controlled without a noticeable impact on consumers’ life styles. The other category 
contains loads that are either very important (critical loads) or loads that cannot be 
controlled.  

• For residential houses, space cooling/heating, water heater and clothes dryer loads 
are controllable; and all other loads are considered critical or cannot be controlled.  

• For commercial buildings, the space cooling load in summer and space heating load 
in winter are considered controllable; and all other loads are considered critical or 
cannot be controlled.  

In this study, detailed load models and validation are developed for the controllable loads. 
Data from the RELOAD database are used to construct the critical load profiles for both 
residential and commercial load categories. 

3.2. Space Cooling and Space Heating (HVAC) Load 

3.2.1. Model Development 

A central air conditioning (AC) system with a thermostat works in an “on-off” way and the 
AC will simply run at its rated power when turned on. In general, the thermostat control is 
set such that the room temperature (T) will fluctuate around the thermostat set point (Ts) 
within the dead band of ±ΔT.  

For space heating, when the room temperature is lower than Ts-ΔT, the heater will start 
working (at rated power, as mentioned above) and the room temperature will gradually 
increase. The heat produced is to warms up the room as well as compensates for the heat 
loss. When the room temperature reaches the upper bound at Ts+ΔT, the heater will be 
turned off. Since the outdoor temperature Tout is lower than the room temperature (T), the 
room temperature will start to decrease due to the heat loss. While the temperature is within 
the range of Ts-ΔT≤T≤Ts-ΔT, the heater will keep its status until the room temperature 
reaches either boundary. 

Similarly for the space cooling, when the room temperature is higher than Ts+ΔT, the AC 
will start working at its rated power and the room temperature will gradually decrease. The 
AC cools down the room as well as compensates for the heat gained from the outdoors. 
When the room temperature reaches the lower bound at Ts-ΔT, the AC will turn off. Since 
the outdoor temperature Tout is higher than the room temperature (T), the room 
temperature will start to increase due to the heat gain. While the room temperature is within 
the range of Ts-ΔT≤T≤Ts-ΔT, the heater will keep its status until the room temperature 
reaches either boundary. 

Fig.  3-1 illustrates the block diagram of the HVAC load model. This model can be used for 
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both residential and commercial space cooling/heating load. 

 
Fig.  3-1 HVAC Load Model Block Diagram. 

Inputs to the model are the DR control signal (cAC,i), time series outdoor temperature data 
(Tout), thermostat set point (Ts), allowable temperature deviation or dead band (ΔT) and 
time series room temperature data (Ti). The model outputs are the time series electric power 
consumption (pAC,i) in kilowatts of the space cooling/space heating unit, and the room 
temperature (Ti+1) at the next time step. The room temperature output is used as an input to 
the load model at the next time step. The model needs additional house parameters, 
including house structures, number of people dwelling and the electrical characteristics of 
the space cooling/space heating unit.  

1) Calculation of the electric power demand in each time slot: 

, ,AC i AC AC ip P w= ⋅                                Eq.  3-1 

Where,          
PAC : rated power of the space cooling/space heating system (kW); 
wAC,i : status of the space cooling/space heating unit in time slot i, 0=OFF, 1=ON. 

For space cooling, the unit is ON when the room temperature increases above the set 
point, plus the threshold. The unit is OFF when the room temperature decreases below a 
certain value. The status of the unit remains the same if the room temperature is within 
the acceptable band. This relationship is presented in Eq.3-2. 
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For space heating, the operation is similar to above. 
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  Eq.  3-3 

Where 
cAC,i : DR control signal for the space cooling/space heating unit in time slot i (°F) 

The electric power demand also depends on the DR control signal (cAC,i) received from 
an external source, such as an in-home controller, or a utility. For space cooling/space 
heating, the DR control signal will rewrite the temperature set point and change the 
space cooling/space heating load profile. This DR control signal, if received from an 
in-home controller, can be configured to take into account the priority of all end-use 
loads in a house, and customer comfort levels.  

2) Determination of room temperature:  

For each time step i, the room temperature is calculated as: 

( )1 , 0
i HVAC

i i AC i s
G CT T t t w T T

c c+ = −Δ ⋅ +Δ ⋅ ⋅ =
Δ Δ

                Eq.  3-4 

Where,          
Ti : room temperature in time slot i (°F); 
Δt : length of time slot i (hour); 
Gi : heat gain rate of the house during time slot i, positive for heat gain and 

negative for heat loss (Btu/h); 
CHVAC : cooling/heating capacity, positive for heating and negative for cooling 

(Btu/h); 
Δc : energy needed to change the temperature of the air in the room by 1°F 

(Btu/°F). 

3) Calculation of other parameters (Gi and Δc). 

For each time slot i, the heat gain rate of the house (Gi) is calculated as: 
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 Eq.  3-5 
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Where, Awall, Aceiling, and Awindow represent the area of the wall, ceiling, and window of the 
house, in ft2. Rwall, Rceiling, and Rwindow represent the heat resistance of the wall, ceiling, 
and window, in°F⋅ft2⋅h/Btu * [157]. 

Tout,i : outdoor temperature in time slot i (°F); 
SHGC : solar heat gain coefficient of windows [158]; 
Hsolar : the solar radiation heat power (Wh/m2). 

To change the house temperature by 1°F, the energy required (Btu/°F) is calculated as: 

air housec C VΔ = ⋅                                   Eq.  3-6 

Where,        
Cair : specific heat capacity of air for a typical room condition (1.012J/gK or 

0.0195 Btu/ft3
 °F); 

Vhouse : the volume of the house (ft3). 

3.2.2. Model Validation 

To validate the developed model, the HVAC model is run with the inputs (outdoor 
temperature, thermostat set point, dead band, house structure parameters, and HVAC unit 
size) from a real house in Charlottesville, VA. Using the same inputs, the model outputs 
(power consumption and indoor temperature) are compared with the actual measurements. 
This comparison is illustrated below for two 24-hour periods, one in the month of August 
for space cooling demand; and the other for the month of January for space heating 
demand. 

Fig.  3-2 indicates similarities between the actual power consumption and the model output. 
Any discrepancies may result from the assumptions associated with the house structure 
parameters. In addition, the temperature measurements from the real house are smooth, 
while the temperature output from the model fluctuates around the dead band. This is 
because the actual temperatures were measured at several locations around the house, and 
averaged to obtain the room temperatures as shown. 

                                                        
* Insulation is rated in terms of thermal resistance, called R-value, which indicates the resistance to heat flow. The higher 
the R-value is, the greater the insulating effectiveness will be. The R-value of thermal insulation depends on the type of 
material, its thickness, and its density. In calculating the R-value of a multi-layered installation, the R-values of the 
individual layers are added. R-values have unit of °F ⋅ft2⋅h/Btu. 
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a) Space Cooling Comparison 

 
(b) Space Heating Comparison 

Fig.  3-2 Space Cooling/Space Heating Model Validation – Comparison of Load Profile (kW) and Indoor 
Temperature (°F). 

3.2.3. Aggregation of Space Cooling/Heating Load 

According to section  3.2.1, the input parameters for a space cooling/space heating model 
are divided into three categories: temperatures, building structures and the space 
cooling/space heating unit characteristics. These are parameters needed to be randomized 
for different homes in the same distribution circuit. 

The temperature category includes outdoor and indoor temperature set points. The outdoor 
temperatures are acquired from the National Climatic Data Center (NCDC) [159], which 
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should be the same for all houses in the same neighborhood. For the indoor temperature set 
points, a uniform random function is used to determine the variation in temperature set 
points among different houses in the same distribution circuit.  

The lower and upper limits for the temperature set points are determined based on data 
from ASHRAE [160].  

The building structure category includes the floor plan of the buildings, areas of walls, 
ceilings and windows as well as the R-values for each of them. Similar to the indoor 
temperature, a uniform random function is used to determine the variation in R-values and 
areas of wall, window, ceiling and floor among different houses in the same distribution 
circuit. The lower and upper limits for these values are acquired from a survey of the 
service area. Such data for residential houses are obtained from the American Housing 
Survey [161].  

The space cooling/heating characteristic category includes the cooling/heating capacities 
and power consumptions, which is usually known as the unit sizing. Usually, the sizing is 
based on the building floor plans, activities, occupants and environment. The unit sizing is 
calculated according to ASHRAE [162]. 

After getting all three sets of random functions for these input parameters, the demand 
aggregation for HVAC is quantified by running the space cooling/heating model N+M 
times with different parameters. (N is the number of residential houses in the distribution 
network and M is the number of commercial buildings.)  

3.3. Water Heating Load 

3.3.1. Model Development 

Water heating is the third largest energy expense in a normal residential house. It typically 
accounts for about 12% of your utility bill [163]. Note that as commercial water heating 
load is considered as “critical”, this DR-enabled water heating load model is for residential 
only. 

For a traditional water heater with a tank for hot water storage, suppose the hot water outlet 
setting point is Tf, with a ΔTw lower tolerance. It is reasonable to assume that the cold water 
inlet flow rate is equal to the hot water outlet flow rate. When the mixed water temperature 
drops below the lower bound, i.e. Toutlet<Tf-ΔTw, the heating coils will start working at its 
rated power until the outlet hot water temperature reaches the upper bound, i.e. Tf. If the 
outlet water temperature is kept within the range of the dead band, i.e. Tf-ΔTw≤Toutlet≤Tf, the 
heating coils will keep their status. The stand-by loss of the tank Ls also needs to be taken 
into consideration for a traditional water heater. Fig.  3-3 shows the water heater model 
block diagram. 
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Fig.  3-3 Water Heater Load Model Block Diagram 

For each time step i, the demand for electricity of the water heating unit (pWH,i) is calculated 
as: 

, , ,WH i WH i WH WH WH ip w P cη= ⋅ ⋅ ⋅                          Eq.  3-7 

Where,  
PWH : rated power of the water heater (kW); 
ηWH : efficiency factor; 
wWH,i : status of the water heater in time slot i, 0=OFF, 1=ON; 
cWH,i : DR control signal for water heater (°F). 

The water heater status (wWH,i) is determined according to the following rules: when the 
water temperature in the hot water tank goes above the set point, it does not operate. When 
the water temperature drops below a lower bound, the heating coils start working again at 
its rated power until the outlet hot water temperature reaches the upper bound. 
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Eq.  3-8 

Where,          
Tf : hot water temperature set point (°F); 
ΔTw : lower tolerance (°F); 
Toutlet,i : mixed water temperature in the tank (°F); 

The water temperature in the tank is calculated as: 
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Eq.  3-9 

Where,          
Tinlet : temperature of inlet water (°F); 
Ta : room temperature (°F); 
fri : hot water flow rate in time slot i (gpm); 
Atank : surface area of the tank (ft2); 
Vtank : volume of the tank (gallons); 
Rtank : heat resistance of the tank (°F⋅ft2⋅h/Btu); 
Δt : duration of each time slot (minutes). 

The electric power demand also depends on the DR control signal (cWH,i) received from an 
external source, such as an in-home controller, or a utility. The DR control signal of 0 will 
shut off the unit, and the DR control signal of 1 will turn the unit on. 

3.3.2. Model Validation 

To validate the developed water heater model, there is a need to find out a house’s water 
heater temperature set point, tank size and rated power. With the same input, the same 
water heater load profile is expected when compared to the measured load curve. Fig.  3-4 
shows the comparisons of load profiles between the TED demo water heater power 
consumption data  (a) and modeled water heater load profile (b). 

Note that the water heater data is incomplete so there has to be some assumptions. 
Therefore the modeled load profile cannot be exactly the same as the measurements. The 
pictures are only to show that they are similar, so it is thereby reasonable to use the model 
for simulations and analysis. 

 
(a) TED Demo Water Heater Power Consumption Data 
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(b) Modeled Water Heater Load Profile 

Fig.  3-4 Water Heater Model Validation – Load Profile Comparison 

3.3.3. Aggregation of Water Heating Load 

The input parameters for the water heater model are divided into three categories: 
temperature profiles, water heater characteristics and hot water usages. 

The temperature profile includes tank ambient temperatures, inlet water temperatures and 
hot water temperature set points. Tank ambient temperature is assumed to be the same as 
the room temperature, which can be acquired from the space cooling/space heating model. 
Inlet water temperature is assumed to be the same as the ground temperature, which can be 
acquired from Soil Climate Analysis Network (SCAN) [ 164 ]. For the hot water 
temperature set points, a uniform random function is used to determine the variation in 
temperature set points among different houses in the same distribution circuit.  

The lower and upper limits for the hot water temperature set points are determined based 
on data from [163], which specifies typical residential hot water temperature set points 
between 110°F and 120°F. 

The water heater characteristics include the R-values, tank sizes and rated power. Similar to 
the hot water temperature, a uniform random function is used to determine the variation in 
R-values, water heater tank sizes and rated power among different houses in the same 
distribution circuit. The typical ranges for these values are acquired from [163,165].  

For hot water usage, the hourly fraction data from California’s Hourly Water Heating 
Calculations [166] are taken as a reference. At the same time, hot water usage is 
categorized into different types in percentage of the daily household hot water usage [167]. 
Therefore for each type of hot water usage, the water consumption duration in a minute is 
the hot water demand in gallon divided by the flow rate in gallon per minute (gpm). The 
Monte Carlo method is used to decide when the hot water is consumed based on the hot 
water hourly usage fraction shown in Fig.  3-5 for different residential houses. 
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Fig.  3-5 Hot Water Usage Hourly Fraction 

3.4. Clothes-drying Load 

3.4.1. Model Development 

The clothes-drying load model is designed for the residential sector only. The power 
consumption of a typical clothes dryer is from the motor and the heating coils. The power 
demand of the motor part is usually in the range of several hundred watts, but that of the 
heating coils can be several kilowatts. Fig.  3-6 shows the clothes-drying load model block 
diagram. 

 
Fig.  3-6 Clothes Dryer Load Model Block Diagram 

For each time slot i, the demand for electricity of the clothes-drying unit (pCD,i) is 
calculated as: 

, , , , ( 1, , )h
CD i CD i CD i m CD i

k Pp w c P w k M
M
⋅

= ⋅ ⋅ + ⋅ = L            Eq.  3-10 

Where,          
Ph : rated power of clothes-dryer heating coil (kW); 
k : drying level (k=1,…,M); 
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M : total number of drying levels; 
Pm : power consumption of the dryer’s motor (kW); 
wCD,i : status of the clothes-dryer’s heating coils in time slot i, 0=OFF, 1=ON; 
cCD,i : DR control signal for clothes dryer in time slot i, 0=OFF, 1=ON. 

The electric power demand also depends on the DR control signal (cCD,i) received from an 
external source, such as an in-home controller, or a utility. For the clothes dryer load, when 
a DR control signal is received, only the heating coil will be controlled (ON/OFF) but the 
motor part will not be controlled. This implies that the clothes dryer will be spinning during 
the control period, thus consuming only a fraction of the overall load (several kW).  

3.4.2. Model Validation 

For validation purpose, there is a need to find out a house’s clothes dryer rated power and 
when it is being used. With the same input of power and time, the same clothes dryer load 
profile is expected compared to the measured load curve. Fig.  3-7 shows the comparisons 
of load profiles between the model and data from a real house in Virginia. 

5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

6

Time(minute)

D
em

an
d(

kW
)

Clothes Dryer Demand

 

 

Measurement
Model

 
Fig.  3-7 Clothes Dryer Model Validation – Load Profile Comparison 

The close match between the actual and modeled power consumption characteristics of a 
clothes dryer validates the usefulness of the simulation model. 

3.4.3. Aggregation of Clothes-drying Load 

The clothes dryer load profile is developed based on a probability distribution function that 
is similar to the dryer power consumption profile obtained from the measurement of a 
home in Florida [168]. The dryer running time generally starts from late morning to 
midnight, with the mean in the evening. After finding out the dryers’ running time, the 
demand aggregation of clothes dryers is acquired by running the developed model to obtain 
power consumption of all dryers in the distribution circuit.  
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3.5. Critical Loads 

3.5.1. Residential Critical Load Models  

The aggregated load profile of critical loads is created based on the historical data of the 
industry-accepted database, i.e. RELOAD database. As critical loads will be kept as they 
are during the demand response periods, the average model will work for the distribution 
network. According to the categories in Section  3.1, “cooking”, “lighting”, “refrigerator”, 
“freezer” and “others” are considered as critical loads for residential customers. 

Assuming that there are N residential houses in the distribution network, the critical load 
profile in a house can be derived based on the following equation: 

    
5

_
_

1 8760
ar type

c r type
type

L
L N f

=

= × ×∑                         Eq.  3-11 

Where,          
Lc_r : the critical load in one hour (kW); 
ftype : hourly fraction of annual residential load for load type; 
Lar_type : the average annual household load for load type i, which can be found from 

EIA monthly electricity sales data [169]. 

3.5.2.  Commercial Critical Load Models  

All loads besides space cooling and space heating are critical loads for commercial 
customers. Since different commercial buildings may have different load types, (e.g. an 
office building has “space cooling”, “space heating”, “ventilation”, “lighting”, “water 
heater” and “others” while a fast food service building also has “cooking” load), critical 
loads are defined according to the building activities.  

Assuming that there are M commercial buildings in the distribution network, the total 
critical load curve for a 24-hour period can be acquired from: 

1 2
1 2

1 2

1 2

_ 1 2
1 1 18760 8760 8760

x
x

x

x

ii i CC C
aBaB aB

c c iB iB x iB
iB iB iB

LL L
L M f M f M f

= = =

= × × + × × + + × ×∑ ∑ ∑L  Eq.  3-12 

In which: 

1 xM ML  are the numbers of each commercial building type which makes 

1 2 xM M M M= + + +L . 
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1 xiB iBf fL are the hourly fractions of annual commercial loads for load type i in 

commercial building B1~Bx. 

1 x

i i
aB aBL LL are the average annual commercial loads for load type i in commercial 

building B1~Bx. 

1 xC CL  are the numbers of critical load types in commercial building B1~Bx. 

3.5.3. Aggregation of Critical Loads 

As the critical loads come from average data, the aggregation of critical loads is obtained 
by multiplying the load profiles for one building by the number of each type of building.
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4. Modeling of Electric Vehicles (EV) 

To investigate the impacts of EVs penetration into the distribution network, it is important 
to get a thorough understanding of the EV fleet charging pattern. This section describes the 
EV modeling methodology and shows an example of EV fleet charge load profile.  

4.1. Model Development for Electric Vehicles 

To model EV charging profiles, three parameters are essential: the rated charging power, 
the plug-in time and the battery state-of-charge (SOC). Fig.  4-1 shows the clothes-drying 
load model block diagram. 

 

Fig.  4-1 Electric Vehicle Load Model Block Diagram 

The calculation of the EV charging profile is described in Eq.4-1. 

, , , ,EV i EV EV i EV i EV ip P S w c= ⋅ ⋅ ⋅                       Eq.  4-1 

Where,          
pEV,i : EV charge power in time slot i (kW); 
PEV : EV rated power (kW); 
SEV,i : EV connectivity status in time slot i, 0 if EV is not physically connected to the 

outlet and 1 if EV is connected; 
wEV,i : Uncontrolled EV charging status in time slot i, which depends on the battery 

SOC as shown in Eq.4-2: 0 if EV is not being charged and 1 if EV is being 
charged; 

cEV,i : DR control signal for EV in time slot i, 0=OFF, 1=ON. 

max
,

max

0,
1,

i
EV i

i

SOC SOC
w

SOC SOC
≥⎧

= ⎨ <⎩
                       Eq.  4-2 

The battery SOC at time slot i is a function of the SOC at the previous time slot, the energy 
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used for driving and the battery rated capacity, which is determined by: 

1

0

/
1 /

i i EV batt

dr batt

SOC SOC P t C
SOC E C

−= + ⋅Δ
= −

                      Eq.  4-3 

Where, 
SOC0 : battery SOC when EV is plugged in; 
Δt : length of time slot i (minute); 
Edr : energy used for driving (kWh); 
Cbatt : battery rated capacity (kWh). 

The EV power demand also depends on the DR control signal (cEV,i) received from an 
external source, such as an in-home controller, or a utility. The DR control signal of 0 will 
stop the charging of an EV while the DR control signal of 1 will allow the EV to start 
charging. The EV will continue to be charged until it is fully charged. The developed EV 
model takes into account charging compensation time if the EV charging is interrupted by 
the DR signal. 

4.2. Demand Aggregation of EV Fleet 

To determine the EV fleet charge profile in a distribution circuit, three parameters (vehicle 
rated charging power, plug-in time and the battery SOC) have to be reasonably diversified.  

For the EV rated charging power, Table  4-1 [170,171,172,173,174] shows the basic battery 
charge data of three popular EVs in the US market. The charge power presented in Table 
 4-1 is used to determine the charge power of the EV fleet with a reasonable mix of different 
EV makes and models. In this dissertation, the recommended charge rates are adopted for 
case studies.  

The EV plug-in time is derived from the National Household Travel Survey [175]. The EV 
plug-in time is modeled using a normal distribution with a mean and a variance derived 
according to the data presented in [176]. 

Table  4-1 Popular EVs in the U.S. Market  
Make & Model Battery Size  Energy Available All Electric Range Charge Power 
GM  
Chevy Volt  

16kWh 8kWh 40 mi 1.9kW 
3.3kW (Recommended) 

Nissan 
LEAF  

24kWh 19.2kWh  100 mi  
(LA4 mode) 

1.8kW 
3.3kW (Recommended) 
49kW (fast) 

Tesla  
Roadster  

53kWh 37.1kWh  244 mi 
(Experiment) 

1.8kW 
9.6kW (Recommended) 
16.8kW 

EV driving patterns are used to determine the EV energy storage status, i.e. the battery 
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SOC. The daily driving distances for each EV in a distribution circuit is determined based 
on the data presented in Fig.  4-2 [175] using the Monte Carlo simulation. The battery SOC 
of each EV when plugged in is determined by Eq.4-3. 

 
Fig.  4-2 American Driving Pattern Curve. 

To illustrate the aggregation of the EV load at a distribution circuit level, Fig. 4-3 shows an 
example charging profile of a 100-EV fleet with the mix of 70% Chevy Volt, 20% Nissan 
LEAF and 10% Tesla Roadster. The EV fleet mix (70/20/10) is chosen as a representative 
mix to show a sample aggregation of different EV types. As the EV market share changes 
over time and new EV models enter the market, the EV fleet mix can change, but the 
methodology will stay the same. The recommended charging power rates in Table  4-1 are 
chosen for the simulation. The EVs are assumed to come back home and plugged in at 
different time according to a normal distribution with mean at 18:00 and 1 hour variance. 
The Monte Carlo simulation is used to determine the driving distance of each EV which 
derives the battery SOC. 

 
Fig.  4-3 Example EV Fleet Charging Profile for One Day 
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5. Design of Multi-layer Demand Response Strategy 

5.1. Structure of the Multi-layer Demand Response  

The multi-layer demand response (DR) strategy is designed from the top down. When there 
is a power system stress event happens, the utility announces the demand limit for the next 
time interval to all the substations in its service area. Then the substation will decide the 
allocation of the demand limit to each distribution circuit it servers. The proposed DR 
strategy is focusing at the distribution circuit level and lower. Therefore the demand limit is 
assumed to be given by the upper level command.  

When a distribution circuit receives a demand limit, it will use the AHP to decide the 
priority for each consumer group served by the circuit. The demand limit for each 
consumer group is then decided accordingly. Next, each consumer group will distribute the 
demand limit to the home/building in its category. Finally, the DR control center in each 
home/building will manage the household or building demand below its assigned demand 
limit. 

5.2. DR Strategy at the Distribution Circuit Level 

When the utility issues a demand limit event, the task for this layer is to determine how 
much demand needs to be shed from each residential house or commercial building. This 
process is divided into two steps: a) demand limit allocation to each consumer group; and b) 
demand allocation to each building. Note that the demand limit event can be initiated based 
on the capacity contract with the utility.  

5.2.1. Demand Limit Allocation to Each Consumer Group 

In this dissertation, AHP is adopted to determine the demand reduction allocations among 
different consumer groups when there is a demand limit event. Since the demand side 
management here can be considered as a kind of resource allocation problem, the Expected 
Priority (EP) method described in [177] is proposed to address the problem. 

To model the demand limitation allocation using an AHP, the goal, the criteria, and 
possible alternatives must be defined. The goal is the demand limit. The criteria are 
opinions from customers, experts and the utility. The alternatives are the consumer groups 
according to the principle building activities described in [156] as commercial and 
residential. Fig.  5-1 shows the AHP structure for demand limit allocation. 
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Fig.  5-1 AHP Structure for Demand Limit Allocation 

Step 1: Survey customers, experts and the utility  

Using AHP, the opinions from regular customers, experts and the utility are all taken into 
consideration. The pair-wise comparisons are conducted between each consumer group for 
different time periods.  

The weight of customers’ opinions, experts’ and utility’s are derived from pair-wise 
comparison according to Saaty’s levels:  

- 1, as equal;  
- 3, as a little more important;  
- 5, as more important;  
- 7, as much more important; and  
- 9, as extremely more important.  
- 2,4,6,8 are intermediate values.  

Using the Eigen value method, the weight for each criteria group’s opinion are given 
by cw , ew , uw  respectively, in which: cw  is the weight of the opinions from consumer 
group, ew  is the weight of the opinions from the expert group and uw  is the weight of 
the opinion from the utility. 1c e uw w w+ + = .  

Step 2: Create pair-wise comparisons 

For the next layer, each criteria group gets to vote for the priority of each consumer group. 
Table  5-1 shows an example of a pair-wise comparison result during the daytime from one 
expert. As shown, during the daytime, office buildings are more important than residential 
buildings, and fast food service is a little more important than residential buildings while 
office buildings are a little more important than fast food service. 
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Table  5-1 Pair-wise Comparison 
 Residential Office Public Assembly School Fast food 
Residential 1 1/5 1/2 1/6 1/3 
Office 5 1 4 1/2 2 
Public Assembly 2 1/4 1 1/5 1/3 
School 6 2 5 1 2 
Fast Food 3 1/2 3 1/2 1 

The corresponding judgment matrix (J) can be derived from Table  5-1 as: 

1 1/ 5 1/ 2 1/ 6 1/ 3
5 1 4 1/ 2 2
2 1/ 4 1 1/ 5 1/ 3
6 2 5 1 2
3 1/ 2 3 1/ 2 1

J

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The judgment matrix can change according to the opinions from different customers, 
experts and the utility, as well as the number of customers/experts/utilities surveyed. 

Step 3: Calculate Eigen Vector that represents the overall priority 

The Eigen vector w , which makes maxJw wλ= , represents the final priority of the three 
consumer groups by the expert’s opinion. Here maxλ  is the maximum Eigen value. It is easy 
to calculate that: 

[0.1047,0.6370,0.2583]Tw = , max 3.0385λ = . 

The consistency index CI is calculated as: 

1
max nCI
n

λ −
=

−
                               Eq.  5-1 

n is the order of judgment matrix J, i.e. here n = 3. Thus CI = 0.0192. 

The consistency ratio (CR) is calculated as:  

CICR
RI

=                                   Eq.  5-2 

In which RI can be looked up in Table  5-2 from Saaty’s book, in which the upper row is 
the order of the random matrix, and the bottom row is the corresponding index of 
consistency for random judgments. 
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Table  5-2 Index of Consistency for Random Judgments 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

Therefore here RI = 0.58, CR = 0.0331. CR > 0.1 indicates that the judgments are at the 
limit of consistency. As CR is much less than 0.1, the judgment is consistent. 

Step 4: Calculate demand allocation for each customer group in each time slot 

Assuming that we have n customers, m experts and 1 utility. Each customer gets to vote on 
the consumer group in each time slot for the whole day, comparing the priority by Saaty’s 
levels. Thus for n customer we get n vectors to represent the customers’ opinions on supply 
allocation in each time slot.  

The demand allocation in time slot i according to customers’ opinions will be: 

1

n
ic

c k
k

wV w
n =

= ∑                              Eq.  5-3 

wk
i is the kth customer’s opinion vector for time slot i.  

Vc is the final value of the consumer group opinion. 

Similarly, the demand limit allocation in time slot i according to experts’ opinions will be: 

1

m
ie

e j
j

wV w
m =

= ∑                               Eq.  5-4 

wj
i is the jth expert’s opinion vector for time slot i. 

Ve is the final value of the expert group opinion. 

The demand limit allocation in time slot i according to utility’s opinions will be: 
i

u uV w w=                                  Eq.  5-5 

wi is the utility’s opinion vector for time slot i. 
Vu is the final value of the utility’s opinion. 

To sum up, the final decision for the demand limit allocation for each consumer group in 
time slot i will be: 

( )
1 1

max , Subject to:
l l

i i i
c e u l l l

l l

V V V x x D
= =

+ + × ≤∑ ∑              Eq.  5-6 

In which xl
i is the lth building demand limit share in time slot i, Dl

i is the total demand limit 
for time slot i. 
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5.2.2. Demand Limit Allocation for Each Building 

After the demand limit for each consumer group has been decided, the demand limit has to 
be assigned to each residential house and commercial building.  

• Residential customers:  

For residential houses, the demand limit is determined by demand deduction from the 
sorted consumption queue. Fig.  5-2 shows the methodology to conduct the demand limit 
decision. First the neighborhood area network control center will sort all reported demand 
(kW). Then the demand limit for each house (red line) is set at the point that the total 
household demand to be served (shadow area) is less than or equal to the residential 
allocation of the demand limit.  

 

Fig.  5-2 Example of Sorted Consumption Queue and Demand Limit for Each House 

DLi can be determined by solving the optimization problem as shown in Eq.5-7. 

( )max iDL                             Eq.  5-7  

Subject to:  

, ,
1

N

m i total i
m

D DL
=

≤∑           

, ,
,

,

,
1,2,...,

,
m i m i i

m i
i m i i

L L DL
D m N

DL L DL
<⎧

= =⎨ ≥⎩
                    

In which: 

Lm,i is the expected household power consumption in time slot i; 
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Dm,i is the demand limit in time slot i; 
DLtotal,i is the available supply for the residential sector in time slot i. 

• Commercial customers:  

For commercial buildings, the supply allocation will be determined according to the 
building size. 

5.3. DR Strategy in at Home/Building Level  

Inside each residential house, there will be a home area network (HAN) control center to 
manage the total household demand by controlling the controllable smart appliances. 
Similarly, the building area network (BAN) is the demand management network in a 
commercial building. Each smart appliance will have an interface to receive the control 
signal from the HAN/BAN center and to report its own status. Right now, many 
communication standards are applied to build HAN/BAN, such as Zigbee, 802.11, 
Bluetooth and so on. The common sense is that the network has to be wireless, fast and 
secure. However, the bandwidth doesn’t have to be high since the data exchange shouldn’t 
be too much. (TED, Google, … are producing the control center or information gathering 
center) 

The household load has been divided into two categories according to Section  3.1: critical 
and controllable. The critical loads will only report their status while controllable loads can 
be controlled by the HAN/BAN control center according to the assigned demand limit. The 
DR strategy for a residential house is that when there is a demand limit, the control center 
will check if the household demand in the next time interval will be over the assigned limit. 
If yes, the control center will deny demand requests from some non-critical smart 
appliances according to customer pre-set preferences.  

In this dissertation, the residential HVAC load, the water heater load and the clothes-drying 
load are considered controllable while all the other loads are considered critical. If the 
HAN control center sees that the total household is exceeding the demand limit, demand 
response actions will be taken.  

The demand response in the HAN/BAN is performed as follows: 

Step 1. Set the load priority. e.g. water heater is of the highest priority, HVAC is the second 
and clothes dryer is of the lowest priority. 

Step 2. Set the convenience preference. e.g. clothes-drying must be finished by midnight. 
Room temperature should not be higher than 81°F. 

Step 3. Perform demand response based on load priority and preferences. When the 
HAN/BAN control center sees the preferences are being violated, the corresponding loads’ 
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priorities will be temporarily raised to the highest.  

For HVACs and water heaters, this can be done by tracking the temperatures. If the 
temperatures are going out of the range, keep the HVACs or water heaters on to remain in 
the comfort range. For clothes dryers, the heating coils’ off time should be kept in a certain 
range so that the heat loss can be neglected. If a clothes dryer is turned off to save capacity 
for other loads due to DR but reaching the maximum “off-time”, then the heating coil will 
be forced on to keep the heat in the dryer. For an EV, the battery state of charge (SOC) is 
monitored to make sure the charging can be finished by a given time without requiring a 
charge rate that is higher than the outlet rating. If an EV stops charging for a long time 
which is pushing to its margin, the controller will raise the EV’s priority to make it start 
charging. At this time, some other loads which are not reaching their preference limit may 
be shut down to save the capacity. 

If a house has an EV, the EV is then considered to be one of the controllable household 
loads. Therefore the control strategy will be the same as layer five for end use, which is 
described in Section  5.1. As a result, the EV will be on the preference list and controlled 
based on the demand deduction requirements as well as its priority. The difference for the 
EV is that this special controllable load can do better than other controllable loads that can 
only simply shut down or cycle. It can reduce the charging power or provide a V2G service 
if other appliances are really in need. 

For commercial buildings, the only non-critical load is the space heating in winter and 
space cooling in summer. Therefore the control strategy is to change the temperature set 
point to reduce the total building demand.  

The smart appliances will have two-way communication with the HAN/BAN control center. 
Each smart appliance has an IC built in to report the status and to receive the control signal. 
Recently, some home electronic companies such as General Electric have already started to 
produce smart appliances with an IP-based remote control signal receiver [178].
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6. DR Potential Evaluation 

As consumer acceptance is one of the key factors in order for demand response to succeed, 
it is very important to evaluate the DR impacts on consumers’ daily life. Therefore comfort 
indices are introduced in this dissertation to measure consumer comfort levels. The 
consumer comfort indices are defined based on the severity, scale and duration of 
convenience violations for each controllable appliance. 

6.1. Severity Indices 

The severity indices are used to measure how severely the consumer comfort levels are 
violated. The indices are based on the maximum percentage deviation from the original 
settings. 

6.1.1. Severity Indices for HVACs 

For HVACs, the severity index Ise,HVAC is defined as the largest room temperature deviation 
in percentage taking into account all homes in a distribution circuit. Ti,HVAC is the actual 
room temperature while Ts,HVAC is the room temperature setting. 
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,

max 100%i HVAC s HVAC
se HVAC

s HVAC
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T

⎛ ⎞−
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                         Eq.  6-1 

6.1.2. Severity Indices for Water Heaters 

For water heaters, the severity index Ise,WH is defined as the largest hot water temperature 
deviation in percentage taking into account all homes in a distribution circuit. Ti,WH is the 
actual outlet hot water temperature while Ts,WH is the hot water temperature setting. 
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max 100%i WH s WH
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                             Eq.  6-2 

6.1.3. Severity Indices for Clothes Dryers 

For clothes dryers, the severity index Ise,CD is defined as the longest clothes-drying time 
delay in percentage taking into account all homes in a distribution circuit. ti,CD is the actual 
clothes-drying time while ts,CD is the original setting for the clothes-drying time. 
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                             Eq.  6-3 

6.1.4. Severity Indices for Electric Vehicles 

For electric vehicles, the severity index Ise,EV is defined as the longest EV charging time 
delay in percentage taking into account all homes in a distribution circuit. ti,EV is the actual 
EV charging time while ts,EV is the original EV charging time without DR. 

, ,
,

,

max 100%i EV s EV
se EV

s EV

t t
I

t
⎛ ⎞−

= ×⎜ ⎟⎜ ⎟
⎝ ⎠

                              Eq.  6-4 

6.2. Scale Indices 

The scale indices are used to measure the number consumers whose comfort levels are 
violated as a percentage of a total household in the distribution circuit of interest.  

6.2.1. Scale Indices for HVACs 

For HVACs, the scale index Isc,HVAC is defined as the maximum ratio, considering all time 
slots in the study period, of number of homes with room temperatures out of the comfort 
ranges in each time slot to the total number of homes with HVAC in a distribution circuit. 
See Eq.6-5, where nHVAC is the number of homes with the room temperatures out of pre-set 
comfort ranges in each time slot. N is the total number of consumers in a distribution circuit 
and ORAC is the ownership rate of HVACs. 

, max 100%HVAC
sc HVAC

AC

nI
N OR

⎛ ⎞
= ×⎜ ⎟×⎝ ⎠

                           Eq.  6-5 

6.2.2. Scale Indices for Water Heaters 

For water heaters, the scale index Isc,WH is defined as the maximum ratio, considering all 
time slots in the study period, of the number of homes with hot water temperatures out of 
the comfort ranges in each time slot to the total number of homes in a distribution circuit. 
See Eq.6-6, where nWH is the number of homes with the hot water temperature out of 
pre-set comfort ranges in each time slot. N is the total number of consumers in a 
distribution circuit and ORWH is the ownership rate of water heaters. 
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, max 100%WH
sc WH
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⎛ ⎞
= ×⎜ ⎟×⎝ ⎠

                               Eq.  6-6 

6.2.3. Scale Indices for Clothes Dryers 

For clothes dryers, the scale index Isc,CD is defined as the ratio of the number of homes with 
clothes-drying job delayed to the total number of homes with electric clothes dryers in a 
distribution circuit. See Eq.6-7, where nCD is the number of homes with a clothes-drying 
job delayed charge delayed longer than a pre-set comfort level. N is the total number of 
consumers in a distribution circuit and ORCD is the ownership rate of clothes dryers. 

, 100%CD
sc CD

CD

nI
N OR

= ×
×

                                     Eq.  6-7 

6.2.4. Scale Indices for Electric Vehicles 

For EVs, the scale index Isc,EV is defined as the ratio of the number of homes with an EV 
charging delayed to the total number of homes with EVs in a distribution circuit. See 
Eq.6-8 where nEV is the number of homes with EV charge delayed longer than a pre-set 
comfort level. N is the total number of consumers in a distribution circuit and OREV is the 
ownership rate of electric vehicles. 

, 100%EV
sc EV

EV

nI
N OR

= ×
×

                                     Eq.  6-8 

6.3. Duration Indices 

The duration indices are to describe the length of the inconvenient period for HVAC and 
water heater. (As the severity indices for clothes dryer and EV are already measured by 
duration, this type of indices is not applicable to them.) 

6.3.1. Duration Indices for HVACs 

For HVACs, the duration index Id,HVAC is defined as the longest duration of room 
temperature violating the pre set comfort level. tHVAC is the duration that the room 
temperature is out of the comfort range, in minutes. 

( ), maxd HVAC HVACI t=                                         Eq.  6-9 
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6.3.2. Duration Indices for Water Heaters 

For water heaters, the duration index Id,WH is defined as the longest duration of hot water 
temperature violating the pre set comfort level. tWH is the duration that the hot water 
temperature is out of the comfort range, in minutes. 

( ), maxd WH WHI t=                                        Eq.  6-10  
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7. Case Studies 

This chapter presents the results of implementing the proposed demand response strategy at 
various EV penetration levels. This is carried out at both the distribution circuit level and 
the household level. The case studies as presented here only show examples of how the 
proposed planning tool can be used. The planning tool can be used for a much wider range 
of applications related to demand response studies. For example, impact of different DR 
control algorithms and different DR adoption levels on load shape changes can be 
investigated.  

7.1. Case Study Design 

7.1.1. Circuit Description 

To study the impact of the multi-layer demand response strategy on a distribution circuit 
load profile, a distribution network in the Virginia Tech Electric Service (VTES) area in 
Blacksburg, VA is taken for the case study. Fig.  7-1 [179] shows the map of the selected 
area for case studies. The customers served in the area can be categorized into five 
customer groups: residential, office, public assembly, school and food service. 

 

 
Fig.  7-1 Virginia Tech Electric Service (VTES) for Case Study 
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The area is served by VTES-owned generation and electricity bought from American 
Electric Power (AEP). In this case, the electricity transaction is not only based on energy 
but also based on power. In the wholesale electricity market, VTES and AEP may have a 
contract on the electric power consumption (demand limit) and the power overdrawn can 
cause a high demand charge to VTES. Therefore, when there is EV penetration into the 
distribution circuit, the total demand may go beyond the original agreed demand limit. (The 
demand limit in this case would be the purchasing power limit added up with the 
VTES-owned generation capacity.) On the other hand, if the EV fleet is large, the high 
consumption may even cause the system reliability problem such as frequency drop or 
voltage sag. Demand response is then used to keep the load within the demand limit to 
avoid the high demand charge and system stress conditions. Bonneville Power 
Administration (BPA) has a similar case in the Olympic Peninsula area, where the 
GridWise Demonstration Project I was deployed and the demand limit was set there to 
alleviate the distribution circuit congestion. 

The presented case studies focus on a distribution circuit noted as Circuit 9 in the VTES 
service area. There are 34 laterals with 117 transformers serving 761 residential customers 
and 9 commercial customers in this circuit [180]. The circuit serves 523 regular houses, 
138 townhouses, 100 units in 4 apartment complexes, 2 schools, 1 office building, 5 public 
assemblies (2 churches, 2 parks and 1 aquatic center), and 1 seven-eleven, counted as 1 
food service.  

7.1.2. Circuit Load Profiles 

Fig.  7-2 shows the load profiles of Circuit 9 for (a) winter and (b) summer respectively. The 
thick black line represents the modeled weekday load curve (which is the simulation output 
from the load models developed in Chapter 3) while the multi-color fine lines are the 
measured data on different days of the month. 

 
(a) Circuit Load Profile for Winter (Represented by January) 



 70

 
(b) Circuit Load Profile for Summer (Represented by August) 

Fig.  7-2 Circuit 9 Demand for January and August Respectively 

These charts show that the modeled load profiles represent measured load data quite well. 
Therefore it is adequate to use the circuit load model for further demand response studies. 

7.1.3. EV Fleet Charge Profiles 

In the case studies, three EV penetration levels are considered: 100 EVs, 200 EVs and 300 
EVs. As discussed in Section  2.1.3.3 these three EV penetration levels represent 7%, 14% 
and 21% of the market share respectively. Fig.  7-3 shows the example charging profiles of 
three different sizes of EV fleets with the mix of 70% Chevy Volt, 20% Nissan LEAF and 
10% Tesla Roadster. Each EV type has different charging rates according to Table  4-1. The 
recommended charging power rates are used to generate the simulation results. It is 
assumed that the EVs return back home and are plugged in at different times according to a 
normal probability distribution function with the mean at 18:00 and the variance of 1 hour, 
as discussed in Section  4.2. For weekends, it is assumed that the EV plug-in time follows a 
normal probability distribution function with the mean at 20:00 and the variance of 4 hours. 
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Fig.  7-3 EV Fleet Charging Profiles – Weekday and Weekend 

Note that EVs can be charged anywhere with charging stations installed. As our focus is to 
deal with excessive load during peak hours for a residential distribution circuit, evening 
hours are of interest. Therefore we only consider the time period that is likely to be 
impacted by EV charging at home in the evening, which is the home-charge. 

7.1.4. DR Target and Demand Limit for Each Consumer Group 

In the following case studies, it is assumed that the original system is operated under 
normal condition. Therefore the main reason for the system stress condition comes from the 
EV fleet penetration. In this context, the demand response target is to make the EV 
penetration transparent to the system, which is to set the demand limit equal to the original 
peak demand. As the generation and transmission capacity may differ in different seasons 
due to maintenance schedules or weather conditions, the demand limits are set differently 
for summer and winter seasons, equal to the seasonal peak demands respectively. Note that 
the definition of summer is June to September while that of winter is October to April, 
according to Dominion Virginia Power’s Time-of-Use Tariff [181]. 

Once the circuit of interest receives the demand limit from the substation, AHP will be used 
to decide the allocation for each customer group. The multi-layer DR structure for the test 
cases is shown in Fig.  7-4. 
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Fig.  7-4 Multi-layer DR Structure 

Practically, an extensive survey is needed for the AHP opinion input. In this simulation, the 
pair-wise comparison opinions are given by random functions. The numbers in Table  7-1 
represent the priority assigned by experts to buildings and functions they perform. The 
whole day is divided into two judgment categories: daytime and nighttime. The pair-wise 
opinions are generated for consumers, experts and the utility serving the area. Consistency 
ratios (CR) are checked for each group of opinions to remove the opinions that are not 
consistent. The final AHP results for summer and winter are shown in Table  7-1 and  

Table  7-2 respectively.  

Table  7-1 AHP Judgment Results for Winter 
 Residential Office Public Assembly School Fast Food 
Daytime (9 am ~5pm) 0.0737 0.4249 0.0312 0.3105 0.1244 
Night-time (5pm~9am) 0.3920 0.1032 0.0827 0.1001 0.3220 
 
Table  7-2 AHP Judgment Results for Summer 
 Residential Office Public Assembly School Fast Food 
Daytime (9 am ~5pm) 0.0745 0.4126 0.0408 0.3052 0.1554 
Night-time (5pm~9am) 0.3944 0.0931 0.0827 0.0912 0.3318 

The AHP judgment results show that during the daytime, office and school buildings are 
more important, and thus likely to keep more of their load when there is a demand limit. 
Residential and fast food buildings are more important during the nighttime. 
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7.2. Demand Response Results at the Circuit Level for One Year 

This section presents the DR results at a distribution circuit level for one year with different 
EV penetration levels, as shown in Fig.  7-5. The winter original peak demand is 3.0MW 
and the summer is 1.7MW. The demand limits for the two seasons are set at these levels. 

 
(a) DR Results for 100 EV Penetration 

 
(b) DR Results for 200 EV Penetration 

 
(c) DR Results for 300 EV Penetration 

Fig.  7-5 DR Results at the Distribution Circuit Level for One Year at Different EV Penetration Levels 
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As seen from Fig.  7-5, in order to keep the circuit load with EV penetration under the 
original peak demand, the DR will only affect a few peak days in January and August. 
Therefore, the following studies focus on these two months and the critical days that are 
being impacted by demand response. 

7.3. DR Results by Sector for Critical Days 

This section presents the demand response simulation results for the distribution circuit in 
summer and winter at different levels of EV penetration. The simulation results illustrate 
demand reduction and shifting for both residential and commercial buildings on the peak 
days to keep the circuit peak demand with EV penetration the same as that without the EV 
penetration.  

Simulation assumptions:  

- Load priorities for household appliances are randomly set for the study purpose.  
- The comfort zone of room temperature is randomized within the range of 

(72~76)°F ±(1~2)°F;  
- The comfort zone of hot water temperature is randomized within the range of 

(110~120)°F ±(5~10)°F.  
- The clothes-drying job cannot be interrupted for more than 40 minutes.  
- No comfort range setting for EV charging. 

7.3.1. Winter Demand Response Results 

1) 100 EV penetration 

When there are 100 EVs plugged into the distribution circuit, the peak load is only a 
little higher than the original peak demand. The demand response can manage the 
circuit load profile below the original winter peak demand of 3.0MW. Fig.  7-6 (a) 
shows the circuit level 3-day load profile (Jan. 15th ~ Jan. 17th). (b) shows further 
details of the demand response results for the residential controllable loads and EVs for 
the same three days. (c) shows detailed demand response results for the commercial 
controllable load - space heating for the same three days. 
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(a) Circuit Load Profiles 

 
(b) Load Profiles of Residential Appliances and EVs 

 

(c) Load Profiles of Commercial Space Heating 
Fig.  7-6 Load Profiles w/wo Demand Response at a 100-EV Penetration Level – Winter Peak Days 

It can be seen from the load profiles that with 100 EVs plugged in, the load curves of 
residential appliances do not change much by the demand response to maintain the 
original peak demand. This means to make 100 EV penetration transparent to the 
distribution network, the demand response will only have a little impact on the 
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residential consumers. Note that around noon of Jan.17th, the commercial load with DR 
is sometimes higher than without DR, which is a co-incidence due to the cold load 
pick-up after DR during the evening peak of the day before. As long as the total circuit 
load is below the original peak demand, there will be no control on it. 

2) 200 EV penetration 

When there are 200 EVs plugged into the distribution circuit, the peak load appears 
higher than the original peak demand. See Jan. 15th and Jan. 16th in Fig. 7-7. Similar to 
Fig.  7-6, Fig.  7-7 (a) shows the circuit level 3-day load profile (Jan. 15th ~ Jan. 17th), (b) 
shows further details of the demand response results for the residential controllable 
loads and EVs for the same three days, and (c) shows detailed demand response results 
for the commercial controllable load - space heating for the same three days. 

 
(a) Circuit Load Profiles 

 
(b) Load Profiles of Residential Appliances and EVs 
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(c) Load Profiles of Commercial Space Heating 
Fig.  7-7 Load Profiles w/wo Demand Response at a 200-EV Penetration Level – Winter Peak Days 

It can be seen from Fig. 7-7 that with 200 EVs plugged in, the load curves change more 
than the 100 EV penetration. The demand response has a higher impact on peak days. 
Since most commercial consumers are of low priority during the evening peak, they 
provide the majority of the demand reduction.  

3) 300 EV penetration 

When there are 300 EVs plugged into the distribution circuit, the peak load appears to 
be much higher than the original peak demand. See Jan.15th and Jan. 16th in Fig. 7-8. 
To manage the circuit load profile below the original winter peak demand of 3.0MW, 
DR program has to shift or shed more loads. 

 

(a) Circuit Load Profiles 
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(b) Load Profiles of Residential Appliances and EVs 

 

(c) Load Profiles of Commercial Space Heating 
Fig.  7-8 Load Profiles w/wo Demand Response at a 300-EV Penetration Level – Winter Peak Days 

It can be seen from the load profiles that with 300 EVs plugged in, the load curves 
change more than the 200 EV penetration. The demand response has a higher impact 
on peak days. Since most commercial consumers are of low priority during the evening 
peak, they provide the majority of the demand reduction. The residential load profiles 
before and after the DR show that the EV charging load is the one affected the most, 
followed by water heating and clothes-drying loads. This is due to the comfort zone 
setting assumptions mentioned at the beginning of Section  7.3. As the room 
temperature comfort zone is very sensitive, the space heating load cannot be controlled 
much. Even it is in DR status, the space heater will soon be turned on to make up the 
room temperature. Therefore the space heating load shows the least change. 

7.3.2. Summer Demand Response Results 

As can be seen in Fig.  7-5, the daily peak demand values are closer to each other in 
summer load profiles than in the winter. Therefore there will be more “critical days” in 
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summer than in winter when the EV fleet is plugged in. In this case study, there are 3 to 7 
critical days in summer depending on the EV penetration level. The highest ones are picked 
for detailed study. The original peak demand of August is 1.7MW, which is set to be the 
demand limit, shown as a red line in the simulation results. 

1) 100 EV penetration 

(c) Load Profiles of Commercial Space Cooling 

Fig.  7-9 (a) shows the circuit level 3-day load profile (Aug. 9th ~ Aug. 11th), (b) shows 
further details of the demand response results for the residential controllable loads and 
EVs for the same three days,and (c) shows detailed demand response results for the 
commercial controllable load - space cooling for the same three days. 

 
(a) Circuit Load Profiles 

 
(b) Load Profiles of Residential Appliances and EVs 
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(c) Load Profiles of Commercial Space Cooling 
Fig.  7-9 Load Profiles w/wo Demand Response at a 100-EV Penetration Level – Summer Peak Days 

It can be seen from the load profiles that with 100 EVs plugged in, the load curves do 
not change much, thus demand response will only have a little impact even on the peak 
day. 

2) 200 EV penetration 

(c) Load Profiles of Commercial Space Cooling 

Fig.  7-10 (a) shows the circuit level 3-day load profile (Aug. 9th ~ Aug. 11th) with 200 
EVs, (b) shows further details of the demand response results for the residential 
controllable loads and EVs for the same three days, and (c) shows detailed demand 
response results for the commercial controllable load - space cooling for the same three 
days. 

 
(a) Circuit Load Profiles 
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(b) Load Profiles of Residential Appliances and EVs 

 

(c) Load Profiles of Commercial Space Cooling 
Fig.  7-10 Load Profiles w/wo Demand Response at a 200-EV Penetration Level – Summer Peak Days 

It can be seen from the load profiles that with 200 EVs plugged in, the load curves 
change more than with the 100 EV penetration. The demand response has a higher 
impact on the peak days. 

3) 300 EV penetration 

(c) Load Profiles of Commercial Space Cooling 

Fig.  7-11 (a) shows the circuit level 3-day load profile (Aug. 9th ~ Aug. 11th) with 300 
EVs, (b) shows further details of the demand response results for the residential 
controllable loads and EVs for the same three days, and (c) shows detailed demand 
response results for the commercial controllable load - space heating for the same three 
days. 
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(a) Circuit Load Profiles 

 
(b) Load Profiles of Residential Appliances and EVs 

 

(c) Load Profiles of Commercial Space Cooling 
Fig.  7-11 Load Profiles w/wo Demand Response at a 300-EV Penetration Level – Summer Peak Days 

It can be seen from the load profiles that with 300 EVs plugged in, the load curves 
change more than that with 200 EVs. The demand response has a higher impact on the 
peak days. Similar to winter peak days, the residential load profiles before and after the 
DR show that the EV charging load is mostly affected, followed by water heating and 



 83

clothes-drying loads due to the comfort zone settings. Note that there are spikes at 
around 9 pm after DR for water heaters, clothes dryers and EVs. This is because of the 
cold load pick-up (water heaters) and load shifting (clothes dryers and EVs). As long 
as the total circuit demand is below the limit (original peak demand without EV 
penetration), it is accepted in the DR program. 

7.4. Example of Household Demand Response 

As described in the methodology section, when a house receives the demand limit signal, it 
will check its total demand to see whether it is over the limit. If so, a demand response has 
to be performed to meet the requirements. The simulations described in this section are 
focused on the residential category, which has multiple appliances to control. Note that this 
section will only focus on the case of 300 EV penetrations, which is the most severe case in 
the presented study. 

This section discusses the detailed demand response strategy implemented at a household 
level. For each critical day as discussed in Section  7.3, two houses with different sizes are 
shown as examples. For winter, the critical days are January 15th and January 16th. For 
summer, the critical days are August 10th and August 11th. To show the load management 
between appliances, the houses are chosen based on two criteria: a) it has to be equipped 
with all four controllable appliances, i.e. electric space heater, water heater, clothes dryer 
and EV; and b) all of the appliances are running on the critical days. The presented houses 
are randomly chosen to reflect DR in different houses with different sizes.  

7.4.1. Winter Examples 

1) January 15th  

a) House No. 108 (2400 ft2) 

Table  7-3 lists the priority and the rated power for each household appliance. The 
priorities are set to decide the load shedding sequence when there is a demand limit, 1 
to 4 from highest to lowest. However, the preference setting will change the load 
priorities dynamically in order to keep the loads to operate within the convenience 
ranges. 

Table  7-3 Load Priorities and Convenience Preference of House No.108 in Winter 
 Space Heating Water Heating Clothes-drying EV Charging 
Rated Power  6 kW 4.5 kW 5.3 kW 3.3 kW 
Comfort Setting 70°F±1°F 115 °F±5°F - - 

Fig.  7-12 shows the overall results of the household load profile from Jan. 15th at 18:00 
to Jan. 16th at 3:00 before and after the demand response.  
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Fig.  7-12 No. 108 Household Load Profiles before and after DR during Jan. 15th 18:00~ Jan. 16th 3:00. 

The red line in the picture indicates the demand limit assigned to the house. The 
household load will be managed below the assigned demand limit. When the redline 
hits the ceiling, it means there is no demand limit during that time period, thus no load 
control is needed. 

It can be seen from the picture that the DR starts at 20:10, when the clothes dryer is 
turned on while the space heater is running. The demand limit at the time is 7.5kW, 
which is less than the total household demand. The heating coil of the clothes dryer has 
to stay off for five minutes to let the space heater recover the room temperature. 
Though the clothes-drying job is of a higher priority, the specified comfort levels must 
be met. After the room temperature rises into the specified comfort range, the space 
heater starts to cycle with the clothes dryer between 20:10 and 20:40 to keep the total 
household demand under the limit of 7.5kW. The EV is plugged in at 20:40 and the 
water heater is turned on at 21:10. The four appliances cycled according to their pre-set 
priorities and the comfort range till 23:10, when there is no demand limit for the house. 

b) House No. 200 (1500 ft2) 

Table  7-4 lists the priority and rated power for each household appliance. The space 
heater and clothes dryer are of lower rated power since the house is of a smaller size 
than House No. 108. 
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Table  7-4 Load Priorities and Convenience Preference of House No.200 in Winter 
 Space Heating Water Heating Clothes-drying EV Charging 
Rated Power  4 kW 4.5 kW 4.2 kW 3.3 kW 
Comfort Setting 69°F±1°F 120 °F±5°F - - 

Fig.  7-13 shows the overall results of the household load profile from Jan. 15th at 18:00 
to Jan. 16th at 3:00 before and after the demand response. Similarly, the red line in the 
picture indicates the demand limit assigned to the house, below which the household 
load should be managed. When the redline hits the ceiling, it means there is no demand 
limit during that time period, thus no load control is needed. 

It can be seen from the picture that the DR starts at 20:30, when the EV is plugged in 
while the space heater is running. To keep the household demand under the limit of 
7.2kW, the EV starts to cycle with space heater. Though the EV is of higher priority, it 
has to stop charging from time to time to allow the space heater to keep the room 
temperature within the preset comfort range. Similarly from 21:10 to 22:20, the clothes 
dryer is cycling with the space heater to keep the household demand under the limit of 
8kW. 

 
Fig.  7-13 No. 200 Household Load Profiles before and after DR during Jan. 15th 18:00~ Jan. 16th 3:00. 

2) January 16th  
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a) House No. 68 (2000 ft2) 

Table  7-5 lists the priority and the rated power for each household appliance.  

Table  7-5 Load Priorities and Convenience Preference of House No.68 in Winter 
 Space Heating Water Heating Clothes-drying EV Charging 
Rated Power  5 kW 4.5 kW 4.2 kW 3.3 kW 
Comfort Setting 68°F±2°F 115 °F±5°F - - 

Fig.  7-14 shows the overall results of the household load profile from Jan. 16th at 17:00 
to Jan. 17th at 2:00 before and after the demand response.  

 
Fig.  7-14 No. 68 Household Load Profiles before and after DR during Jan. 16th 17:00~ Jan. 17th 2:00. 

It can be seen from the picture that the DR starts at 17:55, when the space heater 
happens to run together with the water heater. To keep the household demand under the 
limit of 9kW, the water heater is stopped to allow the space heater to operate as the 
space heater has a higher priority. Then the EV is plugged in at 18:10, which has a 
lower priority than the space heater but a higher priority than the water heater. To keep 
the total household demand under the limit of 7.5kW at the time, the EV charging is 
stopped from time to time to keep the space heater running. After the EV is fully 
charged, the clothes dryer resumes its operation at 21:10, which is also stopped from 
time to time to keep the space heater running. The clothes-drying job is compensated 
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after 23:00, when the household demand is naturally under the demand limits. 

b) House No. 504 (1600 ft2) 

Table  7-6 lists the priority and rated power for each household appliance.  

Table  7-6 Load Priorities and Convenience Preference of House No.504 in Winter 
 Space Heating Water Heating Clothes-drying EV Charging 
Rated Power  4 kW 4 kW 4.2 kW 3.3 kW 
Comfort Setting 70°F±1°F 115°F±5°F - - 

Fig.  7-15 shows the overall results of the household load profile from Jan. 16th at 17:00 
to Jan. 17th at 2:00 before and after the demand response.  

 
Fig.  7-15 No. 504 Household Load Profiles before and after DR during Jan. 16th 17:00~ Jan. 17th 2:00. 

It can be seen from the picture that the DR starts at 18:10, when the space heater starts 
running while the EV is charging. To keep the household demand under the limit of 
6.5kW, the EV charging is stopped to allow the space heater to operate since the latter 
has a higher priority. Then between 21:10 and 22:50, the space heater, the clothes dryer 
and the water heater are cycling to keep the total household demand under the chosen 
limits (varying between 6.2kW and 7.2kW). Note that though the water heater is of 
lower priority than the clothes dryer, it can still be turned on for some time to keep the 
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hot water temperature within the comfort range. 

7.4.2. Summer Examples 

1) August 10th  

a) House No. 16 (1500 ft2) 

Table  7-7 lists the priority and the rated power for each household appliance.  

Table  7-7 Load Priorities and Convenience Preference of House No.16 in Summer 
 Space Cooling Water Heating Clothes-drying EV Charging 
Rated Power  2 kW 4 kW 4.2 kW 3.3 kW 
Comfort Setting 76°F±1°F 112 °F±5°F - - 

Fig.  7-16 shows the overall results of the household load profile from Aug. 10th at 
16:00 to Aug. 11th at 1:00 before and after the demand response. 

 
Fig.  7-16 No. 16 Household Load Profiles before and after DR during Aug. 10th 16:00~ Aug. 11th 1:00. 

It can be seen from the picture that the DR starts at 17:20, when the clothes dryer and 
the EV start at the same time while the water heater is on. To keep the household 
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demand under the limit of 6.7kW, the EV charging is stopped to allow the operation of 
the water heater and the clothes dryer since they are of higher priority. Then between 
17:40 and 20:05, the clothes dryer and the water heater are cycling with each other to 
keep the total household demand under the limits (varying between 5.4kW and 6.9kW). 
The air conditioner (AC) is not affected since it has the highest priority. 

b) House No. 360 (2200 ft2)  

Table  7-8 lists the priority and rated power for each household appliance. House 
No.360 is of a larger size therefore the household appliances are generally of higher 
rated powers. 

Table  7-8 Load Priorities and Convenience Preference of House No. 360 in Summer 
 Space Cooling Water Heating Clothes-drying EV Charging 
Rated Power  3kW 5 kW 5.4 kW 3.3 kW 
Comfort Setting 73°F±1°F 113 °F±5°F - - 

Fig.  7-17 shows the overall results of the household load profile from Aug. 10th at 
16:00 to Aug. 11th at 1:00 before and after the demand response. 

 
Fig.  7-17 No. 360 Household Load Profiles before and after DR during Aug. 10th 16:00~ Aug. 11th 1:00. 
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It can be seen from the picture that the DR starts at 17:00, when the water heater and 
the AC are running at the same time. To keep the household demand under the limit of 
5.5kW, the air conditioner is turned off to keep the water heater running according to 
the priority settings. At 18:45, the AC is turned on while the clothes dryer is running. 
Then the heating coil of the clothes dryer is turned off to keep the AC on. From 19:20 
to 20:05, the EV is cycling with the clothes dryer and the AC according to their 
priorities and comfort setting requirements.  

2) August 11th  

a) House No. 66 (2000 ft2) 

Table  7-9 lists the priority and the rated power for each household appliance. 

Table  7-9 Load Priorities and Convenience Preference of House No. 66 in Summer 
 Space Cooling Water Heating Clothes-drying EV Charging 
Rated Power  3 kW 4.5 kW 5.5 kW 3.3 kW 
Comfort Setting 78°F±1°F 115 °F±5°F - - 

Fig.  7-18 shows the overall results of the household load profile from Aug. 11th at 
16:00 to Aug. 12th at 1:00 before and after the demand response. 

 
Fig.  7-18 No. 66 Household Load Profiles before and after DR during Aug. 11th 16:00~ Aug. 12th 1:00. 
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It can be seen from the picture that DR has only a little impact on the household 
demand, even though this is a house (2200 ft2) with larger than average size (1800 ft2). 
This is because the owner has a good habit of not using all appliances at the same time, 
especially during the peak hours. The DR control starts at 19:20, when the AC is turned 
on while the EV is charging. To keep the household demand under the limit of 5.5kW, 
the EV charging is interrupted to keep the AC on due to the priority settings.  

b) House No. 574 (1800 ft2) 

Table  7-10 lists the priority and rated power for each household appliance. 

Table  7-10 Load Priorities and Convenience Preference of House No. 574 in Summer 
 Space Cooling Water Heating Clothes-drying EV Charging 
Rated Power  2 kW 4.5 kW 4 kW 3.3 kW 
Comfort Setting 75°F±1°F 120°F±5°F - - 

Fig.  7-19 shows the overall results of the household load profile from Aug. 11th at 
16:00 to Aug. 12th at 1:00 before and after the demand response. 

 
Fig.  7-19 No. 574 Household Load Profiles before and after DR during Aug. 11th 16:00~ Aug. 12th 1:00. 

It can be seen from the picture that the DR starts at 18:00, when the water heater and 
the AC are running at the same time. To keep the household demand under the limit of 
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5.2kW, the AC is turned off to keep the water heater running even though the AC has a 
higher priority. This is because the water heater has to be on to keep the hot water 
temperature within the comfort range. At 18:05, the EV is plugged in. The water heater 
is turned off due to its low priority. From 18:05 to 19:40, the EV charging is 
interrupted from time to time to keep AC running due to the priority settings. After 
19:40, the demand limit is no longer having impact on the appliances.  

7.4.3. Findings from Household DR Results 

It can be seen from both winter and summer household DR results that the proposed 
demand response strategy is able to manage the household load under the given demand 
limits. The following observations can be made from the household DR results: 

1) In each time step, the demand limit is kept at the same level for each house to maintain 
consistency of the proposed DR program. However, as the time goes by, the demand 
limit will be changing along with the time. Generally speaking, during peak hours, the 
demand limit is low; during the non-peak hours, the demand limit is high or there may 
not be any demand limit. This can be explained by Fig.  7-20, which has also been 
described in Section  5.2.2. As the control target is to maintain the shadow area smaller 
than or equal to the original circuit demand limit, if most of the houses are of low 
demand, the household demand can be high and only very few houses need to be 
controlled, as shown in (a). On the other hand, if most of the houses are consuming 
much more electricity, the household demand limit is then lowered to keep the total 
circuit demand below the threshold, as shown in (b). 

 
(a) High Household Demand Limit Case 

 
(b) Low Household Demand Limit Case 

Fig.  7-20 Decision of Household Demand Limit Allocation 

2) The impact of the DR on the household load profiles is not directly related to the house 
size. It is not always the case that houses with larger size and higher appliance power 
consumption will have to shift or reduce the load when there is demand limit. Mainly, 
the DR impacts are more related to the life style, i.e. whether the consumer has a habit 
of turning on many appliances at the same time.  

3) As the room temperature is more sensitive to the control, to maintain the consumer 
comfort level, the HAN control center tends to keep space heating/cooling appliances 
on regardless of their original priories.  
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7.5. Impact of DR on Consumers’ Convenience Indices 

To evaluate the demand response potential, i.e. how much demand response can be 
accepted in the studied circuit, the consumer comfort indices are calculated and presented 
in this section according to the methodology presented in Chapter  6.  

7.5.1. Residential Consumer Comfort Level 

For residential consumers, the consumer comfort indices represent the room temperature, 
hot water temperature, clothes-drying time and EV charging time.  

1) Winter 

a. Space Heating 

Fig.  7-21 shows the space heating comfort indices – room temperature deviation from 
the set point, (a) is the base case, (b) shows 100 EV penetration, (c) shows 200 EV 
penetration, and (d) shows 300 EV penetration. 

 
(a) Space Heating Comfort Level Base Case – no EV 
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(b) Space Heating Comfort Level – 100 EVs 

 
(c) Space Heating Comfort Level – 200 EVs 

 
(d) Space Heating Comfort Level – 300 EVs 

Fig.  7-21 Residential Space Heating Comfort Indices – January 
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It can be seen from these figures that a larger EV fleet penetration does not incur more  
impact on the space heating comfort level, i.e. the room temperature deviation does not 
increase too much when there are more EVs plugged in to the distribution network. 
This is because the room temperature has a more strict comfort zone setting (only 1ºF 
to 2ºF deviation allowed), thus the DR strategy generally tries to keep the space heater 
on.  

b. Water Heating 

Fig.  7-22 shows the water heating comfort indices – hot water temperature deviation 
from the set point. (a) is the base case. (b) shows 100 EV penetration, (c) shows 200 
EV penetration and (d) shows 300 EV penetration. 

 
(a) Water Heating Comfort Level Base Case – no EV 

 
(b) Water Heating Comfort Level – 100 EVs 
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(c) Water Heating Comfort Level – 200 EVs 

 
(d) Water Heating Comfort Level – 300 EVs 

Fig.  7-22 Residential Water Heating Comfort Indices – January 

It can be seen from these figures that a larger EV fleet penetration does not incur more 
severe impact on the severity index (maximum temperature deviation) of the water 
heater comfort level. Instead, higher EV penetration level results in the increase of 
scale index (number of houses affected). This is because 1) water has a high specific 
heat capacity and does not easily lose energy when in stand-by mode. Therefore when 
the water heating demand is shifted to accommodate more EVs, it will not affect the 
hot water temperature too much. 2) Most water heater demand comes from the hot 
water usage compensation. i.e. to heat the inlet cold water. Therefore it is the high flow 
rate of the hot water usage that causes the most severe hot water temperature deviation, 
not demand response. Actually, no matter what priority is that of the water heater, 
during a high consumption hot water, the water heater will be kept on to maintain the 
consumer’s comfort level. However, if the hot water flow rate is too high, the hot water 
temperature will keep on going down even the water heater is running. 

c. Clothes-drying 
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Fig.  7-23 shows the clothes-drying comfort indices – clothes-drying time delay, (a) 
shows 100 EV penetration, (b) shows 200 EV penetration and (c) shows 300 EV 
penetration. 

 
(a) Clothes-drying Comfort Level – 100 EVs 

 
(b) Clothes-drying Comfort Level – 200 EVs 
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(c) Clothes-drying Comfort Level – 300 EVs 

Fig.  7-23 Residential Clothes-drying Comfort Indices – January 

It can be seen from the pictures that the more EVs are plugged into the distribution 
network, the higher impact there is on the clothes-drying time delay, even though the 
priority settings are random. This is because the clothes dryer does not have a strict 
comfort zone setting so it will accept more control when the space heater and the water 
heater have to be on to keep the room temperature and the hot water temperature 
within the comfort range. 

d. EV charging 

Fig.  7-24 shows the EV charging comfort indices – EV charging time delay. (a) shows 
100 EV penetration, (b) shows 200 EV penetration and (c) shows 300 EV penetration. 

 
(a) EV Charging Comfort Level – 100 EVs 
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(b) EV Charging Comfort Level – 200 EVs 

 
(c) EV Charging Comfort Level – 300 EVs 

Fig.  7-24 Residential EV Charging Comfort Indices – January 

It can be seen from the pictures that the more EVs are plugged into the distribution 
network, the higher impact there is on the EV charging time delay, even though the 
priority settings are random. This is because the EVs do not have a strict comfort zone 
setting so the DR tends to control the EVs more. 

It can be seen from the pictures that a higher EV penetration level will cause the DR to 
have higher impacts on the consumer comfort level in order to manage the household load 
under the household demand limit. Table  7-11 shows the circuit level residential consumer 
comfort indices for each appliance under different EV penetration levels in January. 

Table  7-11 Residential Consumer Comfort Indices - January 
 Indices 100 EVs 200 EVs 300 EVs 
Space Heating Max. room temperature deviation (°F) 2.2 2.5 2.5 
 Out of comfort zone duration (min) 55 60 55 



 100

(deviation ≥2°F) 
 No. of affected houses 

(deviation ≥2°F) 
7 62 84 

Water Heating Max. hot water temperature deviation (°F) 29.8 29.8 29.8 
 Out of comfort zone duration (min) 

(deviation ≥20°F) 
40 40 80 

 No. of affected houses 
(deviation ≥20°F) 

26 42 56 

Clothes-drying Max. clothes-drying time delay (min) 5 180 375 
 No. of affected houses  

(delay > 60min) 
0 16 26 

EV Charging Max. EV charging time delay (min) 5 315 400 
 No. of affected houses 

(delay > 60min) 
0 44 117 

2) Summer 

a. Space Cooling 

Fig.  7-25 Residential Space Cooling Comfort Level IndicesFig.  7-25 shows the space cooling 
comfort indices – room temperature deviation from the set point. (a) is the base case. 
(b) shows 100 EV penetration, (c) shows 200 EV penetration and (d) shows 300 EV 
penetration. 

 
(a) Space Cooling Comfort Level Base Case – no EV 
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(b) Space Cooling Comfort Level – 100 EVs 

 
(c) Space Cooling Comfort Level – 200 EVs 

 
(d) Space Cooling Comfort Level – 300 EVs 

Fig.  7-25 Residential Space Cooling Comfort Level Indices – August 

Similar to the situation in January, a larger EV fleet penetration does not incur more 
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impact on the room temperature. This is because the room temperature has a more 
strict comfort zone setting (only 1ºF to 2ºF deviation allowed), thus the DR strategy 
generally tries to keep the space heater on.  

b. Water Heating 

Fig.  7-26 shows the water heating comfort indices – hot water temperature deviation 
from the set point. (a) is the base case. (b) shows 100 EV penetration, (c) shows 200 
EV penetration and (d) shows 300 EV penetration. 

 

(a) Water Heating Comfort Level Base Case – no EV 

 
(b) Water Heating Comfort Level – 100 EVs 
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(c) Water Heating Comfort Level – 200 EVs 

 
(d) Water Heating Comfort Level – 300 EVs 

Fig.  7-26 Residential Water Heating Comfort Level Indices – August 

Similar to the situation in January, a larger EV fleet penetration does not incur more 
obvious impact on the hot water temperature deviation. The reasons have been 
discussed in the winter section. Actually, as the inlet water temperature is higher in 
summer than in winter, the hot water temperature gets even less impacted by the DR in 
August than in January.  

c. Clothes-drying 

Fig.  7-27 shows the clothes-drying comfort indices – clothes-drying time delay, (a) 
shows 100 EV penetration, (b) shows 200 EV penetration and (c) shows 300 EV 
penetration. 
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(a) Clothes-drying Comfort Level – 100 EVs 

 
(b) Clothes-drying Comfort Level – 200 EVs 

 

 
(c) Clothes-drying Comfort Level – 300 EVs 

Fig.  7-27 Residential Clothes-drying Comfort Level Indices – August 
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Similar to the situation in January, when there are more EVs plugged into the 
distribution network, the DR impact is higher on the clothes drying time delay, even 
though the priority settings are random. The difference between the two months is that 
the DR impact on the clothes-drying time delay in August is more scattered than that in 
January. This is because 1) there are more clothes-drying loads in August than in 
January; 2) the summer daily peaks are about the same height so more days are getting 
controlled in the DR program. 

d. EV charging 

Fig.  7-28 shows the EV charging comfort indices – EV charging time delay. (a) shows 
100 EV penetration, (b) shows 200 EV penetration and (c) shows 300 EV penetration. 

 
(a) EV Charging Comfort Level – 100 EVs 

 
(b) EV Charging Comfort Level – 200 EVs 
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(c) EV Charging Comfort Level – 300 EVs 

Fig.  7-28 Residential EV Charging Comfort Level Indices – August 

Similar to the situation in January, when there are more EVs plugged into the 
distribution network, the DR impact is higher on the EV charging time delay. The DR 
impact on the EV charging time delay in August is more scattered than that in January. 
This is because the summer daily peaks are about the same height so more days are 
getting controlled in the DR program. 

It can be seen from the figures that a higher EV penetration level will cause the DR to have 
higher impacts on consumer comfort level in order to manage the household load under the 
household demand limit. Table  7-12 shows the circuit level residential consumer comfort 
indices for each appliance under different EV penetration levels in August. 

Table  7-12 Residential Consumer Comfort Indices - August 
 Indices 100 EVs 200 EVs 300 EVs 

Max. room temperature deviation (°F) 2.4 2.4 2.4 
Out of comfort zone duration (min) 
(deviation ≥2°F) 

5 5 5 
Space Cooling 

No. of affected houses 
(deviation ≥2°F) 

266 267 266 

Max. hot water temperature deviation (°F) 12.5 12.5 14.2 
Out of comfort zone duration (min) 
(deviation ≥20°F) 

0 0 0 
Water Heating 

No. of affected houses 
(deviation ≥20°F) 

0 0 0 

Max. clothes-drying time delay (min) 10 25 105 Clothes-drying 
No. of affected houses  
(delay > 60min) 

0 0 3 

Max. EV charging time delay (min) 10 50 205 EV Charging 
No. of affected houses (delay > 60min) 0 0 26 
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7.5.2. Commercial Consumer Comfort Level 

Table  7-13 and Table  7-14 show the commercial consumer comfort indices for winter 
(January) and summer (August) respectively. Note that when calculating the commercial 
consumer comfort indices, only the in-use time periods are taken into consideration, i.e. for 
office, school, public assembly, 9 a.m.~5 p.m., for fast food, 24 hours. 

Table  7-13 Commercial Consumer Comfort Indices - January 
 Indices 100 EVs 200 EVs 300 EVs 

Max. room temperature deviation (°F) 2.2 2.2 2.2 
Out of comfort zone duration (min) 
(deviation ≥2°F) 

5 5 5 
Space Heating 

No. of affected buildings (deviation ≥2°F) 2 1 3 

Table  7-14 Commercial Consumer Comfort Indices - August 
 Indices 100 EVs 200 EVs 300 EVs 

Max. room temperature deviation (°F) 2.3 2.5 2.5 
Out of comfort zone duration (min) 
(deviation ≥2°F) 

5 5 15 
Space Cooling 

No. of affected buildings (deviation ≥2°F) 4 6 8 

7.6. Discussions and Findings 

This section presents case studies of a distribution circuit at different EV penetration levels. 
The circuit mainly serves residential consumers. Thus, there is an obvious daily evening 
peak, which will be exacerbated by an EV home charge. Based on the simulations, the 
following discussions and findings can be made: 

1) Circuit level one-year simulations 

At a distribution circuit level, annual load curves differ a lot between summer and 
winter seasons. With the wide adoption of electric space heating, the winter peak 
demand is much higher than the summer peak demand. Therefore, the proposed 
demand response strategy targets different demand limit levels for these two seasons 
respectively.  

At different EV penetration levels (100EVs~300EVs), the winter peak demand 
increases by 3%~9% (90kW~270kW) and the summer peak demand increases by 
2.5%~7% (45kW~150kW). This is because the peak demand of the EV fleet charge 
happens closer to the winter peak period than summer, which adds more power 
consumption to the winter peak. However, since there are only several critical days in 
January and August being impacted by the demand response, the detailed daily load 
profiles are studied only for these critical days. 



 108

2) Circuit level critical-day simulations by sector 

In the detailed daily simulations, it shows that the new peak demand due to EV 
penetration always occurs in the evening (the evening peak periods come about 1 or 2 
hours earlier in summer than winter), during which period most commercial buildings 
are of lower priority (except food service) according to the judgment matrix from AHP. 
Therefore, the office, school and public assembly buildings assume more demand 
reduction and shift than residential and food service. Note that originally winter daily 
load curves have morning and evening peaks while summer daily load curves only have 
evening peaks. However, EV penetration only adds to the evening peaks. (See Chapter 
 4 for EV modeling.)  

In the residential sector, DR results in more shifting of EV charging and clothes-drying 
loads than the shifting and reduction of thermal dynamic loads (space heating/cooling 
and water heating). This is because the thermal dynamic loads will be turned on from 
time to time in order to maintain the comfort levels, regardless of the priority settings. 
As clothes dryers and EVs do not have strict comfort zones, they are controlled more 
than HVACs and water heaters during DR operation. Further comparison between space 
heating/cooling and water heating shows that space heating/cooling load profiles 
change less than water heating load profiles since the room temperature has a more 
strict comfort range setting than the hot water temperature. 

3) Household DR simulations for typical houses 

The household DR simulation examples are selected from the worst-case scenario – the 
300 EV penetration level. The results show that the proposed demand response strategy 
is able to manage the household load under the given demand limits for both summer 
and winter.  

In each time step, the demand limit is kept at the same level for each house to maintain 
consistency of the proposed DR program. However, from time to time, the household 
demand limit will change. When the circuit demand is high, the household demand 
limit is low in order to keep the total power consumption of all houses under the circuit 
level demand limit. 

The impact of the DR on the household load profiles is more related to the life style 
than to the house size. That is to say, a large house with high rated power appliances are 
not necessarily heavily impacted by participating in DR programs as long as they do 
not have the habit of turning on everything at the same time. A smaller house with 
lower-power consumption appliances may suffer more load shift and reduction due to a 
peak-time electricity usage pattern. 

It is also confirmed here that as the room temperature is more sensitive than other 
indices, to maintain the consumer comfort level, the house control center tends to keep 
space heating/cooling appliances on regardless of their original priorities.  
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4) Studies on consumer comfort indices 

The study of consumer comfort level shows an obvious impact - higher EV penetration 
level results in a higher DR impact. The results also confirm the findings from daily 
detailed simulations that EV and clothes dryers get more control than water heater and 
space heater/air conditioner. Since the load priorities are set randomly, this is mostly 
because the room temperature has a more strict comfort zone setting, while the water 
temperature comfort zone setting is less strict. The clothes drying and EV charging 
have more liberal comfort zone settings. 

Moreover, it is interesting to notice that hot water comfort levels do not change too 
much with different EV penetration levels. This is because most water heating demand 
comes from the hot water usage, during which time the water heater will be kept on 
regardless of its priority to maintain the consumer comfort level. When there is no hot 
water consumption, the water heating loads can be easily shifted since water has a high 
specific heat capacity and does not easily lose energy when in stand-by mode. This may 
indicate that water heaters have a high potential to be a DR resource without having a 
noticeable impact on consumer comfort levels.  

Simulation results in January and August indicate that the DR impact on residential 
consumers is more severe in winter than that in summer while the opposite effect is 
observed in commercial groups. This is because the winter evening peak coincides with 
the EV charging load peak, which means the increase in the winter peak load due to EV 
penetration is greater than that in summer. Therefore it is more difficult to keep the EV 
penetration transparent to the circuit in winter than in summer.  

In winter, commercial buildings assume more load reduction/shift than residential 
houses. This is because the winter evening peak comes later (i.e. after 5pm) and after 
this time residential houses have higher priority. In terms of comfort indices, since the 
late evening period does not contribute to the comfort indices of most commercial 
building (except food service), simulation results indicate less impact on consumer 
comfort for commercial buildings in winter. On the other hand, the summer evening 
peak comes earlier, thus, the DR impact on the commercial buildings in the last 
working hour (4pm-5pm) has to be taken into consideration for comfort indices 
calculation. That is why DR impact on commercial buildings is more severe in summer 
than in winter.
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8. Summary, Conclusions and Future Work 

8.1. Summary 

The objective of the dissertation is to propose a planning tool for electric utilities that can 
provide an insight into the implementation of demand response at an end-use level. The 
proposed planning tool comprises control algorithms and a simulation platform that are 
designed to intelligently manage end-use loads and make the EV penetration transparent to 
an electric power distribution network. 

The dissertation reviews existing work on smart grid, load modeling, electric vehicle and 
demand response. A multi-layer demand response strategy is designed to manage the 
distribution circuit load at or below the original seasonal peak demand taking into account 
EV charging load. Analytic hierarchy process (AHP) is adopted to rank the priorities of 
different consumer groups by taking into account the opinions from different stakeholder 
groups.  

Residential and commercial loads, as well as EVs, are modeled, aggregated and validated 
against available real-world measurements. Case studies are performed at different EV 
penetration levels. The demand response target is set to make the EV penetration 
transparent to the distribution network. Consumer comfort indices are calculated and 
presented for the peak winter month (January) and the peak summer month (August) 
respectively. 

8.2. Conclusions 

The share of electric vehicles is expected to grow in the U.S. personal automotive market. 
A large fleet of EV penetration will first be visible in distribution circuits. The study 
indicates that while the EV fleet charging increases the sale of the electric energy (kWh), 
the EV charging profile, if not coordinated with other loads, will inevitably increase the 
peak load demand (kW) in a distribution circuit. While additional electricity (kWh) sales 
are financially attractive to an electric utility, the growth in peak demand (kW) requires 
additional investment on their part in equipment and services.  

Various demand side management programs have long been implemented to deal with 
power system stress conditions. However, traditional demand side management strategies 
cannot provide utilities with the assurance of load factor improvements. Moreover, it 
deprives consumers’ convenience and comfort because the consumers do not have control 
over the use of their own loads. In this dissertation, a multi-layer DR strategy is proposed 
to enable a distribution circuit to accommodate higher levels of EV penetration without 
overloading the network. The proposed methodology is designed to maintain the existing 
demand limit with increased EV penetration. AHP is adopted to perform the demand limit 
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allocation to different consumer groups, namely residential and commercial customers. 

The proposed DR strategy includes an energy management tool within a home/building that 
allows customers to control their own loads based on their preference and comfort levels. 
Since, under this approach, the electric utility only sends the demand limit to each house 
and leaves all the household control decision to the consumer, the proposed DR strategy 
will respect the consumers’ choices and protect their privacy.  

Residential and commercial loads are modeled, aggregated and validated to study the 
proposed DR strategy. A distribution circuit in Blacksburg, VA is selected for the simulation. 
The DR results show that the proposed DR strategy can fulfill the task of maintaining the 
original peak demand with different EV penetration levels.  

Furthermore, consumer comfort indices are defined, calculated and presented to provide a 
better understanding of the DR impact on the consumer’s comfort level. It should be noted 
that maintaining the same distribution circuit-level peak load with higher EV penetration 
levels may negatively impact the consumer’s convenience, resulting in more complaints. 
Therefore, utilities can use the proposed indices to estimate the capability of demand 
response programs developed here to accommodate EV fleet into a certain distribution 
circuit.  

The end-use load models, the DR strategy and the consumer comfort indices serve as 
building blocks for the proposed planning tool. The presented case studies showcase 
examples of how the proposed DR strategy can be performed and what impact they have on 
distribution circuit load shape changes and consumer comfort. The planning tool can be 
used for a much wider range of applications related to demand response studies, such as 
DR potential analysis, impact of DR adoption levels and implementation of different DR 
algorithms. Utilities can use the tool to design proper incentives to encourage consumers to 
participate in DR programs; while consumers can use it to manage the usage of the electric 
appliances and understand the trade-offs to enroll in a DR program. 

As the number of EVs increases, the load diversity will decrease resulting in distribution 
transformers to be overloaded. At that point, utilities may not be able to rely solely on 
demand response to shave the peak demand. Electric utilities can then explore other means 
such as the use of distributed generation or equipment upgrade to address high levels of EV 
penetrations. 

8.3. Future Work 

The proposed planning tool is a starting point that can enable additional demand response 
research and practical work. This dissertation points to several possible future work paths 
along the same line of demand response to alleviate power system stress conditions and to 
accommodate higher levels of EV penetration into a distribution network. 
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1) Planning tool improvement and potential applications 

The load models built in the tool only take into consideration objective parameters such as 
the house structure, climate data and so on. Actually, human factors are also very important, 
especially for DR-enabled load models. The proposed load models have taken into account 
appliance ownership rates, the number of people in a building and randomized the usage 
data using Monte-Carlo simulations. The models can be potentially improved by taking 
into account the complexity of human activities in commercial buildings and residential 
houses. The improved load models will lead to a more refined demand response operation.  

Given a constraint on comfort ranges, the consumer comfort indices designed in this 
planning tool have an implication for analyzing DR potentials in a distribution network. 
This may require a vast survey of consumer comfort range settings.  

Other analysis such as impact of DR adoption levels on distribution network load shape 
changes can also be conducted by adjusting the planning tool accordingly. 

2) EV cluster effect on distribution transformers 

While 300 EVs may not cause a very high peak demand at the distribution level, it is likely 
that, at the local distribution transformer level, on the same street, the presence of several 
EV’s can cause overloads as the spare capacity can quickly be exceeded.  In order to avoid 
this capacity shortage, it may require all the HAN control centers in the neighborhood area 
to be able to communicate with each other to decide on a common load management plan. 
Such communication and control strategies may require cutting-edge technologies such as 
game theory, agent techniques and multi-way signal processing. 

3) Flexible assignment of demand limit 

The proposed DR strategy takes into consideration the fairness and effectiveness in 
assigning a proper demand limit to each building. Results show that it can maintain the 
circuit load under a certain demand limit. However, there may be the case that some houses 
have higher demand requests than the limit while some others are below it. As the 
household demand is discrete since each appliance has certain rated power, there may also 
be the case that a house has to shutdown a 4-kW appliance to keep the household demand 
under the given limit while it is only 1-kW higher than the limit. Therefore, along the lines 
of case no.1 mentioned above, research is needed in peer-communication, negotiation 
between neighbors with advanced methodology, agent techniques and communication 
technologies to better decide the assignment of demand limit to each house/building and 
give them more flexibility in using their appliances. 

4) DR Incentive design 

Even though, necessary steps are taken to maintain the consumers’ comfort and 
convenience, it has to be admitted that DR will have an impact on the consumers’ 
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electricity usage pattern, and will inevitably cause some inconveniences. Therefore, utilities 
will need to properly design incentive programs to encourage consumers to participate in 
their DR programs. The study of consumer comfort indices in this dissertation may provide 
some hints to design a proper DR incentive. On the other hand, the proposed DR strategy 
can also be incorporated with price signals, which will require consumers to set a price 
threshold and demand limit by themselves. 

5) Distributed generation integration 

Last but not least, it can be seen from the simulations that with the increase in the number 
of EVs, more load control has to be performed, thus resulting in higher impacts on the 
consumers’ comfort level. Therefore, at some point, DR resources may be exhausted and 
other alternatives have to be introduced to tackle the problem of system stress conditions. 
Distributed generation (DG) and community scale storage are some of the possible choices. 
This aspect introduces many potential research topics such as optimal sizing, operation and 
location. An EV can also become a DG when it provides Vehicle-to-Grid services.  
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