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Abstract

The introduction of distributed energy resources (DER) is leading to significant changes

in the way in which power systems are planned, operated and maintained. DER includes

many different types of technology, ranging from producers of electricity such as micro-

generation units to consumers of electricity such as heat pumps and electric vehicles.

High penetrations of these new technologies are introducing new challenges for power

systems as existing electricity networks were not originally designed to accommodate

them.

This thesis investigates the potential impact of DER in distribution systems, in par-

ticular low voltage residential networks, in terms of end-user voltage levels and thermal

loading of network equipment. Deterministic and stochastic methods are used to anal-

yse low voltage residential test networks. Acceptable penetration levels of various DER

technology are assessed while maintaining the network within permissible operating

limits. A stochastic assessment of the network with various penetration levels of DER

is also performed to incorporate a number of the uncertainties associated with DER,

such as time-of-use and energy requirements.

In order to accommodate high penetrations of DER on existing low voltage distri-

bution networks, a method for controlling their operation in a coordinated manner is

proposed. The method controls the operation of DER units in order to fully utilise the

available capacity of the network while maintaining acceptable operating limits. While
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the method is applicable to other forms of DER, electric vehicle technology is chosen

to demonstrate the potential benefits. The technique is based on linear programming

and determines the optimal charging rate for each electric vehicle in order to maximise

the total power that can be delivered to all of the vehicles. The results show that high

penetrations of electric vehicles can be accommodated on existing residential networks,

thereby avoiding unnecessary network upgrades.

The method for controlling DER operation described above is based on a centralised

control scheme where a third-party operator has real-time knowledge of operating con-

ditions at all points of the network. Implementing such a scheme would require a

significant investment in communication infrastructure in order for the controller to

receive and transmit charging rate commands to all electric vehicles on the network.

As such, a distributed control technique is proposed whereby individual electric vehicle

charging units attempt to maximise the charging rate for their vehicle while maintaining

local network conditions within acceptable limits. The method would require less com-

munications infrastructure than the centralised control method. Results demonstrate

that the method is not as accurate as the centralised control technique at maintaining

the network within acceptable operating limits and that distributed control charging

schemes may only be sufficient for dealing with lower penetrations of electric vehicles

or other forms of DER.
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CHAPTER 1

Introduction

E
LECTRIC power systems across the world are experiencing significant changes

to the way in which they are planned and operated. Uncertainty over the price

of oil, coal and gas together with increasing concerns over the security of supply of

fossil fuel imports have forced governments and policy makers across the world to

rethink their energy policies. In addition, the Kyoto Protocol (UNFCCC, 1997) requires

participating nations to reduce their collective greenhouse gas (GHG) emissions by 5.2%

from 1990 levels. The protocol was formally adopted in 1997 and has been in force since

2005. In adherence to the protocol, member states have set out their own individual,

legally binding targets for GHG emission reductions.

The evolution of electric power systems across the world has led to a situation

whereby electricity is typically generated by large synchronous generators and then

delivered via a system of power line networks to geographically dispersed loads (EEI,

2011). Over the past decades there has been an increasing requirement for more elec-

tricity generation in order to meet the growing demand (IEA, 2011a). As large scale
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Chapter 1. Introduction 2

synchronous generators are typically based on GHG emitting fossil fuel technology,

meeting the growing demand for electricity while adhering to emission reduction tar-

gets will prove to be a challenging task for governments and energy policy makers

alike.

One solution to the problem of generating non-GHG emitting electricity, which is

being actively pursued, is the use of distributed energy resources (DER) (EU, 2009;

EC, 2004). The term DER can describe many different types of technology, including

distributed generation (DG), flexible load, and energy storage devices. Many types of

DG technology are designed to utilise renewable energy resources (RER) in order to

generate electricity. While generation from renewable based DER can produce elec-

tricity with virtually zero GHG emissions, there are certain inherent characteristics

that must be taken into account in order to successfully incorporate such technology

into existing power systems. For example, the electricity output from wind generation

based DG can be quite variable and as a result the units can operate at less than full

capacity for significant periods of time. More significantly, from a security of supply

point of view, it also means that there must be adequate generating reserve available

in case of a reduction in the DG output.

DG units tend to be geographically spread out over large areas and have relatively

low generating capacities. This is in contrast to the more traditional form of electricity

generation from large-scale centralised power stations. Due to better resource availabil-

ity and large space requirements, DG tends to be located in relatively non-populous

areas which are usually located far from major load centres. Therefore, additional net-

work infrastructure may be required in order to transfer the electricity from the DG

units to the transmission network. It is typical, however, for DG to be connected to ex-

isting distribution networks in order to transmit electricity onto the transmission grid.

For the most part, existing distribution networks were designed to deliver electricity

from the transmission grid to the load, and not for bi-directional flow of electricity to

and from the transmission grid. This has led to a number of issues arising in relation to

the installation and operation of variable generation on primary distribution systems.

For example, excessive voltage rise and reverse power flows. Investigating these issues
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as well as exploring new methods and solutions in order to successfully integrate DG

into power systems has been the subject of many studies. A summary of some of the

key work in this area is provided in Alarcon-Rodriguez et al. (2010).

Energy policies are not only focused on ensuring that generating technologies meet

the growing electricity demand. Many countries are pursuing initiatives on the demand

side also. These include introducing schemes to incentivise energy efficiency as well as

demand side management (DSM) strategies. The widespread implementation of either,

or both, of these schemes would see a reduction in the generation requirements of

large-scale electricity generators (IEA, 2008).

The concept of a DSM scheme is not a new one and they have been in use in many

countries for a number of years (SEAI, 2005). DSM schemes can take many forms

and are typically tailored depending on the type of load and the response that may

be required by the system operator, e.g. fast-acting response, peak load reduction

(SEAI, 2005). Historically, the aim of any DSM scheme has been to reduce certain

load on the power system in order to avoid excessive stress on system components,

e.g. power lines, transformers. Such situations may occur during times of high power

demand on the network or in the event of a system fault. Reducing the system load via

DSM before, or in response to, the occurrence of such scenarios prevents overloading of

system components and maintains equipment operating levels within their capability.

Typically, DSM schemes have been implemented with large industrial customers that

have the ability to reduce or switch off their load in a short space of time. With the

advent of advanced metering infrastructure (AMI) and Internet Protocol technology,

new methods of DSM could potentially become available to system operators. Do-

mestic customers as well as small-to-medium enterprises could also participate in DSM

schemes. Customer participation could be achieved via demand side response (DSR) or

by direct load control (DLC) or a combination of both. DSR could be implemented by

providing customers with real-time system information, via intelligent metering devices,

regarding the price of electricity and allow individual customers to take advantage of

time-of-day prices by scheduling their electricity usage (Sæle and Grande, 2011). DLC,
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on the other hand, would allow system operators or load aggregators to directly control

the operation of certain loads or generating units within a household. While DSR is

more of a passive method for shifting load from peak periods to off peak periods, DLC

would allow system operators to actively control a portion of the total load demand on

a network. For example, such capability would allow operators to avoid the potential

overloading of local network components during periods of high demand by temporarily

reducing non-critical load such as charging electric vehicles.

In future years, the use of small-scale DER, or micro-DER, technology will also

increase. Micro-wind turbines, solar photovoltaic (PV) cells and micro-combined heat

and power (micro-CHP) units are some examples of micro-generation DER devices.

However, the term DER is not only used for devices that generate electricity. Energy

storage units as well as those with flexible load capability can also be described as

DER devices (IEA, 2008). One example of a flexible load that will potentially see

widespread implementation in future years is heat pump technology. As a result of the

European Union directive on the energy performance of buildings (EU, 2010), the use

of sustainable energy technologies, such as micro-generation and heat pump devices,

will become more prevalent within domestic households and other buildings.

Another example of a technology that could potentially be utilised as a flexible load

is the electric vehicle (EV). EV technology is seen as a means of potentially increas-

ing use of renewable energy in the European transport sector in order to reduce GHG

emissions (Bradley and Frank, 2009; Doucette and McCulloch, 2011; Element Energy,

2009; EPRI, 2007; Parks et al., 2007; RAE, 2010). However, any GHG emission reduc-

tion would be very much dependent on the source of the electricity used to charge the

vehicles (Doucette and McCulloch, 2011; RAE, 2010). Nevertheless, various studies

have been commissioned to investigate the potential barriers that need to be overcome

in order to successfully introduce EV technology (Element Energy, 2009; PSERC, 2009;

RAE, 2010). National targets for the implementation of EVs in the transport sector

have been established, while many major car manufacturers are investing heavily in

the research and design of the technology also (IEA, 2011b). EV technology could

also offer owners and power system operators the opportunity to exploit the on-board
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batteries of the vehicles for use as flexible loads on the demand side. By schedul-

ing the charging of their EV, owners could avail of cheaper off-peak electricity tariffs.

System operators could manage the charging rates of EVs by using DLC methods

in order to avoid overloading network components during periods of high demand.

Potentially, the stored energy in the EV batteries could also be used to supply the

electricity network using vehicle-to-grid (V2G) techniques (Kempton and Tomić, 2005;

Tomić and Kempton, 2007). As the occurrence of EV charging increases in distribution

systems, the implementation of any or all of these control methods could contribute to

successfully accommodating this technology in existing distribution networks.

For the most part, micro-DER devices are usually located at the low voltage (LV)

network level of distribution systems. Some forms of DER technology are designed to

operate in a passive manner, such as micro-wind turbines or PV cell arrays. The output

from these devices is dependent on the energy resource availability and they have no

control capability apart from disconnection from the network due to wind overspeed.

Operation of other forms of micro-DER are entirely dependent on user settings, e.g.

scheduling the operation of a heat pump unit. User operated micro-DER technologies,

together with DSM, offer the opportunity for system operators or load aggregators

to manage certain loads and devices in a coordinated manner which would make the

most efficient use of existing networks and delay the need for infrastructure upgrading.

This could be achieved using either DSR methods, such as time-of-day pricing, or DLC,

whereby operational commands are issued by the system operator to certain DER units

as required.

In power systems with high penetrations of mega-watt sized DG based on RER

technology, the introduction of DSM schemes together with micro-DER technology

could prove to be beneficial in terms of power system operation. The potentially high

levels of variability from large-scale DG could be offset by coordinating micro-DER

devices at the distribution system level (Ekman, 2011; Pillai and Bak-Jensen, 2011). If

the output from DG is high during periods of low demand then energy storage based

micro-DER devices, such as EVs, could be used to store the excess energy. Alterna-

tively, a reduction in the output from large-scale DG could also be offset by controlling
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micro-generation devices or storage devices to export electricity to the local grid until

sufficient replacement plant can be brought online. As a result, the requirement for ex-

pensive, fast-acting generation could be reduced significantly (Kiviluoma and Meibom,

2010). Another benefit from the coordinated use of DSM and DER would be the local

consumption of locally generated electricity, thus reducing power flows at the higher

voltage levels and making more efficient use of network capacity. In the event of a fault

or other similar scenario, DER units could also potentially permit a section of network

to operate in an islanded mode as a micro-grid (Hatziargyriou et al., 2007).

While there are a number of potential benefits to the introduction of DER at the

distribution level, the ability of existing networks to accommodate such technology

must be assessed. Small-scale DER technologies are expected to be most prevalent at

the LV distribution network level. However, this type of network was not designed for

accommodating high penetrations of micro-generation, flexible loads or storage devices.

Utilising DSM schemes will aid in accommodating these new technologies while making

more efficient use of the network and postpone the need for widespread upgrading of

existing infrastructure.

1.1 Thesis Objectives

As the adoption of DER technology increases, existing network infrastructure may not

be able to support high penetrations of DER if operated in an uncontrolled manner. The

simultaneous use of DER units could lead to voltage levels exceeding permitted limits or

overloading of network components. Therefore, the first goal of the research presented

in this thesis was to investigate the technical impact on existing distribution systems,

specifically LV residential networks, from increasing penetrations of DER devices. Such

analysis allows for a determination of the maximum permissable penetration limits of

specific DER technologies with no control capability available. As the operation of many

types of DER technology is actively controlled by the user, the level of coincident use

of the devices on the network will be an important factor in determining their potential

impact. This aspect of the widespread use of DER technology was also addressed in
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this thesis.

The main objective of this thesis is to investigate possible coordinated control tech-

niques for DER devices in distribution systems. With the widespread implementation

of both DER technology and more sophisticated DSM schemes, distribution systems

will see a shift from traditional passive operation to a more active approach. This will

be facilitated through the introduction of AMI and increased communications links

between system operators/load aggregators and customers. As a result, one of the

potential benefits that may arise will be the ability for the DSO or a third party to

actively control the operation of certain devices within customer households. A method

for the coordination of DER operation is proposed in this thesis, whereby the optimal

operating set point of each unit is determined in order to utilise network capacity to

its fullest. The method allows for high penetrations of DER devices to operate si-

multaneously while maintaining acceptable operating conditions on the network. The

control technique can be implemented in either a centralised or decentralised manner

and evaluating the advantages and disadvantages of both methods is the final objective

of this thesis.

1.2 Thesis Contributions and Outline

The focus of this thesis is on the integration of DER technology into existing distribu-

tion systems. Chapter 2 presents a review of DER technologies currently in use on the

Irish power system. A literature review of some of the more recent research investigat-

ing the potential impact from DER as well as methods for coordinating the operation

of such devices is also provided. Understanding how DER devices will affect the oper-

ating conditions of the network will be crucial to determining acceptable penetration

levels in a business-as-usual scenario of passive network operation. As such, Chapter 3

investigates the potential impact of DER technology on residential LV networks using

two methods of analysis. Firstly, a deterministic analysis method is used in order to

determine how increasing penetrations of DER devices affect the voltage levels and

thermal loading of a test network. This analysis is performed for the worst case operat-
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ing scenario of the network in terms of the underlying residential load already present

on the network. As DER technology can include both micro-generation and flexible

load devices, the analysis is performed using examples of each type of technology. The

effect of the location of the DER units is also examined, as is the impact from an un-

even distribution of the units across the network phases. The second method developed

a stochastic based technique to generate operating profiles for both DER devices and

household loads on a test network. The method takes account of the uncertainty and

variability inherent with DER units and household loads by using probability distribu-

tion functions (PDFs) based on real network data obtained from DSO led field trials.

By doing so, the method accounts for the spatial and temporal diversity of DER oper-

ation. Performing time-series load-flow analyses of a network using the stochastically

generated profiles enables a much enhanced understanding of the severity of the impact

from DER technology and the likelihood of network operating limits being exceeded.

With high penetrations of DER units on residential networks, passive operation may

no longer be sufficient to ensure acceptable power quality at the customer point of con-

nection (CPOC). Chapter 4 introduces a method for the coordinated operation of DER

units in order to make optimal use of available network capacity. Here, it is assumed

that a central controller has the ability to send control signals remotely to the DER

units installed at the customer households. The method utilises the interdependency

of the network sensitivities to the addition of DER devices and assigns each individual

device with an optimal operating set point, determined using a linear programming

tool. As the impact from large flexible load is demonstrated to have a more significant

impact than micro-generation units in Chapter 3, the optimal coordination method is

demonstrated for high penetrations of EV load in a residential LV test network. The

results demonstrate that by optimising the charging rate of each EV using this tech-

nique, significantly higher penetrations can be accommodated than would be the case

in a scenario with uncontrolled charging. The implementation of such a strategy allows

for more efficient use of existing network capacity, which would benefit the DSO by

deferring the need for costly network upgrading.

In order to implement a centralised technique across a power system, sufficient
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communications infrastructure is required to send bi-directional signals between the

controller and individual DER devices. However, such a system may be costly to im-

plement and it may not make economic sense until very high penetrations of DER units

are present. As such, Chapter 5 presents a local control based optimisation method

which differs from the centralised control method in that each DER unit determines its

optimal operation set point based on local network information only. This is achieved

by utilising the voltage and thermal loading conditions at the CPOC. Using these

measured values, together with predetermined sensitivity values for the additional gen-

eration/demand from the DER device, an optimal operating set point is assigned for

each time period. The method is once again tested for high penetrations of EV charg-

ing and results are compared to those from the centralised control method described

in Chapter 5.

Conclusions for the thesis are presented in Chapter 6 together with a scope for future

research work in this area.



CHAPTER 2

Distributed Energy Resources

2.1 DSM and DER in the Irish Power System

DSM schemes have been implemented on the Irish power system for many years. At

present, various schemes in use involve both active and passive approaches to reduc-

ing the energy demand. The peak demand period on the Irish power system typically

occurs during the winter months (EirGrid and SONI, 2010). During such periods, the

potential exists for certain system components (i.e transformers, overhead lines) to ex-

ceed their rated operating capability and for generators to operate at or near maximum

capacity. In order to prevent such situations from arising, there are a number of peak

demand reduction schemes in place to reduce the load on the system (EirGrid, 2011).

Typically the schemes involve agreements between the transmission system operator

(TSO), and commercial and industrial businesses, who are financially compensated for

their load reduction capability. In some cases, a reduction in demand is prearranged

to occur at specific times of day during the winter season (WPDRS, 2011). In other

10
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situations, certain demand can automatically be reduced with the occurrence of a con-

tingency event on the system (STAR, 2011). These schemes have been in use by the

TSO for as long as 20 years and have proven to be an important service for maintaining

system security.

Measures for increased energy efficiency on the demand side are deemed to offer

significant potential benefits in terms of overall energy savings (SEAI, 2008). For resi-

dential electricity customers, government policies have seen initiatives set up to improve

end-use energy efficiency by incentivising electricity customers to use more energy ef-

ficient appliances as well as improving the energy rating of their buildings (DCENR,

2009). Various campaigns have also been established to create awareness about effi-

cient energy use amongst electricity customers (SEAI, 2011a,c). Domestic customers

also have the ability to sign up to a basic dual-period time-of-use tariff which allows

them to avail of cheaper electricity prices during nighttime hours (Electric Ireland,

2011). For example, this scheme is particularly beneficial to customers that utilise

storage heating due to the high energy requirement and typical nighttime operating

hours of the devices.

In future years, widespread introduction of a smart metering program will allow

residential customers to play an even bigger role in actively managing their electricity

usage. To this end, the Irish Government together with the energy regulator of Ireland

commissioned smart metering trials (CER, 2011b), whereby various types of AMI with

differing DSM capabilities were installed in residential households. In general, the trials

concluded that the introduction of time-of-day tariffs had a positive impact on how

customers managed their electricity usage, with up to 82% of participants adapting

their electricity usage as a result of the new tariff structure. It is envisaged that

the AMI will not only have the ability to display time-of-day electricity prices but

also record electricity exported to the grid, for example from micro-generation. Over

the trial period the customers response to various levels of information from the AMI

regarding their energy usage, was measured to gauge the effectiveness of the technology

and the different DSM schemes. Widespread introduction of smart meters to domestic

electricity customers is intended to commence shortly after 2012 (CER, 2011a). Beyond
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this time, AMI or a similar technology will potentially facilitate the control of certain

flexible load within the household. Such capability would provide system operators

with a means of utilising DLC on certain loads within the customer household, e.g.

storage heaters, refrigeration.

Micro-generation technology remains in the early stages of adoption in Ireland

(SEAI, 2010). This is, in part, due to the high initial investment costs required for

the devices. Other factors which contribute to the lack of uptake include insufficient

primary energy resources for technology such as solar PV cells and micro-wind turbines.

Due to its location on the edge of the Atlantic Ocean, Ireland experiences some of the

best wind energy resources in Europe (SEAI, 2011b). However, unless micro-wind tur-

bines are located in high areas with a very good wind resource and their installation

costs have been heavily subsidised, they can struggle to generate enough electricity to

pay back the investment cost over their life time (NHBC, 2008). The same can be said

for PV cell technology due to insufficient levels of irradiance year round. Other forms

of DER that are also being introduced include solar heating and heat pump technol-

ogy. These forms of technology contribute to the heat energy requirements of buildings

and while they can reduce heating costs, retrofitting these devices into existing build-

ings can cost up to 30% more than would be the case for installation in new build

(NHBC, 2008). In order to continue the uptake of DER technology, government grants

will remain necessary into the future until economies of scale bring initial investment

costs down. Various other policies have also been introduced to increase the use of

DER devices. For example, regulations have been put in place to ensure that all new

domestic buildings have a minimum level of renewable technology installed (DCENR,

2009), while owners of DER units that export electricity back onto the grid can now

be financially reimbursed for doing so (CER, 2010).

Another form of technology that is expected to see increased use over the coming

years is the electric vehicle. Government policies have set a target of 10% of all passen-

ger and light commercial vehicles in Ireland to be electric by 2020, while there are also

financial incentives available to motorists for owning an EV (DCENR, 2009). Initiatives

for the distribution system operator (DSO) to install EV charge points in residential
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households as well as fast-charge points along major intercity routes have also been

introduced (ESB, 2011) to encourage the uptake amongst motorists.

The implementation of these various policies to encourage the use of DER tech-

nology, along with the introduction of advanced metering technology, will potentially

lead to significant operational changes at the distribution network level. As customers

begin to take a more active approach to managing their electricity usage in order to

maximise their benefits, system operators must adapt to these new technologies while

still maintaining acceptable operating levels across the entire system.

2.2 Impact of Distributed Energy Resource Technology

It is considered that micro-DER devices will mainly be located at the LV distribution

network level of a power system. When LV distribution networks were originally de-

signed and built they were only required to deliver electricity from the transmission

grid to the residential loads. Investigating how micro-DER devices will impact on the

traditional operation of the networks will be key to maximising the potential benefits

of such technology.

Traditionally, LV distribution networks were rated to deliver electricity depending

on the number of customers in any given area and their historical electricity demand

(Willis, 2004). Once built, such networks were mainly operated in a passive manner

with little or no system monitoring equipment past the LV transformer. However, the

introduction of DER technology will alter traditional demand patterns and may result

in adverse effects in terms of power quality and overloading of network components.

Therefore, the largely passive operation of these networks may no longer be adequate.

Understanding the potential impact that DER may have on existing networks will be

crucial for ensuring safe and secure network operation.

Each type of DER technology will have a different impact on the network to which

it is connected. While a single unit will most likely have a negligible impact in terms of

power quality or loading, the combined effect from clusters of DER located on the same
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network may have quite significant impacts. The potential for such negative impacts

increases even more if the majority of the units were to operate at the same time.

In the case of micro-generation, studies have shown that while existing LV networks

may be able to accommodate high penetrations of PV and micro-CHP, the potential

exists for the reverse flow of power back up to the feeder transformer during times

of low demand (Thomson and Infield, 2007a,b). Other studies of the impact from

micro-CHP units on existing network have also determined that high penetrations

could be accommodated without the need for network upgrading (DTI, 2003, 2004).

These studies were conducted for very conservative scenarios with a high coincidence

of operation at full output. Voltage and thermal loading levels appear to remain within

acceptable operating ranges, and especially so for networks with tap changing capability

at the feeder transformer (Silva and Strbac, 2008). Similar results were also found

during field trials with a feeder of 500 houses, each with a 1 kWe micro-CHP unit

(Beddoes et al., 2007). The study noted that the introduction of high penetrations

of micro-CHP could have a significant impact on the daily network voltage profile.

Electricity is generated as a by-product of heat energy production from micro-CHP

units. As a result, the coincident heat demand by customers at certain times of day

leads to the simultaneous generation of electricity from the units. This can lead to

the creation of new peak voltage levels during periods of high heat energy demand.

In general, previous work investigating the impact of micro-generation has shown that

existing LV networks should be able to accommodate significant penetrations of micro-

generation in all but the most extreme case of simultaneous generation during low

demand periods. For the most part, micro-generation tends to offset the electricity

demand by load on the same network, thereby reducing the overall demand requirement

of the feeder.

Flexible load DER will have a very different impact on network conditions compared

to micro-generation. Typically, distribution networks have radial topologies, which

result in lower voltage levels at network extremities when compared to sending end

voltages at the feeder transformer. Based on historical demand data and an assumed

level of coincident electricity use, networks are rated to ensure that the voltage at every
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customer connection point on the network is within an acceptable range under normal

operating conditions (Willis, 2004). However, flexible load DER, such as EVs, will

introduce a new type of demand, which will alter the typical customer load profile.

The extent to which these new technologies may impact on the operating conditions

of existing networks, such as voltage and loading levels, has been the subject of much

research.

Investigations into the potential impact of EVs on load patterns and the need

for load management at the distribution network level have been conducted since as

early as the 1980s (Heydt, 1983; Rahman and Shrestha, 1993). Various system wide

studies have been carried out to assess whether future power systems will have the

required generating capacity and infrastructure to accept large penetrations of EVs

(Denholm and Short, 2006; Hadley and Tsvetkova, 2008; Kintner-Meyer et al., 2007;

Hadley, 2006; Short and Denholm, 2006). They conclude that, for the most part, ex-

isting and planned generation plant should be sufficient to meet the added demand

from EVs. However, this may not be the case when this added demand coincides with

existing peaks.

Some studies have also investigated the limitations from large numbers of EVs on

network infrastructure in terms of increased loading, impacts on efficiency and loss of

life for network assets (Gerkensmeyer et al., 2010; Putrus et al., 2009; Schneider et al.,

2008; Shao et al., 2009; Taylor et al., 2009). These studies examined varying scenarios,

such as unrestricted charging, peak and off-peak charging, diversified charging, and

charging at varying power levels. The general consensus from these studies is that

existing distribution networks should be able to accommodate substantial penetration

levels of EVs if the majority of charging is restricted to low charging rates at off-

peak times. Uncoordinated charging, especially fast, 3-phase charging, will lead to an

increase in the number of occurrences of component overloading and excessive voltage

deviations if it coincides with existing peaks from the residential load. Staggering the

charging start times for localised groups of EVs is also shown to help avoid these adverse

effects, as well as reducing spikes in demand due to simultaneous commencement of

charging.
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A review of the various studies above, which investigate the impact of DER technol-

ogy on existing distribution systems, suggests that the impact from high penetrations of

flexible load type DER devices will be greater than that from micro-generation devices.

The following section provides a review of previous studies which have investigated

intelligent control methods for accommodating flexible load devices, in particular EV

load.

2.3 Intelligent Control of Distributed Energy Resource

Technology

Strategies for managing the operation of DER devices will become increasingly impor-

tant when high penetrations of DER units are reached. Implementing such schemes

could allow for more efficient use of existing network assets while delaying the need for

costly infrastructure upgrading. Other potential benefits include the use of DER for

the operation of microgrids in order to allow the networks to operate in an islanded

mode (Katiraei et al., 2008). In Pudjianto et al. (2007) a concept for the coordination

of DER devices for use in a virtual power plant (VPP) is proposed. The VPP concept

would allow DER owners to participate in the electricity market either for bulk power

supply or to provide ancillary services. The system operator also benefits as the VPP

can be viewed as a single market participant as opposed to many individual units. In

the event of a section of distribution network becoming isolated from the main grid,

in either planned or unplanned circumstances, it has been shown in Peças Lopes et al.

(2006) that safe and secure operation of the network can be maintained by control-

ling the operation of DER units and storage devices. Similar results are found in

Peças Lopes et al. (2010, 2011) where the authors propose management strategies for

EV charging/discharging in LV microgrids. By allowing network control devices to

respond to voltage and frequency levels, it is shown that the EV load can enable LV

microgrids to be operated in a stable manner.

The use of EVs as flexible load has been the subject of much recent research. This is,
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in part, due to the expected increase in the future uptake of EV technology in the trans-

port sector (IEA, 2011b). The introduction of AMI devices in residential housing, be it

for real-time pricing or active DSM, or both, will aid the control/predictability of the

load patterns on residential networks. With high penetrations of EVs connected to the

network, it is envisaged that EV charging could potentially be controlled to gain certain

benefits in other aspects of power system operation. For example, shifting the majority

of EV charging to off-peak periods through the use of DSR or DLC methods would

reduce the system peak demand while increasing the use of more efficient base-load

plant (Camus et al., 2009; Mullan et al., 2011; Perujo and Ciuffo, 2010). Similarly, in

Shortt and O’Malley (2009), it is demonstrated that by controlling the charging of EVs

to operate at off-peak times, significant savings to the average cost of electricity can be

achieved due to the increased use of cheaper base-load plant. Various studies have also

been undertaken to assess the potential benefits from using flexible EV load in conjunc-

tion with high penetrations of wind generation (Ekman, 2011; Pillai and Bak-Jensen,

2011; Wang et al., 2011). Results from these studies indicate that, by coordinating the

charging of EVs, system operators can more easily achieve a balance between generation

and demand on systems with high amounts of variable generation.

Much research into the coordination of EVs to improve the operational performance

of distribution networks has also been conducted. In Sortomme et al. (2011), the charg-

ing schedule of EVs on a network is optimised with the objective of minimising losses.

Results show that minimisation of losses can achieve a 20% reduction for 50% EV pen-

etration and a 30% reduction for 100% penetration. Work described in Deilami et al.

(2011) also demonstrates the potential reduction in network losses from the use of con-

trolled EV charging. In this work, a charging strategy designed to operate in real-time is

proposed in order to schedule EVs on a network with the objective of minimising costs.

Results show that loss reductions in the region of 70% are achievable for EV penetra-

tions of approximately 50%. In Acha et al. (2010), a technique is employed to minimise

power losses and on-load tap changes for the network transformer, mainly due to the

charging/discharging of EVs located far from the slack bus. In Clement-Nyns et al.

(2009, 2010) the authors use quadratic and dynamic programming techniques to min-
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imise the impact from EV charging on network losses and deviations from nominal

voltage on residential networks. By controlling and optimising individual EV charg-

ing rates, network losses and voltage deviations are reduced for all penetration levels

examined.

2.4 Summary

Much of the previous work on intelligent control of DER focused on developing tech-

niques for reducing the potential network impact from DER devices, for example, min-

imising losses and peak loading reduction. This thesis proposes new methodologies for

the coordination of DER devices with the aim of maximising the use of existing network

capacity while maintaining acceptable network operating conditions. Demonstrations

of the methods show that, by employing such methods, higher penetration levels of DER

can be accommodated on existing networks compared to scenarios with uncontrolled

DER, thus deferring the need for costly reinforcement of network infrastructure.



CHAPTER 3

Impact of Distributed Energy Resources on Low Voltage Networks

3.1 Introduction

D
ISTRIBUTION networks are rated (kVA limit) to deliver electricity depending

on the number of customers in a given area and the historical electricity demand

data for each of those customers. Widespread adoption of DER technology will intro-

duce new customer demand and generation patterns, and high penetrations could result

in adverse effects on the network. Such effects include excessive voltage variations and

overloading of network components (e.g. power lines and transformers). Maintaining

network operating conditions within acceptable limits is necessary to ensure adequate

power quality for electricity customers.

A number of previous studies have investigated the impact from the introduction

of micro-generation into distribution systems. In Thomson and Infield (2007a) and

Thomson and Infield (2007b), the authors use an unbalanced load-flow tool to analyse

19
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the impact from micro-CHP units and PV cell arrays on a test network, in terms of

voltage levels and network losses. They conclude that, under normal operating condi-

tions, distribution networks should be able to accommodate large penetrations of both

technologies. It is noted, however, that the ability of a particular network to accommo-

date micro-generation is very much dependent on the existing voltage control practices

of the DSO. Similar results were found in DTI (2003), where a test distribution sys-

tem was found to be able to accommodate a 40-50% penetration of micro-generation

units without exceeding voltage limits. These results were determined under a conser-

vative scenario of minimum network load with a high coincidence of micro-generation

operation. The study also concluded that the location of the units on the network

had a significant influence on the node voltage levels with some scenarios permitting a

maximum penetration level of less than 40%.

The impact on voltage levels and component loading from high penetrations of heat

pumps on LV distribution systems is examined in Akmal et al. (2011). Results show

that penetration levels of up to 20% can be installed before potentially overloading

LV transformers. The study also shows that the high starting current of heat pump

devices operating simultaneously can lead to transient voltage drops which can exceed

acceptable limits. A number of studies have also investigated the potential impact

from EV charging on existing networks. In Taylor et al. (2009); Maitra et al. (2010);

Schneider et al. (2008), the impact on network infrastructure is assessed in terms of

increased loading and loss of life for network assets. Other work has assessed the

impacts on LV transformers in terms of efficiency and overloading, and concluded that

large penetrations of EVs can create new peak loads from an LV transformer’s point

of view (Shao et al., 2009). The work described in Putrus et al. (2009) examines the

impact of EVs on distribution networks in terms of supply/demand matching, voltage

deviations and power quality. The general consensus from these studies is that existing

distribution networks should be able to accommodate early penetration levels of EVs

if the majority of charging is restricted to low charging rates at off-peak times.

This chapter investigates the extent to which DER could impact on existing distribu-

tion networks, with a specific focus on residential LV networks. Two particular types of



Chapter 3. Impact of Distributed Energy Resources on Low Voltage Networks 21

technology are considered in order to analyse the potential impact from DER. These are

micro-CHP units and EVs. These technologies were chosen as they represent examples

of both an electricity generating and flexible load form of DER. Micro-generation units

can be expected to cause a rise in the voltage at their point of connection to the net-

work. In contrast, EV charging may result in excessive voltage drops and overloading

of network assets. The sensitivity of these impacts to changes in the point of connection

of the DER is also analysed as a potential indicator for determining permissible levels

of DER penetration.

Residential households are connected to the distribution system via a single-phase

connection. This has the knock-on effect of creating voltage and current unbalance

at the 3-phase level of the network. Uncontrolled charging of EVs or generation of

electricity from micro-generation units could lead to levels of unbalance which exceed

acceptable network limits (Shahnia et al., 2011). Results from investigations into the

interdependency of network phases are also outlined in this chapter.

3.2 Deterministic Analysis

3.2.1 Methodology

In order to assess a network’s ability to accommodate DER technology, two types of

analysis are carried out here on LV test networks. Firstly, a deterministic steady-state

analysis is performed in order to assess network limitations. The analysis is carried

out by introducing DER to a test network for a given worst case scenario. Depending

on the particular type of technology under investigation, a worst case scenario can be

defined as a period of time whereby the demand on the network is at either its lowest or

its highest level. The method investigates the effects of increasing DER penetration, as

well as the effect of the location, on the network and is assessed in terms of the resulting

network voltage levels and thermal loading of components. The method provides insight

into the limitations of a given network’s capability to accommodate DER without the

need for active control on the demand side or upgrading of the network.
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When assessing the limitations of a distribution system, it is normal practice to test

models of the system for a worst case scenario. For LV residential distribution networks,

this typically implies that the network is examined under conditions of maximum load.

However, this may not be the case in future networks where there is a large penetration

of local micro-generation units. The maximum, or minimum, system demand is usually

determined from historical load data. The main concern from a distribution system

operator’s point of view is that a network operates in a safe and reliable manner under

all loading conditions. With an increase in DER on the network in future years, the level

of electricity demand that will define a network’s ‘worst case scenario’ will undoubtedly

change significantly.

This method assesses the potential impact on the distribution network due to the in-

troduction of DER. This is achieved by incrementally adding DER units to the network

for a given time period, i.e. maximum or minimum demand. In order to perform this

analysis, a model of a section of LV distribution network was developed using power

system analysis software (DIgSILENT GmbH, 2011). Details of the model are given in

Section 3.2.2. Steady-state analyses were performed using unbalanced load-flow calcu-

lations, with the changes in voltage and thermal loading levels at various parts of the

network recorded. The load-flow solutions were calculated using the Newton-Raphson

method employing 3-phase current injection equations (Garcia et al., 2000).

3.2.2 Test Network 1

The deterministic impact assessment is performed using Test Network 1, which is based

on a LV residential distribution feeder in a suburban area in Dublin, Ireland. A sim-

plified version of the feeder is given in Fig. 3.1. The network supplies 134 residential

customers through a total of 1.2 km of 3-phase copper mains cables and a total of 980

m of single-phase copper service cables. A lumped load model, representing a similar

number of residential customer loads is included to represent another feeder being sup-

plied from the same transformer. In the actual test feeder model, each household, DER

unit and service cable are modelled separately. In Ireland, the LV distribution network
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Figure 3.1: Single line diagram of Test Network 1

is operated at a nominal voltage of 230/400 V with a voltage range tolerance of +/-

10% (ESB Networks, 2007). The model incorporates a 400 kVA, 10/0.4 kV step-down

transformer. For the most part, LV substation transformers in Ireland do not have

tap-changing capabilities, which is the case for the transformer modelled in this test

network. As such, the medium voltage (MV) network supplying the LV transformer

is included as an equivalent impedance in order to take account of the voltage drop

at this network level. The MV network is modelled such that at maximum residential

load the voltage at all points of the network does not exceed -10% of nominal assuming

residential load only. Specifications for the network model components were supplied

by the DSO for the Republic of Ireland.
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3.2.3 Residential Customer Load

Typical load data for domestic electricity demand customers was obtained from the

DSO. It consists of 15-minute time-series demand data for high, medium and low use

customers over a one year period. This data was used to generate both the deterministic

and stochastic household load profiles, which were assigned based on the annual energy

demand of each customer.

For the deterministic analysis, different electricity demand profiles were randomly

assigned to each of the houses in the test network. An example of a typical 24 hour load

profile for a residential customer is given in Fig. 3.2. In order to confirm that these

load profiles portrayed an accurate representation of the power demanded by a real

distribution feeder, the coincidence factor, (3.1), of the test network was determined to

ensure a realistic load diversity.

Coincidence Factor =
Maximum Diversified Demand

Maximum Non-coincident Demand
(3.1)

The maximum diversified demand is defined as the maximum demand imposed by

a group of loads over a certain period, while the maximum non-coincident demand of a

group of loads is defined as the sum of the individual maximum demands, without the

restriction that they must occur at the same time (Kersting, 2002). From assessing the

yearly load profiles for each of the households on the network, the coincidence factor

was found to be 0.32. This value compares favourably with coincidence factors for

similar residential load networks (Willis, 2004).

Following the assignment of load profiles to each house in the test network, the

minimum demand period for the network was determined. This is considered to be the

worst case scenario for the micro-CHP study. Similarly for the EV investigation, the

maximum demand period for the network was determined. This assessment is restricted
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Figure 3.2: Typical 24 hour load profile for a residential customer

to times of day when there would be a higher probability of simultaneous EV charging,

i.e. between the hours of 4 pm and 8 am. Each of the houses in the test networks are

modelled as a constant power load with a power factor of 0.97 inductive.

3.2.4 Micro-generation

Domestic micro-CHP units can be switched on by the owner/operator as required.

However, they usually operate at times of day when heat, usually for hot water, is

required in a building. This normally occurs during the morning period, between 6

am and 10 am and to lesser extent again in the evening, between 6 pm and 10 pm

(Thomson and Infield, 2007b). Electrical energy is only produced as a byproduct of

the heat energy and as such will only be produced when heat is demanded in the

building. In the network models, individual micro-generation units are rated with

electrical outputs of 1-1.2 kW. This is similar to the rated capacities of micro-CHP

units that are currently available on the market (Pehnt et al., 2006). The units are

modelled with a power factor of 0.98 and are each connected to the feeder via a single-
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phase connection at the same point of connection as the household.

3.2.5 Electric Vehicles

The vast majority of privately owned EVs can be expected to charge at the owner’s

household. Although the possibility exists for fast, 3-phase charging, for the most part,

EV charging at customer households will do so by means of a standard single-phase AC

electrical socket. Therefore, it is assumed that EVs will be connected to the network

at the same point of connection as the residential household. Charging profiles for EVs

can vary depending on the particular technology employed: battery type, charging

equipment and the electricity supply network can all affect the EV charge profile. For

the purposes of this work, it was not necessary to consider the energy required by the

EV batteries. Instead, the main focus here is on voltage levels and the thermal loading

of network components. Therefore, only the power demand for charging EV batteries

is considered. Depending on the type of charging equipment used, the level of power

that can be delivered to a battery can vary considerably, e.g. 3-phase charging, DC

fast charging. A demand of 3.5 kW per vehicle is assigned as a typical EV charging

power demand. This value is appropriate in terms of the power delivery capabilities of

existing LV distribution networks in Ireland (ESB Networks, 2007). EV batteries are

assumed to have unity power factor.

3.3 Deterministic Analysis Results

3.3.1 Voltage Impact

Unbalanced load-flow analyses were carried out at various levels of DER penetration for

the worst case scenario of residential load. Micro-CHP and EVs are added to individual

households in the network in 10% increments with respect to the total number of

households. Two cases are examined for each level of penetration: case (i) locates the

units at households which are furthest from the substation bus, while case (ii) locates
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the units at households nearest to the transformer bus. Performing the analysis in

this manner indicates the boundaries of possible values recorded due to the point of

connection to the network.

3.3.1.1 Impact on 3-Phase Voltage Levels

Test network 1 was examined for increasing penetrations of micro-CHP units for both

cases (i) and (ii). Fig. 3.3 shows the recorded voltage levels at node A, which is

a 3-phase mini-pillar supplying 4 customers at the extreme of the network. Due to

the network being modelled for the extreme scenario of minimal residential demand,

this results in a particularly high voltage at node A even with no micro-generation

operating. Here, micro-CHP units were incrementally added to the network branch

ending at node A. The second branch, ending at node B, has no micro-generation units

present. It can be seen that even with 100% micro-CHP penetration, the voltage at

node A is within the upper voltage limit (1.1 pu) regardless of whether the units are

located near or far from the transformer.

Fig. 3.4 shows a similar result to Fig. 3.3 except in this case there is a 100%

penetration of micro-CHP on the second branch of the network. While the overall

voltage can be seen to have risen significantly, the upper limit is only exceeded in the

extreme case of a 85-90% penetration of micro-CHP units across the entire network for

both cases (i) and (ii).

Both Fig. 3.3 and Fig. 3.4 demonstrate how the location of micro-CHP on the

network can have a significant impact on the voltage level at a particular node on the

network. For a given voltage, the micro-CHP penetration can vary by as much as 30%.

Following the investigation into the potential impact from micro-CHP operation on

3-phase voltage levels, a similar analysis was performed to assess the potential impact

from EVs. Simulated voltage levels were recorded at six points on the test network,

marked A, B, C, D, Y and Z in Fig. 3.1. Four of these points are located at the end of

branches where the voltage drop is likely to be greatest due to the radial nature of the
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Figure 3.3: Line voltages for varying levels of micro-CHP penetration on line ending at
node A

Figure 3.4: Line voltages for varying levels of micro-CHP penetration on line ending at
node A with 100% micro-CHP penetration present on second line



Chapter 3. Impact of Distributed Energy Resources on Low Voltage Networks 29

Figure 3.5: Line voltages for varying levels of EV penetration

network. The remaining 2 points are located at households nearest to the substation

bus. Fig. 3.5 shows the voltage level at the 6 points of interest for various penetrations

of EVs for case (i). Here, the initial voltage levels at 0% EV penetration are due

to the high residential load demand on the network. It can be seen that point A

experiences the most severe voltage drop and reaches the lower limit of 0.9 pu at an

EV penetration level of approximately 28%. Fig. 3.6 compares the voltage level at

point A for both cases with different amounts of EVs connected to the network. For

case (ii), the voltage drop is not as severe, reaching the lower acceptable limit at an

EV penetration of approximately 42%.

For the worst case scenario of maximum residential demand, these results indicate

that, at best, for EV penetration levels greater than 42% that there will be sections

of the network where the voltage level will have dropped below the acceptable limit.

They also show that depending on the location of the points of connection, there can

be a significant difference, i.e. 28% vs. 42%, in the amount of EVs that can safely be

connected to this particular network before the voltage levels drop below safe limits.
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Figure 3.6: Line voltages for varying levels of EV penetration at node A for cases (i)
and (ii).

From the 3-phase voltage analysis results, it is evident that the addition of EV load

is more likely than micro-CHP to have a greater impact on the operating conditions of

this type of network. As such, the following results focus on the impact from increasing

penetrations of EV load only.

3.3.1.2 Impact on Single-Phase Voltage Levels

It is highly likely that there will be a certain amount of unbalance present on a distri-

bution network at any given time due to the varying loads on each phase. Therefore,

each of the phase voltages were examined separately for increasing levels of EV charg-

ing. Measurements were recorded at the connection point for one house on each phase

at points of interest in the network. Fig. 3.7 compares each of the phase voltages

at the most severely impacted point on the network for case (i). It can clearly be

seen that the voltage level for each phase can vary greatly due to the connection of

EVs to the network. The voltage recorded on phase ‘c’ reached the lower limit at an
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Figure 3.7: Phase voltages for varying levels of EV penetrations at point A

overall penetration of 20%, while the corresponding values for the ‘a’ and ‘b’ phases

were 27% and 44% respectively. A different initial allocation of loads across the phases

could, of course, alter the phase thresholds. While a certain portion of this unbalance

can be attributed to the residential demand for each household, the results show that

uncontrolled connection of EVs at single-phase points can significantly degrade this

unbalance due to the additional load on the phase. It also demonstrates the need for

voltage levels to be monitored at individual household connection points, as opposed

to simply at the 3-phase supply level where the lower allowable limit was reached with

an EV penetration of 28%.

The characteristics shown in Fig. 3.7 are not smooth due to the allocation of EVs at

each penetration level. The location of EVs on the feeder is chosen as a result of their

geographical position and is not dependent on which phase they are connecting to. As

a result, it is possible that the additional load, for each increment of EV penetration,

is not spread evenly across the phases. A slight voltage rise on some of the phases is

also observed at certain EV penetrations. Reasons for this occurrence are explored in

the following subsection.
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3.3.2 Phase Interdependency

The level of influence that adding EVs on a particular phase can have on the other

phases of a feeder was also examined. EVs were added incrementally, as before, but

only to those houses connected to phase ‘a’. Voltage levels were recorded at each point

of interest in the network. It should be noted that such a scenario is highly unlikely

to occur in reality. If such a scenario were to arise, the DSO would more than likely

reconfigure the network in order to spread the load as evenly as possible across the

phases before such a situation could occur. These results are shown as an indicator of

the extent to which excessive loading of one phase in a network can affect the other

phases.

Fig. 3.8 compares each of the phase voltages with increasing penetration of EVs

at point A, which is the most severely affected point in the network, as seen in Fig.

3.5. As can be seen in Fig. 3.8, a certain level of unbalance across the phases already

exists due to the residential load. Voltage levels are only shown for penetrations up

to, and including, 50% as the load-flow calculations fail to converge for higher levels

due to the extreme voltage unbalance and voltage drop on the network. This effect

can be attributed to the modelling of household loads as constant power loads, which

is unlikely to be the case in reality. A more realistic representation of the loads would

be to model them as a mixture of constant power and constant impedance.

In order to investigate the importance of residential load modelling, the test was

performed again with household loads modelled as constant impedances. Doing so

allows for comparison with the other extreme case of modelling the households as

constant power loads. Fig. 3.9 shows the voltages of the 3 phases at node A for

varying EV penetration levels. There is a similar impact on the voltage levels, as in the

previous test, although the scale of the effect is not as great. For the case where the

households are modelled as constant power loads, the lower voltage limit is exceeded at

a penetration level of approximately 13%, whereas for the case with constant impedance

loads the penetration level is approximately 25%. It can also be seen that the voltage

rise experienced on the remaining phases is not as severe in the constant impedance
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Figure 3.8: Phase voltages at point A for varying levels of EV penetrations applied to
phase a only. Household loads are modelled as constant power loads

Figure 3.9: Phase voltages at point A for varying levels of EV penetrations applied to
phase a only. Household loads are modelled as constant impedance loads
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case as it is in the constant power case. This suggests that load composition is a

significant factor in determining acceptable EV penetration levels and that accurate

load modelling should form part of any EV impact study.

It should also be noted from Fig. 3.8 and Fig. 3.9 that the addition of EV charging

to phase ‘a’ alone not only results in a severe voltage drop on that phase but also

causes phases ‘b’ and ‘c’ to experience voltage rise. This may be attributed to the

interdependency between each of the phases due to the sharing of a common neutral

conductor and will be investigated further in future research.

3.3.3 Thermal Loading Impact

The thermal loading of certain parts of the test feeder were recorded for the same res-

idential load conditions as applied in the previous tests. Both the transformer and the

line connecting the substation busbar to the first terminal along the feeder were exam-

ined, as these were anticipated to be the network components which would experience

the highest loading levels. Fig. 3.10 shows that the thermal loading of the transformer

reaches 100% of its rated value with an EV penetration of approximately 25%. Sim-

ilarly, Fig. 3.11 shows for the same conditions the loading of each of the phases of

the substation line. The individual phases exceed their rated loading capability for EV

network penetrations of approximately 23-30%, indicating that the thermal loading of

network components must also be considered as a barrier to the number of EVs that

can charge simultaneously on a particular network. As discussed in Section 3.3.1.2,

the characteristics shown in both of these figures are not smooth due to the manner in

which the EVs are allocated to the individual phases of the feeder.

3.3.4 Summary

Deterministic analysis methods can provide insight into the limitations of existing net-

works for particular loading scenarios. Here, the impact from increasing penetrations

of micro-DER devices on network operating conditions was assessed for particular resi-
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Figure 3.10: Thermal loading of feeder transformer for varying levels of EV penetration

Figure 3.11: Thermal loading on each phase of substation line for varying levels of EV
penetration
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dential loading scenarios. By carrying out such analysis, it is possible to determine how

individual network components are impacted due to increasing penetrations of DER

units. While this method can prove to be useful for comparing operating conditions

under various predetermined loading scenarios, it provides limited insight into the likely

impacts that could be expected by taking account of the diversity of load and DER

operation on the network. As such, a stochastic based time-series analysis technique is

developed in the following section to assess the likely impact from the use of DER on

LV networks.

3.4 Stochastic Scenario Analysis

3.4.1 Methodology

Stochastic scenario analysis involves the use of stochastically generated load profiles to

assess the impact of DER while incorporating a number of uncertainties inherent with

DER technologies, e.g. start time, duration of operation, network location. Taking

account of such uncertainties, as well as the uncertainty in the underlying residential

load, provides a more reliable insight into the potential effects of DER on LV networks

and the likelihood of network operating limits being exceeded as has been shown in

Fluhr et al. (2010); Gomes and Pires (2010); Papadopoulos et al. (2010).

A stochastic analysis technique has been developed to incorporate specific uncer-

tainties inherent with DER operation on a LV residential network. These include

uncertainties which would be predetermined before each simulation (e.g. location, bat-

tery capacity) and uncertainties which would be determined throughout the simulation

(e.g. start times, duration of operation). The method adopts predefined PDFs to de-

termine the behaviour of both the residential load and the DER units on the network.

These PDFs are based on real data obtained from DSO led field trials (ESB Ecars,

2011). The sources of uncertainty are outlined in Sections 3.4.3 and 3.4.4 along with

their respective PDFs. The program has the ability to generate both residential cus-

tomer demand profiles as well as DER profiles for a one year period. PDFs representing
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likely time-of-day, weekday/weekend or seasonal operating levels for the residential load

and DER profiles are converted to cumulative distribution functions. Following this,

a monte-carlo based algorithm is employed to generate the profiles depending on the

particular DER scenario and time period to be analysed. A summary of the method

for producing residential and EV load profiles is given in Fig. 3.12.

Once the profiles for the residential load and DER units have been generated, an

unbalanced, 3-phase, load-flow, time-series analysis is implemented on a test network

in order to determine the impact from DER operation using power system analysis

software (DIgSILENT GmbH, 2011). The impact on voltage levels and thermal line

loading are then determined from this analysis.

3.4.2 Test Network 2

For the stochastic scenario analysis, a second test network was used. This network

is based on a LV residential distribution feeder in a suburban area in Dublin, Ireland

which was chosen by the DSO in order to conduct EV field trials. A simplified version

of the feeder is given in Fig. 3.13. The network supplies 74 residential customers, each

of which is connected via a single-phase connection to one of the feeder’s 9 mini-pillars,

numbered 2-10 in Fig. 3.13. Each of the mini-pillars are fed from the LV transformer via

3-phase mains cable. The network consists of a total of 432 m of 3-phase mains cables

and 2.16 km of single-phase service cables. Specifications for the network transformer

and nominal operating voltage are the same as those for Test Network 1.

3.4.3 Residential Load

Using the same load data as was used for the deterministic analysis, PDFs for residential

customer load were developed for use in the stochastic program. They account for both

seasonal and weekday/weekend variations in the load profiles. In Ireland, peak load

for the electricity system occurs in winter time. An example PDF for a residential

customer load in both winter and summer is shown in Fig. 3.14. Both PDFs represent
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Figure 3.12: Flow chart for annual load profile generator for households and EVs

Figure 3.13: Single line diagram of Test Network 2
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Figure 3.14: Example PDF of summer and winter customer demands at 6 pm on a
weekday

the probable load at 6 pm on a weekday.

For modelling purposes, the power factor for each household load was set at 0.95

inductive throughout the year. Each load is modelled as a combination of 50% constant

power and 50% constant impedance for voltage dependency purposes.

3.4.4 Electric Vehicle Load

When determining EV charge profiles, it was necessary to determine certain parameters

prior to the creation of the charging profiles, including which households would own an

EV. Depending on the particular penetration level of EVs to be investigated, vehicles

would be randomly assigned across the network with the condition that only one EV

could be assigned to a household for each simulation. The battery capacity for each EV

in the model is determined a priori, based on the EV battery capacities of vehicles which

are expected to be introduced to the automobile market in future years. They are based

on both fully-electric (16/20 kWh) and plug-in hybrid EV (8 kWh) technologies. Each
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Figure 3.15: PDF of EV connection times over a 24 hour period

EV in the network is assigned a battery capacity based on a PDF of likely capacities.

Each of the above parameters remain fixed for a one year period, but are redefined for

each new year of load data.

At the start of each day, the connection time for each EV is determined using a PDF

for typical connection times based on actual data collected from EV trials in Ireland.

This data was collected from EV owners with no controlled charging capability and no

time-of-day incentives. Fig. 3.15 shows the PDF for EV connection times over a 24

hour period. For this sample, the majority of connection times take place after 8 pm,

which happens to avoid the typical winter residential daily load peak, which normally

occurs between 5 pm and 7 pm.

The battery state of charge (BSOC) for each EV at the time of connection is de-

termined in a similar manner to the connection time. The values obtained during the

simulations compared well to those from the DSO led EV trials (ESB Ecars, 2011).
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3.5 Stochastic Scenario Analysis Results

3.5.1 Voltage Impact

The stochastic technique is implemented for EV penetration levels of 10% and 50%

on test network 2 (Fig. 3.13). Load control capability and financial incentives are

not considered in this analysis. Load-flow simulations were subsequently performed,

with voltage levels measured at each CPOC, along with cable loading and network line

losses. Illustrative results given below compare simulation outputs for both summer

and winter scenarios.

Voltage levels at the CPOCs for households at mini-pillars 9 and 10 were recorded,

as they are located at the extremity of the network. Fig. 3.16 and Fig. 3.17 show

the voltage probability distribution for both the summer and winter scenarios. While

there is an overall decrease in the voltages experienced in the winter scenario, the lower

acceptable limit (i.e. 0.9 pu) is exceeded less than 3% of the time in both scenarios.

As expected, increasing EV penetration levels result in lower voltages being observed.

From the results of the deterministic and stochastic methods, it appears that the

voltage drop for a 50% EV penetration is more severe in the deterministic case. This

is due to the fact that the household load is modelled for the worst case scenario

of maximum demand. However, in the stochastic method, the load profiles of the

households and EVs are time varying and are, therefore, rarely representative of the

worst case scenario shown in the deterministic case.

3.5.2 Thermal Loading Impact

The thermal loading of the mains cable supplying the feeder from the MV/LV trans-

former was recorded for both the summer and winter scenarios, Fig. 3.18 and 3.19.

While a general increase in cable loading can be observed in the winter case when com-

pared to the summer case, the cable exceeds its maximum rated loading less than 2%

of the time. While the probability of exceedance is similar for both winter and summer,

loading levels were recorded as high as 127%.
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Figure 3.16: Probability of simulated voltage levels recorded at CPOCs connected at
mini-pillars 9 and 10 for summer scenario

Figure 3.17: Probability of simulated voltage levels recorded at CPOCs connected at
mini-pillars 9 and 10 for winter scenario
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Figure 3.18: Probability of thermal loading on feeder cable for summer scenario

Figure 3.19: Probability of thermal loading on feeder cable for winter scenario
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3.5.3 Summary

By using the time-series stochastic scenario analysis tool, the likely impact from the

use of DER devices on network operating conditions can be determined. The method

incorporates the inherent uncertainty in the residential load as well as the temporal

and spatial diversity of the operation of multiple DER devices within a network. In

doing so, the technique provides insight into how network operating conditions can be

impacted based on varying levels of coincident operation.

3.6 Conclusion

This chapter presents an analysis of some of the potential impacts on existing distri-

bution networks from DER. It has been demonstrated that the impact from micro-

generation, specifically in the form of domestic micro-CHP units, may only be signifi-

cant in the extreme scenario of minimum load and maximum generation with a 100%

penetration of micro-CHP. For flexible load forms of DER, it has been shown that for

a 20-40% penetration of EVs, the test network reached the limits of acceptable opera-

tion. In such a situation, DSOs would be forced to curtail the delivery of electricity to

EVs, or other load, in order to maintain secure and reliable network operations. The

work has also highlighted the significance of the location of the connection points of

EVs to the network in terms of voltage impact. It has also been shown that due to

the unbalanced characteristics of a distribution system, it is important to analyse each

phase separately in order to capture the most extreme effects on voltage and thermal

loading levels from the introduction of DER.

This analysis is performed for a worst case scenario, with the network impacts

dependent on the amount and type of residential demand on the feeder. With the

introduction of DER, the scale of coincident operation and the location of the points

of connection also become significant factors. The stochastic scenario analysis results

presented in this chapter show the likelihood of network limits being exceeded while

taking account of some of the uncertainties associated with EV charging. While this
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technique provides a good indication of how network operating conditions can be af-

fected from EV charging, the results are very dependent on the input data used (i.e.

PDFs for operating times, duration of use etc.).

Given the variability in the physical and technical characteristics of distribution

systems, the level of DER penetration attainable for any particular network could vary

greatly. The findings of the work presented in this chapter serve as indicative results

for typical suburban LV distribution feeders. For example, acceptable EV penetration

levels may be much lower on rural networks. The extra demand from EV charging may

result in a more severe voltage drop as a result of the typically longer line lengths on

this type of network.

With the implementation of advanced metering devices in households, DER opera-

tion could potentially be controlled, and it will be critical to explore various techniques

for implementing such strategies. Such technology would allow the electricity customer

to take advantage of time-of-day electricity pricing by programming their units to oper-

ate at financially beneficial times, for example. They could allow DSOs to employ some

form of control capability, which would allow large numbers of DER units to connect to

the distribution system simultaneously. There are a number of potential benefits that

could be achieved from the use of such technology. Alongside maintaining safe opera-

tion of the system, control of DER operation would allow DSOs to maximise network

utilisation while reducing the need for costly network upgrades. The implementation

and analysis of such a strategy is the focus of Chapter 4.



CHAPTER 4

Optimal Charging of Electric Vehicles

4.1 Introduction

C
HAPTER 3 investigated the potential impact on LV network operating condi-

tions from the introduction of DER. For the micro-generation study, it was shown

that network limits are only likely to be exceeded in extreme scenarios of minimum res-

idential load and 100% penetration of micro-CHP units. With the addition of EV

load to the network however, operating limits were reached at penetration levels below

50%. An investigation of the potential impact from both types of DER was conducted

for each technology’s respective worst case scenario. While a worst case scenario is

highly infrequent under normal operating conditions, the network must still be rated

to accommodate the total load being demanded at that instant. As a result, the total

network capacity may be underutilised for long periods of time. As shown in the pre-

vious chapter, the operation of DER, especially EV load at peak demand, could cause

serious issues in terms of network voltage levels and component overloading. In such a

46
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situation, the DSO may be forced to curtail load on the network or limit the number

of DER units in a given area. Alternatively, network infrastructure upgrading would

be required to accommodate the DER units.

The introduction of AMI devices would allow customers to avail of time-of-day elec-

tricity pricing structures. From the system operators viewpoint, it would also provide

an opportunity to improve the predictability of load patterns and potentially even the

ability to control certain loads/DER units. Such capability would allow DSOs or third

party operators to manage the operation of these devices in a coordinated manner. This

would allow operators to schedule the operation of certain load/DER units, thereby util-

ising the available network capacity in a more efficient way. As a result, curtailment

of network load could be avoided while prolonging the time before widespread network

upgrading would be required.

In this chapter, a method for coordinating and optimising the operation of DER de-

vices is proposed. The method is tested with high penetrations of EV charging as this

form of DER is considered to have a significant impact on network operating conditions,

as was shown in Chapter 3. The coordination of EV charging has been investigated

previously, albeit with varying objectives. In Sortomme and El-Sharkawi (2011), op-

timal charging strategies are developed whereby aggregated EV load can be used for

network regulation purposes. A number of optimisation methods for determining the

EV charging rates are examined. Depending on the particular algorithm used, the

techniques were shown to provide significant benefits in terms of cost savings for the

customer and aggregator, and flexibility for utilities accommodating variable renewable

energy sources. The work described in Su and Chow (2011) uses an ‘estimation of dis-

tribution algorithm’ to schedule charging for large numbers of EVs in a parking deck.

The method optimises the energy allocation to the EVs in real time while considering

various constraints associated with battery limits and utility limits. The method com-

pares favourably to other optimisation techniques in terms of total energy delivered

upon departure of the EVs. In Dyke et al. (2010), the ability of a large number of

EVs to smooth the load profile of residential networks is investigated. By controlling

the bi-directional flow of energy to and from the EV batteries, it is demonstrated that
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EVs can supply power to meet residential load peaks while also creating more pre-

dictable load profiles. Utilising EVs for the smoothing of load profiles is also shown to

be beneficial in terms of accommodating renewable DG. In Clement-Nyns et al. (2010),

various techniques are utilised to investigate the impact of varying penetrations of EVs

on residential networks. Quadratic and dynamic programming techniques minimise the

impact from EV charging on network losses and voltage deviation in particular. By

controlling and optimising individual EV charging rates, network losses and voltage

deviations are reduced for all penetration levels examined. The methodology is ex-

amined using both deterministic and stochastic methods and concludes that while the

difference in the results obtained using the quadratic or dynamic technique is negligible,

the dynamic technique is more computationally intense. Work in Clement-Nyns et al.

(2009) investigated the use of voltage control on EVs with charge/discharge capabil-

ities. Here the objective was to minimise the charging cost to the EV owner while

maintaining network voltage levels within acceptable limits. Results were shown to

vary significantly depending on the initial state of charge of the EV batteries, with

high dependence on the tariffs associated with charging and discharging.

The work described in this chapter differs in its approach to the coordinated charging

of EVs described above. Instead of minimising power losses and/or voltage deviations,

the objective of the optimisation technique employed here is to maximise the total

amount of energy that can be delivered to all EVs over a charging period while ensuring

that network limits are never exceeded due to high levels of coincident EV charging.

Such an approach ensures that optimal use is made of available network capacity while

avoiding excessive voltage drop and component overloading, which have been shown

in the previous chapter to be potential issues with high levels of EV charging. The

technique employs linear programming that takes advantage of the approximately linear

characteristics of both the network voltages and component loading sensitivities to the

addition of EV load.

The methodology for this work is presented in Section 4.2. Section 4.3 describes the

modelling of the test network, the residential load and the electricity demand profiles

for the EVs. Results and discussion for two specific charging periods are presented
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in Section 4.4 along with generalised results for a wide range of network scenarios.

Conclusions are presented in Section 4.5.

4.2 Methodology

4.2.1 Assumptions

Coordinated charging of EVs could be achieved in a variety of ways. It is assumed

here that EV owners are incentivised to charge their vehicles at off-peak times of day.

For the purpose of clarity, once the off-peak period has begun, no additional EVs will

connect for charging and no EVs will disconnect before reaching a full BSOC. Smart

metering technology with load control capability is also assumed to be present in each

household. It is assumed that this load control capability can be utilised by the DSO (or

a third-party aggregator), from a remote location, in order to manage certain loads on

the consumer side of the meter. Such a scheme would be subject to prior agreement by

both the consumer and the DSO. For the purposes of this work, the ability to control

the load extends to EV charging only and allows the operator to vary the charging

rate of each EV on the feeder. Each EV can charge at any rate between zero and the

maximum rated output, subject to certain restrictions, which are outlined later in this

section. The ability to vary the charge rate of individual EVs in a continuous manner

has been studied for use in optimal charging strategies previously (Clement-Nyns et al.,

2010; Brooks et al., 2010; Sortomme and El-Sharkawi, 2011). While the possibility

exists for fast, 3-phase charging, it is assumed that each EV will be connected to the

network via a standard single-phase AC connection. In addition, although the concept

of vehicle-to-grid for local system support or otherwise exists (Peças Lopes et al., 2010;

Kempton and Tomić, 2005; Tomić and Kempton, 2007; Clement-Nyns et al., 2011), bi-

directional flow of electricity to and from an EV battery is not considered in this work.
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4.2.2 Standard Objective Function

The objective of the method is to maximise the energy delivered to all EVs within a

set period of time. This is achieved by optimising the charging rate of each connected

EV in order to maximise the total power that can be delivered for each 15 minute time

interval, subject to network constraints. Doing so allows for the method to operate in

real-time while not depending on previous or future network conditions. Coordinating

the charging of EVs ensures that the network is utilised to its fullest extent in terms of

energy delivered.

The standard objective function (SOF), F, is calculated at each time step and is

given as

F =

N∑
i=1

xiPEVi
(4.1)

where N is the number of customers being served by the network, and PEVi is the power

delivered, measured in kW, to the EV connected at the ith CPOC. It is assumed that

PEVi is a continuous control variable that can vary between 0 kW and the maximum

power output of the charger at node i. xi is zero when an EV is not connected at the

ith CPOC or the EV battery is fully charged, while xi equals one when the EV at the

ith CPOC is connected and the EV battery is less than fully charged.

4.2.3 Constraints

At each time step, the objective function, F, is maximised subject to certain constraints.

The first of these is that the power demand of an EV cannot exceed the rated power

output of the charger supplying that vehicle, (4.2).

0 ≤ PEVi ≤ P max
EVi

(4.2)
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In order to avoid large variations in the charging rate over consecutive time steps,

which is undesirable for current battery technology as it may reduce battery cycle life

(Hoffart, 2008), a rate of change constraint is also imposed (4.3).

P t−1
EVi

−∆ ≤ P t
EVi

≤ P t−1
EVi

+∆ (4.3)

Here, t is the current time step and ∆ is a defined limit, in kW, by which the charging

rate can vary, compared to the charging rate at the previous time step, excluding on/off

transitions.

The next constraint relates to the acceptable voltage range for the LV network. The

addition of EV loads, for the most part, will cause the voltage at various points of

the network to drop. The extent of the voltage drop can vary depending on a number

of factors, which include the location of the EV and the rate of charge. The voltage

at each CPOC must be maintained within the rated voltage range specified for the

network, (4.4).

Vmini ≤ Vi ≤ Vmaxi i∀N (4.4)

Here, Vi (V) is the voltage at the ith CPOC, while Vmini and Vmaxi are the minimum

and maximum allowable network voltage levels at node i respectively.

The thermal loading of network components refers to the ratio of the apparent power

flowing through the component to its rated capacity. For this study, the thermal loading

of both the network transformer and the mains cable connecting the transformer to the

network are considered. These constraints are summarised in equations (4.5) and (4.6)

respectively.

LTX ≤ LTXmax (4.5)
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LMC ≤ LMCmax (4.6)

where LTX and LMC are the thermal loading (kVA) for the transformer and mains

cable respectively, while LTXmax and LMCmax are the associated maximum loading of

the components.

4.2.4 Network Sensitivities

A time-series, unbalanced, 3-phase load-flow analysis of the test network was performed

in order to determine the network voltage and thermal loading levels as a result of res-

idential household load. This was performed using power system analysis software

(DIgSILENT GmbH, 2011) and applying residential load information. The voltage

sensitivities at each CPOC were also calculated for both the addition of EV load at

their own terminal and at each of the other household terminals on the network, i.e.

the change in voltage due to charging demand from the EVs. For each time step, EV

load is added incrementally at each CPOC in turn and the change in voltage at each

CPOC is recorded. This data is then used to calculate the voltage sensitivities of the

network to the addition of EV load. A summary of the methodology for calculating the

network sensitivities is given in Fig. 4.1. The addition of EV load to any CPOC on the

network causes variations in the voltage at each of the other CPOCs. Thermal loading

sensitivities for the network components of interest were calculated in the same manner.

The addition of EV load at any point of the network causes an increase in the ther-

mal loading experienced by the transformer. Analysis of the load-flow results showed

that the assumption of linearity for both the voltage and thermal loading sensitivity

characteristics is sufficient. The constraint for the voltage level can be summarised as

Vmini ≤ Viniti + µiPEVi +

N∑
j=1

µjiPEVj ≤ Vmaxi

i∀N , i ̸= j

(4.7)
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Figure 4.1: Methodology for calculating network sensitivities to the addition of EV
charging

where Viniti is the initial voltage at the ith CPOC of the network with no EVs charging,

µi (V/kW) is the sensitivity of the voltage at the ith CPOC due to power demanded

by the EV connected at the same CPOC, µji is the sensitivity of the voltage at the ith

CPOC due to power demanded by an EV connected at the j th CPOC.

The thermal loading constraints are summarised as

LTXinit +

N∑
k=1

δkPEVk
≤ LTXmax k ∀N (4.8)

LMCinit +

N∑
k=1

βkPEVk
≤ LMCmax k ∀N (4.9)

where LTXinit and LMCinit are the respective initial thermal loading levels of the net-

work transformer and mains cable with no EVs charging, and δk (kVA/kW) and βk

(kVA/kW) are the sensitivities of the transformer and the mains cable loading to power

demand (PEVk
) from an EV at the kth CPOC.
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Figure 4.2: Methodology for optimising the charging rates of EVs

The voltage and thermal loading sensitivities are determined for each time step of the

analysis. Subsequently, a linear programming tool in MATLAB (2009) determines the

optimal charging rate for each connected EV for each time step, in order to maximise

the total amount of energy that can be delivered over the considered period. A summary

of the methodology is outlined in the flow chart presented in Fig. 4.2.

4.2.5 Weighted Objective Function

Due to the radial layout of the majority of LV residential networks, the standard opti-

misation technique could be expected to charge EVs connected near to the transformer

at a higher rate than those located far from the transformer. This is due to the volt-
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age levels being less sensitive to the addition of EV load near to the transformer. In

order to provide a more even distribution of energy to the charging EVs and prioritise

batteries with a low BSOC, a modified objective function was applied to the optimi-

sation algorithm, which applies a weighting according to each individual EV’s BSOC

at the previous time step. It is assumed that the BSOC of each EV is known at the

beginning of each optimisation time step. The weighted objective function (WOF), F,

is summarised as follows:

F =

N∑
i=1

xi

(
1−

(
BSOCi

BSOCmaxi

))
PEVi

(4.10)

where BSOCi is the current BSOC(kWh) of the EV connected at the ith CPOC and

BSOCmaxi is the maximum battery capacity of that EV.

4.3 Modelling of Test Network

4.3.1 Distribution Network

The test network is based on a LV residential distribution feeder in a suburban area

of Dublin, Ireland, previously described as test network 1 in Section 3.2.2. A simpli-

fied representation of the feeder is given in Fig. 4.3. The black dots indicate those

households where EVs are located for the analysis. This is described in further detail

in Section 4.3.4 below. In the actual test feeder, each household, EV and service ca-

ble are modelled separately. The model incorporates a 400 kVA, 10/0.4 kV step-down

transformer supplying a feeder of 134 residential customers. The transformer has no

tap-changing capability. A lumped load model, representing a similar number of resi-

dential customer loads with no EV loads, is included to represent another feeder being

supplied from the same transformer. The nominal voltage of the network is 230/400

V with a voltage range tolerance of +/-10% (ESB Networks, 2007). Specifications for
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Figure 4.3: Single line diagram of test network 1. Dots indicate houses where EVs are
connected for charging

the network model are given in Appendix A.

4.3.2 Residential Customer Load Modelling

Typical load data for domestic electricity demand customers was obtained from the

DSO consisting of 15-minute time-series demand data for high, medium and low use

customers. Different electricity demand profiles were randomly assigned to each of the

houses in the test network. The coincidence factor for the test feeder was found to be

0.32, which compares favourably with similar residential networks (Willis, 2004).

For modelling purposes, the power factor for each household load was set at 0.97
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inductive during the day and 0.95 inductive at night, in accordance with standard

network modelling practises used by the DSO in Ireland. For the purposes of this

study, daytime is specified as between 6 am and 10 pm, and nighttime as between

10 pm and 6 am. The load is modelled as a combination of constant power (P) and

constant impedance (Z). From April to September inclusive, the load is modelled as

60% constant P, 40% constant Z. From October to March inclusive, the load is modelled

as 40% constant P and 60% constant Z, due to an increase in electric heating load. It

is common practice to model residential loads in this manner when exact information

on the load type is not available (Willis, 2004).

4.3.3 Electric Vehicle Load Modelling

It is assumed that each EV is connected at the same CPOC as the household load

through a single-phase connection. Charging profiles for EVs can vary depending on

battery type, charging equipment and the electricity supply network. It is assumed that

once connected, an individual EV with no charge controlling capability charges at a

rate of 4 kW up to a BSOC of approximately 95%. After this point the vehicle charges

at a rate of 1.5 kW until the battery has reached its maximum capacity. For this work,

all EV batteries are modelled with a capacity of 20 kWh. The EV charging equipment

is assumed to have a 90% efficiency rating. The charging rate of 4 kW is appropriate in

terms of the power delivery capabilities of existing LV distribution networks in Ireland

(ESB Networks, 2007). EV batteries are modelled as constant power loads with unity

power factor.

4.3.4 Time Periods for Investigation

In order to demonstrate the benefits of the optimisation technique, two specific periods

of time within the one year period of residential load data were chosen. For this study,

the charging period occurs from 10 pm to 7 am the next day. One test period was

chosen because it contained the highest 15-minute residential demand during the off-

peak charging periods (winter scenario). The maximum 15-minute residential demand
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Figure 4.4: Distribution of the initial BSOC for each EV

for this time period was approximately 152 kW. The other test period chosen was a

low-demand mid-week charging period in the summer (summer scenario).

For the simulations, half of the residential households were randomly assigned an

EV, as shown in Fig. 4.3. This amounts to 67 EVs on the network with a potential

combined maximum demand of 268 kW. It was assumed that all EVs remain connected

to the network for the entire charging period, with each EV randomly assigned an initial

integer valued BSOC. The distribution of the initial BSOC for each EV is shown in Fig.

4.4. The average initial BSOC of all the EVs was 7.8 kWh, or 39% of the maximum

BSOC.

Table 4.1 shows the breakdown of EVs allocated to the network as well as the total

energy requirement of these vehicles on a phase-by-phase basis. It is clear from this

table that there is a greater number of EVs on phase c, and thus a larger energy

requirement, compared to the other phases. While a 50% penetration of EVs on a

distribution feeder may not be experienced in reality for many years to come, it was

deemed appropriate to examine such a demanding scenario in order to fully capture the
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main benefits from controlled charging strategies compared to uncontrolled charging.

Table 4.1: Initial EV Conditions

Combined Combined Total

Number Battery Initial Energy

of EVs Capacity BSOC Required

(kWh) (kWh) (kWh)

Phase a 19 380 139 241

Phase b 18 360 146 234

Phase c 30 600 236 344

Total 67 1340 521 819

4.3.5 Stochastic Scenario Analysis

The charging periods identified above were chosen to examine the optimisation tech-

nique for specific network scenarios. However, in order to demonstrate the benefits of

the optimisation technique for a wider range of scenarios, a stochastic tool is developed

to generate different residential load scenarios with probabilistic conditions for varying

residential load, EV location and initial BSOC.

Probability distribution functions (PDFs) for the household load were created based

on the residential load data provided by the DSO with PDFs for low, medium and high

use customers. 15-minute household load profiles were then generated for each house

for a 9 hour period from 10 pm to 7 am the next day, similar to the deterministic

analysis. It is assumed that all EVs are connected for charging at the beginning of this

period and remain connected until the end. At the beginning of each 9 hour charging

period the EV locations on the network were randomly selected with each one then

assigned an initial BSOC based on a PDF of BSOC data. The values for the initial

BSOC obtained during the simulations compared well to those determined from the

DSO led EV trials (ESB Ecars, 2011). For each charging period time step, network

sensitivities were determined which are then used to optimise the charging rate of each

EV. The load model and power factor for both the residential and EV load remain the

same as for the deterministic analysis.
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4.4 Results and Discussion

The optimisation technique is tested with the two different objective functions. The

first objective function, (4.1), maximises the total energy delivered to the charging EVs

according to network sensitivities while the second, (4.10), also applies a weighting

based on the energy requirement of the individual EVs. The results for each approach

are outlined below and are compared to scenarios with no EV charging present and

with uncontrolled EV charging.

4.4.1 Network Sensitivities

For each 15-minute time interval, a series of three-phase, unbalanced load-flow calcu-

lations are performed using the customer demand profiles in order to determine the

voltage and thermal loading sensitivities of the network due to the introduction of

EVs. These sensitivities inform the optimal charging rate of each EV for each time

step of the charging period. The voltage sensitivity at each CPOC is measured for

varying charging rates and varying EV charging locations on the network. Fig. 4.5

demonstrates how the voltages measured at the CPOCs closer to the transformer (i.e.

3 and 8 from Fig. 4.3) are less sensitive to the addition of EV loads as compared to

those located near the end of the feeder (i.e. points 6, 7, 11 and 12).

Since the household loads for this network are connected to individual phases of

the network, the addition of EV load to a particular CPOC affects the voltage at

that particular CPOC as well as the voltage on the other phases of the network, as

demonstrated in Fig. 4.6. As can be seen, the addition of EV load on phase c only

causes the voltage on that phase to decrease while the remaining phase voltages increase

slightly. This effect is not uncommon in unbalanced networks (Kersting, 2002) and

is captured in the voltage constraint equation, (4.7), where the sensitivity, µ, of the

voltage at a particular CPOC can be either positive or negative depending on the phase

to which an EV is connected.

The voltage sensitivities can vary due to changes in the domestic household load,
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Figure 4.5: CPOC voltage levels at 6 network points for increasing levels of EV charging
(winter scenario)

Figure 4.6: Interdependence of 3 CPOC voltages with EV charging on phase c (winter
scenario)
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and therefore they are calculated for each time step of the analysis. This information

is then subsequently used to optimise the EV charging rates, the results of which are

outlined in the following sections.

In order to determine the accuracy of the optimisation technique, error margins

were calculated based on the difference between the predicted CPOC voltages from

the optimisation algorithm and the CPOC voltages recorded from the subsequent load-

flow calculations. The average maximum error margin over the summer charging period

was found to be 1% for the standard and weighted objective functions. For the winter

charging scenarios these values were recorded as 1.4% (standard objective function)

and 1.5% (weighted objective function). As can be seen in the results presented below,

the accuracy of the sensitivities, in combination with the included safety margins, is

adequate to ensure that no operating limits are exceeded due to EV charging.

4.4.2 Uncontrolled EV Charging

With no active control over EV charging rates, all of the EVs would be expected to

commence charging at the beginning of the charging time period at the maximum

rate of charge. As the network is not rated for this high level of demand, the network

operating conditions are severely impacted. Fig. 4.7 shows the voltage level at a CPOC

at node 6 for the winter scenario base case. The charge profile for an EV connected

at the same CPOC is also displayed. The initial BSOC of this EV was 3 kWh or

15%. While all EVs on the network would be fully charged by the end of the charging

period, the lower voltage limit at this CPOC, i.e. 0.9 pu, would be exceeded for over

3 hours at the start of the charging period. The lowest voltage experienced at this

node is approximately 0.68 pu. It is clear that such a scenario could not be permitted

to occur and it is likely that the number of EVs on the network would be restricted

to a predetermined limit. For the purposes of comparison, an uncontrolled charging

scenario was created whereby there is a limit to the number of EVs that are allowed

to charge simultaneously. This number was determined by incrementally adding EVs,

charging at the maximum rate of charge, to the extremities of the feeder up to the point
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Figure 4.7: Voltage level for a CPOC at node 6 for base case and uncontrolled charging
scenarios with charge profile for an EV charging at the same CPOC (winter scenario)

before the feeder exceeds an allowable operating limit. This test was performed with

the residential load at the maximum annual expected nighttime demand. Charging was

restricted to begin only after midnight to ensure that the residential load is off-peak.

For the test network utilised in this work, the predetermined number of EVs that could

be allowed to charge in an uncontrolled scenario was found to be 21.

4.4.3 Controlled EV Charging

By employing the methodology described in Section 4.2, the rate at which each EV

charges is now optimised in order to deliver the maximum power to the EVs while

maintaining all voltages and network flows within acceptable operating limits for each

time step. At the beginning of the charging period, the total energy required to return

all EVs to 100% BSOC is 819 kWh. For the optimisation, the lower voltage limit is

set at 210 V or 0.913 pu, which allows for a margin of safety with respect to the lower

voltage limit defined in the Irish distribution network code (ESB Networks, 2007). This
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ensures that any unexpected short term variations in the demand will not cause the

network to exceed its operating limits. The maximum variation allowable for the rate

of charge between time steps, i.e. ∆ in (4.3), is set at 0.25 kW for each of the control

strategies.

4.4.3.1 Standard Objective Function

From Table 4.2 it can be seen that using the SOF a total of 810 kWh in the summer and

798 kWh in the winter were delivered to the EVs by the end of the respective charging

periods. Although this means that the total EV energy requirement (819 kWh) was

not met, in both cases the network was maintained within normal operating limits for

the entire duration of the charging period.

Table 4.2: Total Energy Delivered to EV Batteries

Total Energy % Energy

Delivered (kWh) Requirement

Uncontrolled Charging Summer 238 29

(21 of 67 EVs) Winter 238 29

Standard Objective Summer 810 98.9

Function Winter 798 97.4

Weighted Objective Summer 818 99.9

Function Winter 815 99.5

The voltage profile of a CPOC at node 6 with an EV charging and the corresponding

EV charge profile is given in Fig. 4.8. It is evident that the voltage here is a binding

constraint for the optimisation technique as it is held just above the lower voltage limit

for the majority of the charging period. It can also be seen that the EV connected to

this CPOC does not truly begin charging until the third hour of the charging period

and does not approach a maximum rate of charge until towards the end of the period.

This particular EV had an initial BSOC of 3 kWh (15%) and had reached a BSOC of 15

kWh (75%) by the end of the charging period. Clearly, this would be an unacceptable

outcome for an EV owner that desired a full BSOC.
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Figure 4.8: Voltage profile for a CPOC at node 6 and charge profile for EV charging
at the same CPOC with optimised charging employing the standard objective function
(winter scenario)

Fig. 4.9 shows the distribution function for the BSOC of each EV at the end of both

the summer and winter charging periods. It is evident in both cases that a number of

EVs, including the one shown in Fig. 4.8, have not reached a full BSOC by the end of

the charging period. In the summer scenario, 64 of the 67 EVs were fully charged, while

for the winter charging period, 63 EVs had a full BSOC. In both cases, the EVs with

a BSOC of less than 100% are all located near the end of the branches of the feeder

and are connected to phase c. From Table 4.1 it can be seen that a greater number of

EVs are connected to phase c than either of the other phases, which results in a larger

energy requirement. Additional load due to EV charging at CPOCs near the end of

feeder branches will have a greater effect on network voltage levels than if located closer

to the transformer. As a result, the optimisation method allocates low charging rates

to these EVs until the other EVs are fully charged. The combination of both factors

leads to a number of EVs not receiving a full BSOC by the end of the charging period.

This outcome is displayed in Fig. 4.10, which shows the active power demand, with

and without EV charging, on each phase of the network over the charging period. It is
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Figure 4.9: Distribution function of the battery state of charge for all EVs at end of
the summer and winter charging periods: standard objective function

clear that, while the EVs connected to phase a and phase b have completed charging,

power is still being delivered to some EVs connected to phase c. Also shown in this

figure is the lowest CPOC voltage measured on each phase of the feeder for each time

step. It is again clear that while power is being delivered to the EVs on the feeder, the

voltage levels at each of the CPOCs are held above the lower voltage limit.

4.4.3.2 Weighted Objective Function

The standard objective function optimisation technique will consistently tend to assign

low charging rates to EVs located further from the transformer. Such a situation

would clearly be unacceptable. In order to overcome this, the optimisation process was

repeated, as described in Section 4.2, with the objective function weighted according

to the current BSOC of each charging EV (4.10).

By employing this method, 818 kWh of energy are delivered to the EVs for the

summer charging period and 815 kWh are delivered in the winter charging period, which
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Figure 4.10: Power delivered to network on each phase for the case with no EVs
charging and the optimised charging case employing the standard objective function
(winter scenario). The lowest CPOC voltage for each phase at each time step for the
optimised charging case is also shown.

represents 99.9% and 99.5%, respectively, of the total energy required to return all EV

batteries to a full BSOC. The total power delivered to the EVs for the uncontrolled

and optimised charging scenarios is shown in Fig. 4.11. While both objective function

methods deliver similar energy totals by the end of the charging period, the individual

EV charging patterns vary significantly across the network. During the early stages of

the charging period, the SOF prioritises EVs that are located close to the transformer,
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Figure 4.11: Total power delivered to EVs for uncontrolled and optimised winter charg-
ing scenarios

whereas the WOF assigns higher charging rates to EVs with a low BSOC, wherever

they may be located in the network. Later in the charging period, applying the SOF,

vehicles located at the network extremes begin charging. As the voltage is more sensitive

to additional load at these points of the network, the charging rates for these EVs are

lower and less energy can be delivered. The same restrictions are not as severe using the

WOF as the energy delivered to the EVs is more evenly distributed across the network,

resulting in more energy being delivered towards the end of the charging period.

Fig. 4.12 shows the voltage profile for the same CPOC as shown in Fig. 4.8, as a

result of the WOF optimisation technique. Once again, it is apparent that the voltage

at this CPOC is a binding constraint. However, the EV begins charging much earlier

and the BSOC by the end of the charging period has reached 100%, as compared with

a figure of 75% using the SOF method.

The distribution function of the BSOC for the EVs by the end of the charging period

is given in Fig. 4.13, and shows an increase in the number of EVs with a full BSOC for
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Figure 4.12: Voltage profile for a CPOC at node 6 and charge profile for EV charging
at the same CPOC with optimised charging employing the weighted objective function
(winter scenario)

both charging period scenarios when compared to the previous method. Specifically,

67 EVs have a full BSOC by the end of the summer charge period, while 66 of the 67

EVs have a full BSOC in the winter scenario. This compares favourably to the SOF

method where the lowest BSOC of all the EVs was 68% and 58% for the summer and

winter charging periods respectively. As was the case for the previous method, the EV

that was not fully charged was connected to phase c and is located near the end of the

feeder branches.

It should be noted that the particular allocation of EVs in this work resulted in

there being a greater number of EVs connected to one phase compared to the others.

As this work has shown, even an optimal method for maximising the energy that can

be delivered to charging EVs may be insufficient if a large number of the EVs are

connected to the same phase of the network at the same time. Such scenarios may

require that the DSO reconfigure the distribution of load across the phases.
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Figure 4.13: Distribution function of the battery state of charge for all EVs at end of
the summer and winter charging periods: weighted objective function

4.4.4 Thermal Loading of Network Components

Thermal loading constraints of certain feeder components are also taken into account

by the optimisation technique. Fig. 4.14 shows the loading of the LV transformer over

the charging period for the winter scenario, while Fig. 4.15 shows the loading for the

3-phase mains cable (Line 1-2 in Fig. 4.3) that supplies the feeder from the transformer

for the same scenario. In both cases, it is evident that neither the transformer nor the

mains cable loading are the binding constraint on this network. Clearly, the network

equipment is more than adequately rated for accommodating the additional load that

would be demanded by this high penetration of EVs, assuming that the majority of

charging occurs at off-peak times of day. This may not be the case for all residential

distribution feeders, many of which may experience overloading of network components

due to large numbers of EVs charging simultaneously at both peak and off-peak times

of day. Without some form of controlled charging for EVs, a significant increase in the

number of overloading incidences will impact on the lifetime of these network compo-
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Figure 4.14: Thermal loading of LV transformer for winter charging period

Figure 4.15: Thermal loading of 3-phase mains cable supplying feeder for winter charg-
ing period
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nents (Taylor et al., 2009). By employing a controlled charging technique, like the one

described in this chapter, the overloading of network components due to EV charging

can be avoided by incorporating certain constraints, (4.8), (4.9). While this would

result in increased loading levels during the off-peak period, a flatter transformer load

profile would impact less on the transformer lifetime than a profile with large over-

loads due to on-peak EV charging (IEEE, 1995). Together with the introduction of

other DSM schemes, many forms of residential load could be controlled in a manner

which would allow networks to be utilised to their fullest extent while not impacting

on component lifetimes.

4.4.5 Network Losses

The network losses as a percentage of the total energy delivered to the network are

presented in Fig. 4.16. For each of the cases studied, the losses ratio is greater in

the winter charging period than in the summer period due to the increased residential

demand in the winter. The added demand from EVs charging causes the losses ratio

to increase significantly. This is evident for both the standard (SOF) and weighted

(WOF) objective function methods. For the SOF case the losses ratio increases from

0.3% to 4.1% in the summer and 1% to 4.5% in the winter. For the WOF method these

values increase to 4.6% in the summer and to 4.8% in the winter scenario due to the

increased total energy delivered on the network.

4.4.6 Stochastic Scenario Analysis

A stochastic analysis of the network loading is carried out in order to provide insight into

the effects of the optimisation technique while accounting for the variability associated

with a high penetration of charging EVs. The optimisation technique using the WOF

was simulated for 500, 9-hour charging periods (i.e. 18,500 time steps). Residential load

profiles for typical mid-week, winter scenarios were generated based on the associated

PDFs.
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Figure 4.16: Network losses for standard objective function (SOF) and weighted objec-
tive function (WOF) cases

Fig. 4.17 shows the distribution of measured voltages for all CPOCs over all charging

periods for the scenario with no EVs on the network and the scenario with 50% EV

penetration with optimised vehicle charging. This graph shows that the majority of

pre-optimisation voltage measurements are near or above 1 pu with reduced occurrences

for decreasing voltage levels. Following the application of the optimisation technique,

the majority of voltage measurements are recorded between 0.91 and 0.95 pu indicating

that the optimisation technique was able to maintain CPOC voltages above the low

voltage limit for the network. Any occurrence of voltage levels below the lower voltage

limit, in both the case with no EVs and the optimised case, is due to the household

demand alone. As a result, these voltages remain unaffected in the optimised case as

the technique does not allow EV charging if the network is already exceeding limits.

The distribution of thermal loading results for the transformer during the analysis

is presented in Fig. 4.18. Prior to the addition of EVs, the majority of loading mea-

surements were found to lie between 10% and 30% of rated loading. Following the

introduction of EVs, charged according to the optimisation method, the majority of
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Figure 4.17: Distribution of measured voltages at network CPOCs

Figure 4.18: Distribution of measured thermal loading levels for the network trans-
former
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Figure 4.19: Distribution of measured loading levels on each phase of the 3-phase mains
cable supplying the network from the transformer (optimised EV charging)

recorded measurements were found to be in the region of 50-70% of rated loading.

Fig. 4.19 shows the distribution of measured thermal loading for each phase of the 3-

phase mains cable supplying the feeder from the LV transformer. These measurements

are from the optimised case only. As can be seen from the loading results for both

the transformer and the mains cable, the rated loading limit for either component is

never the constraining factor for the optimisation method. It is apparent that, for this

particular network, the electrical components are more than adequately rated to accept

the increased loading due to a high penetration of charging EVs. Instead, the voltage

limits are more likely to be an issue with off-peak EV charging and, as a result, are

typically the constraining factor in the optimisation method.

Fig. 4.20 shows results for the final BSOC of all EVs after each charging period,

representing the BSOC of the EV with the lowest BSOC, as well as the average BSOC

of all EVs. For the high penetration level of charging EVs examined, the optimisation

technique results in an average BSOC of 99.9%. While it is possible that not every
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Figure 4.20: Distribution of minimum and average BSOCs for all EVs recorded at the
end of each charging period

EV will have a full BSOC by the end of the charging period, such cases occur far less

frequently. The lowest final BSOC recorded over the analysis was 13.3 kWh (66.5%).

The average losses on the LV feeder over all charging periods was found to be 11

kWh for the case with no EVs and 80 kWh for the optimised charging case using the

WOF method.

4.5 Conclusion

The introduction of high penetrations of EVs will have significant impacts on the op-

erating conditions of distribution networks. If they are to be charged in a passive,

uncontrolled manner then major infrastructural upgrades may be required. Controlled

charging by the DSO could help to alleviate some of these issues and allow EV own-

ers to charge their vehicles while maintaining the network within acceptable operating

limits. This chapter demonstrated how the charging rates of a high penetration of EVs
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on a test network can be optimised in order to deliver the maximum amount of energy

to the EVs within a set charging period subject to network constraints, while ensuring

that the underlying residential load remains unaffected.

Results have shown that maximising the total power to all EVs according to network

constraints will favour those EVs that are connected near to the transformer, rather

than those connected towards the extremes of the radial network. Therefore, a WOF

was studied, which optimised the EV charging rates according to both the impact

on the network operating conditions and the BSOC of the EVs. Results show that

the modified objective function increases the total energy delivered to the EVs. This

objective function was also tested for various charging period scenarios and was shown

to return an average BSOC of 99.9% for all EVs over all periods examined.

The linear programming based technique proposed in this study is not computa-

tionally intense nor does it require storage of historical load data for subsequent use,

and therefore could be easily incorporated into a coordinated charging scheme. De-

termining the various network sensitivities to additional load provides insight into the

condition of the network and could prove very useful for DSOs employing such schemes

in the future. Assuming the use of AMI within residential households and sufficient

communication links between the DSO and the AMI, practical implementation of the

optimal charging method would provide significant benefits in terms of accommodating

high penetrations of not only EVs, but any form of DER into distribution systems.



CHAPTER 5

Local vs. Centralised Control Strategies

5.1 Introduction

I
N Chapter 4, a method for coordinating the operation of DER on LV residential

networks was proposed. The technique controls the operation of specific DER units

in order to make optimal use of available network capacity while maintaining network

operating levels within acceptable limits. A central controller uses real-time informa-

tion of network conditions as well as the status of each DER unit in order to determine

the optimal operating set point to be issued to the individual units. Previous work in

this area has investigated the benefits from the implementation of control strategies

for DER devices such as EVs (Sortomme and El-Sharkawi, 2011; Dyke et al., 2010;

Clement-Nyns et al., 2010). While these studies demonstrate the benefits of controlled

EV charging, in terms of reduced network losses, voltage deviations and component

overloading, they are all based on a centralised control approach. The implementation

of such a strategy would require the installation of an adequate communications sys-

78
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tem together with a central control centre. Such infrastructure requirements could be

costly to put in place and may only make economic sense for networks with very high

penetrations of DER units (Dimeas and Hatziargyriou, 2005).

An alternative approach to coordinating multiple dispersed units on a network is

through the use of a decentralised or local control approach. In contrast to the work

mentioned above, this chapter proposes a strategy for optimising the operation of DER

units in LV distribution networks based on a local control charging (LCC) method. The

benefits of decentralised control compared to centralised control strategies have been

previously explored for large-scale variable DG. In Vovos et al. (2007), both strategies

are compared in terms of the capacity of DG that could be accommodated in exist-

ing distribution networks by means of voltage control. Results show that while the

centralised method allows for a greater penetration of DG, the total capacity is only

marginally greater than that from using the decentralised method.

The LCC method proposed in this chapter allows for the optimal operation of DER

units to be determined individually based solely on local network conditions and their

current operating status. For example, optimal operation can be defined as maximis-

ing the total energy delivered to flexible load or maximising the total generation from

micro-generation units. As a result, there is no need for bi-directional communication

capability between each DER unit and a third-party controller. The main difference

between the LCC and the centralised control charging (CCC) strategies is the calcu-

lation of the sensitivity values that are used in determining the optimal operating set

points for the units. The CCC method has the ability to update these values in real-

time based on the loading conditions of the network. This is not possible when using

the LCC method as individual units have no intercommunication capabilities. There-

fore, DER units participating in a LCC scheme must utilise predetermined sensitivity

values to calculate their optimal operating set point. The calculation of these values is

described in Section 5.2.4.

As was the case in the previous chapter, the method is demonstrated using EV

technology. The objective of the strategy is to deliver the maximum amount of energy
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to the EVs while maintaining the network within acceptable operating limits. The

potential advantages and disadvantages of the LCC strategy are investigated in terms

of network capacity utilisation and total energy delivered to the EVs. Results are

compared to both an uncontrolled charging scenario and the WOF CCC method of

Chapter 4.

The methodology of this chapter is presented in Section 5.2 where the LCC method

is outlined. A description of the calculation of the sensitivity values and network con-

straints are also included. Section 5.3 describes the modelling of the test network,

the residential load and the electricity demand profiles of the EVs used in the simu-

lations. Results and discussion for a sample charging period using the LCC method

are presented in Section 5.4 along with generalised results for a wide range of network

scenarios. Results from the CCC method are also presented here for comparison with

the LCC strategy. Conclusions are presented in Section 5.5.

5.2 Methodology

5.2.1 Assumptions

In order to implement any type of active control at the LV distribution system level, it is

assumed that EV charging units with load control capability are present in each house-

hold with an EV present. AMI, which is also assumed to be present in each household,

enables time-of-day electricity tariffs which incentivise customers to avoid the more

expensive peak load time-of-day. Each EV can charge at any rate between zero and

the charger’s maximum rated charge, subject to certain restrictions, which are outlined

later in this section. It is assumed that each of the EV charging units on the network

has the same charging capabilities. The ability to vary the charge rate of individual EVs

in a continuous manner for use in optimal charging strategies has been studied previ-

ously in Brooks et al. (2010); Clement-Nyns et al. (2010); Sortomme and El-Sharkawi

(2011). While the possibility exists for fast, 3-phase charging, it is assumed that

each EV will be connected to the network via a standard single-phase AC connec-
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tion. Although the concept of vehicle-to-grid for local system support or otherwise

exists (Kempton and Tomić, 2005; Tomić and Kempton, 2007), bi-directional flow of

electricity to and from an EV battery is not considered in this work. For the CCC

method, it is assumed that the load control capability of the EV charging units can be

utilised by the DSO, or a third-party controller, from a remote location.

5.2.2 Local Control Charging

Local control charging of EVs is achieved by each individual EV charging unit max-

imising the charge rate of their connected EV, subject to the voltage at its own CPOC

and the loading of its own single-phase service cable. For each LCC unit, the sensitivity

of the CPOC voltage and service cable loading to the addition of EV load at its charger

unit is predetermined and fixed for all time steps of the simulation. Further details are

given in Section 5.2.4. With the predetermined sensitivity value, along with informa-

tion about the instantaneous voltage at the CPOC and loading of the service cable,

the charging unit maximises the rate of charge of the EV without exceeding either the

local voltage or single-phase loading limits.

The objective of the charging units in the LCC strategy is to maximise the amount of

power delivered to their individual EV at each 15 minute time step, subject to certain

constraints. Each charging unit aims to maximise its own charge rate and cannot

communicate with any other charger unit on the feeder. The process is performed using

a linear programming tool (MATLAB, 2009) and the optimisation occurs for each EV

connected to the feeder and available for charging. The optimisation is calculated at

each time step t. In this case, the objective function, FLCC, is given as

FLCC = xPEV (5.1)

where PEV is the power delivered to the particular EV. It is assumed that PEV is

a continuous control variable that can vary between 0 kW and the maximum power

output of the charger. x is zero when an EV is not connected at the CPOC or the EV
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battery is fully charged, while x equals one when the EV at the CPOC is connected

and the EV battery is not fully charged.

5.2.3 Constraints

In Chapter 4, the CCC method incorporated constraints relating to node voltages and

component loading across the entire feeder in order to optimally determine the charging

rate for each EV. Similar constraints are applied when using the LCC method. However,

as each controller has knowledge of local network conditions only, the constraints used in

the LCC are specifically defined for the controller itself. A summary of the constraints

are outlined below.

Each of the charging units has the ability to vary their output in a continuous

manner. The charging rate limits are defined in (5.2), where PEVmax is the rated

output of each charging unit.

0 ≤ PEV ≤ PEVmax (5.2)

As was the case for the CCC method of Chapter 4, a rate of change constraint is also

imposed (5.3). The constraint is included in order to avoid large variations in the

charging rate over consecutive time steps, which can be undesirable for current battery

technology as it may reduce battery cycle life (Hoffart, 2008).

P t−1
EV −∆ ≤ P t

EV ≤ P t−1
EV +∆ (5.3)

Here, t is the current time step and ∆ is a defined limit, in kW, by which the charging

rate can vary, compared to the charging rate at the previous time step, excluding on/off

transitions.

For the LCC method, the EV charger unit has the capability to monitor the voltage
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at its own CPOC and the loading on the service cable supplying the customer residence

only. The addition of EV loads, for the most part, will cause the voltage at various

points of the network to drop. The extent of the voltage drop can vary depending on a

number of factors, which include the location of the EV on the network and the rate of

charge. The voltage at each CPOC must be maintained within the rated voltage range

specified for the network, (5.4).

Vmin ≤ VCPOC ≤ Vmax (5.4)

Here, VCPOC (V) is the voltage at the CPOC, while Vmin and Vmax are the minimum

and maximum allowable network voltage levels respectively. The thermal loading of

the service cable refers to the total current flowing through the cable. This constraint

is summarised in (5.5).

LSC ≤ LSCmax (5.5)

Here, LSC is the thermal loading of the service cable and LSCmax is the current rating

for the fuse at the CPOC for the household.

5.2.4 Network Sensitivities

As stated in Section 5.2.2, for the LCC method, the network voltage and loading

sensitivities to the addition of EV load are predetermined as the controllers do not

have the capability to update them in real-time. One set of sensitivities is used for all

time steps, which allows the charging unit at each household to determine an optimal

charge rate without the need to calculate a new set of sensitivities at each time step.

However, these sensitivity values cannot be expected to match the constantly varying

load on the feeder. In order to determine the set of voltage and loading sensitivities for

the LCC method, a series of unbalanced, 3-phase load-flow calculations were performed

on the test network using power system simulation software (DIgSILENT GmbH, 2011).
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These load-flow calculations determine the change in voltage and loading levels at all

points on the network subject to the addition of EV load at each CPOC. In order

to model the expected residential load during charging periods, each household was

assigned a 2 kW load, which approximates the maximum average household demand

over all time steps in winter. The sensitivity values for the voltage and loading assigned

to a charging unit are the summation of all the voltage and loading sensitivities at all

other CPOCs on the feeder respectively. This takes account of the impact that all of

the EV loads, charging simultaneously, can have on a particular node and service cable

on the feeder. This fixed sensitivity value was used in conjunction with the CPOC

voltage and service cable loading measurements at each time step in order to determine

the optimal charging rate for the EV. The constraint equations for the CPOC voltage

and service cable loading are summarised as,

Vmin ≤ Vinit + µPEV ≤ Vmax (5.6)

LSCinit + βPEV ≤ LSCmax
(5.7)

where, in (5.6), Vinit is the initial voltage at the CPOC prior to the optimisation

calculation. µ (V/kW) is the summation of the voltage sensitivities at each CPOC due

to power demanded by that EV. For (5.7), LSCinit is the initial loading on the service

cable supplying the EV prior to the optimisation calculation, and β (A/kW) is the

summation of the loading sensitivities for each service cable due to power demanded

by that EV. These values would be determined by the charger units at the beginning

of each time step.



Chapter 5. Local vs. Centralised Control Strategies 85

5.2.5 Centralised Control

The centralised control method used here is based on the weighted objective function

CCC method of Chapter 4. In summary, the centralised control of EV charging involves

monitoring the voltage at each CPOC, the thermal loading of each household’s single-

phase service cable, the loading of the LV transformer and the 3-phase mains cable

supplying the feeder, and also the BSOC for each connected EV. This information

is sent to a centralised controller which incorporates additional network information

to determine dispatch signals at each time step for the individual EV charger units

accordingly. The sensitivities of the voltage and thermal loading of the network to

EV load are calculated in advance for each time step. The centralised controller is

also aware of all network voltages and line flows, which allows for a more accurate

insight into the instantaneous network condition than is possible with the local control

method. The controller then optimises the charge rate of each vehicle in order to

deliver the maximum amount of power delivered to all EVs on the feeder, and thereby

making best use of the network capacity. The process occurs at each time step and is

independent of all other time steps with the exception of the rate of change of charge

constraint (5.3).

The objective function for the centralised control method, FCCC, is given by

FCCC =
N∑
i=1

xi

(
1−

(
BSOCi

BSOCmaxi

))
PEVi

(5.8)

where N is the number of customers being served by the network, and PEVi is the power

delivered, measured in kW, to the EV connected at the ith CPOC. xi is zero when an

EV is not connected at the ith CPOC or the EV battery is fully charged, while xi equals

one when the EV at the ith CPOC is connected and the EV battery is less than fully

charged. BSOCi is the current BSOC (kWh) for the EV connected at the ith CPOC

and BSOCmaxi is the maximum battery capacity of that EV. The objective function

is weighted according to the current BSOC of each individual EV. This weighting
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provides a more even distribution of energy to charging EVs and prioritises EVs with

a low BSOC (Chapter 4).

The CCC technique considers the same constraints as the local control method (i.e.

(5.2),(5.3),(5.4) and (5.5)), along with constraints ensuring that the rated loading of

the network transformer and the mains cable supplying the feeder from the transformer

are not exceeded. It is assumed that the necessary monitoring and communication

equipment is installed on the feeder and that the data collected, along with the data

from the AMI of the customers, can be utilised in determining the optimal charging

rates for the EVs on the feeder. A full description of the method and constraints for

the weighted CCC method can be found in Chapter 4.

5.3 Modelling of Test Network

5.3.1 Distribution Network

The test network is based on a LV residential distribution feeder in a suburban area of

Dublin, Ireland, previously described as test network 2, described in Section 3.4.2. Test

network 2 was chosen here to demonstrate the capability of the control charging method

on a different network to test network 1. A simplified representation of the feeder is

given in Fig. 5.1. In the actual test feeder, each household, EV and service cable are

modelled separately. To recap, the model incorporates a 400 kVA, 10/0.4 kV step-down

transformer supplying a feeder of 74 residential customers. The transformer has no tap-

changing capability. A lumped load model, representing a similar number of residential

customer loads with no EV loads, is included to represent another feeder being supplied

from the same transformer. The nominal voltage of the network is 230/400 V with a

voltage range tolerance of +/-10% (ESB Networks, 2007). In order to account for

voltage drop along network feeders, the sending end voltage of the MV network is

set at 1.05 pu. This ensures that voltage levels at the extremities of the LV network

remain within acceptable limits under typical loading conditions. Specifications for the

network model are given in Appendix B.
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Figure 5.1: Single line diagram of test network

5.3.2 Residential Customer Load Modelling

Load data for domestic electricity demand customers was obtained from the DSO con-

sisting of 15-minute time-series demand data for high, medium and low use customers.

These profiles were subject to time-of-day pricing whereby the cheaper, off-peak tariff

begins at 11 pm each day and ends at 8 am the following day. Different electricity de-

mand profiles were randomly assigned to each of the houses in the test network based

on annual energy demand figures for each household. As was the case in Chapter 4,

in order to confirm that these load profiles portrayed an accurate representation of the

power demanded by a real distribution feeder, the coincidence factor of the test network

was determined. From assessing the yearly load profiles for each of the households on

the network, the coincidence factor was found to be 0.36, which compares favourably

with networks serving a similar number of customers (Willis, 2004). For modelling

purposes, the power factor for each household load was set at 0.95 inductive. The load

is modelled as a combination of 50% constant power (P) and 50% constant impedance

(Z).
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5.3.3 Electric Vehicle Load Modelling

EVs are modelled in a similar manner to that adopted in the CCC method of Chapter 4.

To recap, it is assumed that each EV is connected at the same CPOC as the household

load through a single-phase connection. Charging profiles for EVs can vary depending

on battery type, charging equipment and the electricity supply network. For this work,

all EV batteries are modelled with a capacity of 20 kWh. The EV charging equipment

is assumed to have a maximum charging rate of 4 kW with a 90% efficiency rating.

The charging rate of 4 kW is appropriate in terms of the power delivery capabilities of

existing LV distribution networks in Ireland (ESB Networks, 2007). The EV batteries

are modelled as constant power loads at unity power factor.

5.3.4 Time Periods for Investigation

5.3.4.1 Sample 24-hour Period

In order to demonstrate each of the charging strategies, a sample 24-hour time period

within the one year period of residential load data was chosen. The time period selected

is from 12 noon to 12 noon the following day and spans two weekdays in January. Due

to the assumption that all customers are subject to a time-of-day tariff scheme, a large

residential demand is experienced on the feeder once the cheaper off-peak period begins.

The maximum demand on the feeder during this period is 270 kW.

In both cases, a 50% penetration of EVs on the feeder was examined, which means

that 37 of the 74 households had exactly one EV charging at certain stages of the

24-hour period. While a 50% penetration of EVs on a distribution feeder may not

be experienced for many years to come, it was deemed appropriate to examine such a

scenario in order to fully capture the benefits of controlled charging strategies compared

to uncontrolled charging. For the simulations, the EVs were allocated to the network

in a random manner and the locations remained fixed for each of the charging strategy

cases examined. The potential combined maximum demand from a 50% penetration
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Figure 5.2: Distribution of the initial BSOC for EVs

of EVs is 148 kW. EV usage data was obtained from DSO led vehicle trials in order

to determine a plausible range of connection times, durations of connection, and initial

BSOC levels for the EVs in the simulations (ESB Ecars, 2011). Based on this data, the

connection time for each EV was randomly assigned within a time frame of +/-3 hours

of 11 pm, which is the start of the off-peak period. The duration of connection for each

EV was also randomly assigned, whereby a vehicle remains connected for anywhere

between 6 and 15 hours. Each EV is also assigned an initial BSOC, independent of

the connection time, at the beginning of the charge period, determined as a random

value between 0% and 75% of the maximum battery capacity of 20 kWh, which ensures

that each EV has a charge requirement of at least 25% of their battery capacity upon

connection. The distribution of the initial BSOC for each EV is shown in Fig. 5.2.

Table 5.1 shows the breakdown of EVs allocated on the feeder along with the total

energy requirement of these vehicles on a phase by phase basis.
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Table 5.1: Initial EV Conditions

Combined Combined Total

Number Battery Initial Energy

of EVs Capacity BSOC Required

(kWh) (kWh) (kWh)

Phase a 12 240 86 154

Phase b 13 260 84 176

Phase c 12 240 53 187

Total 37 740 223 517

5.3.4.2 Stochastic Scenario Analysis

The charging period identified above examines the LCC and CCC optimisation tech-

niques for a specific network scenario. In order to investigate a wider range of scenarios,

a stochastic tool, similar to the one developed in Chapter 3, was used to generate differ-

ent residential load scenarios with probabilistic conditions for varying residential load,

EV location, initial BSOC and duration of connection.

PDFs for the household load were created based on the residential load data provided

by the DSO, with PDFs for low, medium and high use customers. 15-minute household

load profiles were then generated for each house for a 24-hour period from 12 noon on a

winter weekday to 12 noon the following day, similar to the example 24-hour period. At

the beginning of each 24-hour period the EV locations on the network were randomly

selected with each EV then assigned an initial BSOC and duration of connection time.

The duration of connection is randomly determined between 6-15 hours. The load

model and power factor for both the residential and EV load remain the same as for

the example 24-hour period analysis.

5.4 Results and Discussion

Both controlled charging strategies are tested for the sample 24-hour period, with the

results compared to cases with no EVs charging and with uncontrolled EV charging.
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5.4.1 Uncontrolled EV Charging

In a scenario where no active control of EV charging is present, an EV, once connected,

will charge at a maximum rate of 4 kW until it reaches a full BSOC. With distribution

networks not rated to accommodate high penetrations of this type of load, a limit on

the number of EVs allowed would have to be put in place to ensure that the network

always remains within acceptable operating limits.

For the purposes of comparison, an example uncontrolled charging scenario was

created whereby there was a limit to the number of EVs that were allowed to charge

simultaneously. This number was determined by incrementally adding EVs, charging

at their maximum rate of charge, to the feeder up to the point before the feeder exceeds

an allowable operating limit. This test was performed with the residential load at the

maximum expected demand for the example 24-hour period. For the test network

utilised in this work, the predetermined number of EVs that could be allowed to charge

in an uncontrolled scenario was found to be 7 (≈ 10% of households).

Fig. 5.3 shows a profile of the lowest recorded CPOC voltage on the feeder for

each time step for both the base case with no EVs and an uncontrolled case with a

10% penetration level. The total power delivered to the EVs at each time step is also

shown. EV charging is assumed to commence once the off-peak period begins (i.e. 11

pm), although a number of EVs connect after this time also. As the figure shows, the

introduction of EV charging during this time period pushes the lowest CPOC voltage

towards the lower acceptable limit. Any further increase in the number of charging EVs

at the beginning of the off-peak time period would likely result in the lower voltage

limit being exceeded. The amount of energy delivered to the EVs in this scenario was

80.1 kWh.

5.4.2 Controlled EV Charging

The LCC method described in Section 5.2 is employed to optimise the charging rate of

the EVs connected to the network. The rate at which each EV charges is now optimised
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Figure 5.3: Lowest CPOC voltage for base case and uncontrolled charging case, includ-
ing the power demand from the EVs for the uncontrolled case

individually in order to deliver the maximum power to the EVs while maintaining the

voltage and service cable loading within acceptable operating limits for each time step.

At the beginning of the charging period, the total energy required to return all EVs to

100% BSOC is 517 kWh. For the optimisation process, the lower voltage limit is set at

0.92 pu, which allows for a margin of safety with respect to the lower voltage limit (0.9

pu) defined in the Irish distribution network code (ESB Networks, 2007). This ensures

that any unexpected short term variation in the demand will not cause the network to

exceed its operating limits. For convenience, the lower limit is rounded up from the

value used in Chapter 4, i.e. 0.913 pu. The maximum variation allowable for the rate

of charge between time steps, i.e. ∆ in (5.3), is set at 1 kW. This value was chosen

to be greater than the corresponding value used in Chapter 4 in order to relax the

impact of the constraint and allow for better comparison of the optimisation methods.

Values for the voltage sensitivities, µ in (5.6), were calculated to be in the range -0.02

to -0.045 V/kW. CPOCs located at the extremities of the feeder were found to be more

sensitive to the addition of EV load than those located near the start of the feeder.
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This characteristic is to be expected of a radial feeder. The loading sensitivities, β in

(5.7), of the single-phase service cables were calculated to be in the range 8.2 to 8.7

A/kW.

The sample 24-hour time period was tested utilising the controlled charging method

for an EV penetration level of 50%. Fig. 5.4 shows the lowest recorded CPOC voltage

on the feeder for the base case and the LCC case, and shows that the control method

has maintained the lowest voltage above the lower voltage limit of 0.9 pu. The method

has achieved this by curtailing EV charging during periods of high residential demand

and shifting it to a later stage of the night. However, due to the inability of individual

charging units to know the network conditions at the other CPOCs on the network,

each unit is unaware of how many EVs are charging at the same time step. This can

potentially lead to network conditions exceeding values determined by the individual

charger units in their optimisation calculations. An example of this can be seen in Fig.

5.4, where the lowest CPOC voltage has reached a value closer to the network limit of

0.9 pu, rather than the specified limit of 0.92 pu. At the following time step, individual

charger units recognise that a limit has been exceeded and automatically attempt to

rectify the situation by adjusting their charging rate accordingly.

Fig. 5.5 shows the results for the lowest CPOC voltage recorded for the case employ-

ing the centralised control method. When compared to the LCC method, it can be seen

that the centralised control technique results in the lowest recorded CPOC being much

tighter to the specified voltage limit. Due to the calculation of a new set of sensitivities

and knowledge of current network conditions at each time step, the network controller

has a much greater insight to the condition of the network at all CPOCs. This allows

for a far more accurate dispatch of EV charge rates, resulting in more charge being

delivered to the EVs while maintaining acceptable network operating conditions. An

example of this can be seen in the EV demand profile for both methods. In Fig. 5.4,

even though the base case lowest voltage is already at the specified lower limit just

after midnight, the local control technique leads to some EVs requesting charge, which

results in a further voltage drop. At the same instant, using the centralised control

technique, the controller switches off all EV charging on the network until the lowest
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Figure 5.4: Lowest CPOC voltage for base case and local control charging case, includ-
ing the associated power demand from the EVs

Figure 5.5: Lowest CPOC voltage for base case and centralised control charging case,
including the associated power demand from the EVs
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base case voltage increases above the specified limit. As the controller required each

EV to stop charging during this time, the rate of change of charge constraint (5.3) was

relaxed to ensure acceptable network operating conditions were maintained.

The centralised control method’s ability to update the set of sensitivities and mea-

sure all network conditions at each time step allows it to deliver the maximum amount

of power to the EVs, which results in the network capacity being utilised to the fullest

extent at each time step. However, in the local control case the sensitivities are fixed,

which results in less power being dispatched to the EVs even though the network is not

at any of the specified limits. This results in the LCC method taking longer to charge

all of the EVs, as shown in Fig. 5.6, where the black area represents the electricity

demand from the EVs. In some cases, this can result in EVs finishing their charge

period with less than 100% BSOC due to the charger units not utilising the network

capacity to its fullest. For both methods, the BSOC upon disconnection from the net-

work is shown in Fig. 5.7. It can be seen that the local control case results in 3 of the

37 EVs having a final BSOC of less than 100%, with the lowest being 90%. Because

the centralised control method can deliver more power earlier in the charging period it

results in all 37 EVs having a full BSOC by the end of the period. Details of the total

energy delivered to the EVs for both control charging methods are given in Table 5.2.

Table 5.2: Total Energy Delivered to EV Batteries

Total Energy % Energy

Delivered Requirement

(kWh) (for 50% EVs)

10% EVs (Uncontrolled) 80.1 15.5

50% EVs (LCC) 513 99.2

50% EVs (CCC) 517 100

For both of the methods tested, the lowest CPOC voltage was found to be the

binding constraint for the optimisation. Fig. 5.8 shows the greatest loading for all

service cables at each time step. While the service cable loading is considered by both

methods it is clear that it is never a binding constraint for the 24-hour period examined.
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Figure 5.6: Network demand profiles for the local control and centralised control charg-
ing scenarios

Figure 5.7: Final BSOC for EVs for local and centralised control charging scenarios
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Figure 5.8: Loading of service cable with greatest loading for each time step for the
local control and centralised control charging scenarios

The CCC technique also considers the loading on the network transformer and the

loading on the 3-phase mains cable supplying the feeder from the transformer. For the

24-hour period examined here, neither the transformer nor the mains cable loading are

ever the binding constraint, as shown in Table 5.3.

Table 5.3: Maximum Network Component Loading

Mains Cable

Transformer Phase a Phase b Phase c

(%) (%) (%) (%)

No EVs 75.7 55.2 37.1 53.6

10% EVs 81.9 59.4 52.1 57.8

50% EVs (LCC) 82.1 61.8 55.5 69.3

50% EVs (CCC) 80.1 68.9 64.0 71.5

Network losses as a percentage of the total energy delivered to the network over the

24-hour period were also recorded. The increased demand from EV charging causes
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the losses ratio to increase slightly for all cases compared to the base case (1.1%). For

the 10% EV penetration with uncontrolled charging the losses ratio was found to be

1.3%. The local control case (1.8%) incurs less losses on the network when compared to

the centralised case (2.1%) but has delivered less energy to the EVs over the charging

period.

5.4.3 Stochastic Scenario Analysis

A stochastic analysis of both charging strategies was performed in order to provide

insight into operation of the optimisation process while accounting for the variability

and uncertainties associated with EV charging, as described in Section 5.3.4.2. Each

of the charging techniques were simulated on the test network for 300 distinct 24-hour

periods (i.e. 28,800 time steps) during winter.

Fig. 5.9 shows the distribution of measured voltages for all CPOCs over all charg-

ing periods for the scenario with no EVs on the network and the scenarios for both

controlled charging methods. There is a significant increase in the frequency of voltage

levels nearer to the specified lower voltage limit (0.92 pu), with a small increase in the

number of occurrences below this limit for both controlled charging methods. There

are also more occurrences, using the CCC method, when the lowest CPOC voltage is at

the specified limit, which demonstrates better utilisation of the network capacity. As

explained in Section 5.4.2, this is due to the LCC method operating on a fixed set of

sensitivity values and utilising local network information only, as opposed to the CCC

method which updates the sensitivities at each time step and has exact knowledge of

all network voltages and line flows.

The distribution of thermal loading levels measured on each of the single-phase

service cables is shown in Fig. 5.10. For the majority of recorded values the loading is

below 60% of the rating. The service cable loading is only a binding constraint for a

very small fraction of the measured samples (i.e. less than 0.01%).

Finally, the distribution of the final BSOC for all the EVs for each charging period
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Figure 5.9: Distribution of measured voltages at network CPOCs

Figure 5.10: Distribution of measured thermal loading levels of single-phase service
cables
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Figure 5.11: Distribution of final BSOC levels for all charging periods

is shown in Fig. 5.11. The LCC method resulted in over 90% of all final BSOC values

being within 95-100%, with 97% of all values above 80%. For each charging period

using the weighted CCC method, 100% of the final BSOC values were found to be

within 95-100% of the maximum capacity.

5.5 Conclusion

This chapter has demonstrated the benefits of controlled charging for a high penetration

of EVs charging on a LV network. A local control method was proposed whereby each

individual EV charger maximises the charging rate of its EV while maintaining the

CPOC voltage and service cable loading within acceptable limits. The method was

tested on a LV test network and the results were compared to those employing a

centralised control method.

The results indicate that the local control method allows a far greater penetration

of EV charging on a feeder than that which could be accommodated with uncontrolled
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charging. While the technique can deliver a similar amount of energy to the EVs

within a certain time period when compared to the centralised control method, it is

not as capable at maintaining network parameters within specified limits and may

require larger safety margins. However, introducing a number of predefined sets of

sensitivities, each calculated based on the expected residential load for a given scenario

(e.g. day/night, weekday/weekend, seasonal, etc.), could improve the performance of

the local control method.

The network and communications infrastructure required to implement the local

control method would be far less than that required for the centralised control case

(Dimeas and Hatziargyriou, 2005). Individual controllers would also be able to act

independently and not be reliant on external controller signals in order to operate. As

such, investing in a centralised control technique may not be required until very high

penetrations of EVs on LV networks become a reality. With the introduction of AMI,

a local control technique may be sufficient for accommodating initial penetrations of

EV charging while maintaining network limits within the desired operating regions.



CHAPTER 6

Conclusion

W
ITH grid connected DER technology likely to become more prevalent in the

coming years, understanding how such devices will potentially affect network

operating conditions will be critical to their successful integration. As existing distri-

bution systems were not originally designed to accommodate DER technology, it may

become necessary for power system operators to take a more proactive approach in man-

aging the operation of distribution networks. As such, this thesis has presented novel

methodologies for maximising the utilisation of network capacity in a secure manner

by coordinating the operation of DER units in distribution systems.

In Chapter 3, a study of the potential impact of DER devices in the distribution

system was conducted. The study modelled the impact from high penetrations of

DER devices on test LV distribution networks, in terms of network voltage levels and

thermal loading of feeder components. The analysis comprised of two parts. Firstly,

a deterministic analysis was performed, whereby the test feeder was modelled for a

worst case scenario in terms of the residential load demand. For micro-generation

102
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DER, this meant that the minimum total residential load was modelled, whereas for

flexible load DER, the residential load was at its maximum. For both scenarios, DER

units, operating at maximum load/output, were incrementally added to the network

in order to determine the maximum DER penetration that could be reached without

exceeding acceptable network limits. The analysis showed that, for the worst case

scenario of minimum load, a penetration level of up to 90% for micro-generation DER

was attainable. However, in a scenario of maximum residential demand, the highest

acceptable penetration of flexible load DER, in this case EVs, was found to be as low

as 20%. The results of such an analysis are very much dependent on the characteristics

of the network that is being assessed. However, they still provide a good indication

that high penetrations of electricity demanding DER would have a greater impact on

network operating conditions than micro-generation DER.

The second part of the impact study was developed a stochastic scenario analysis

method. The method generated household load profiles together with operational pro-

files for the DER units based on real network data obtained from DSO led field trials.

These profiles were then used in a time-series load-flow analysis in order to determine

the likely impact of DER devices on network operating conditions over certain time

periods. The method takes account of uncertainties such as varying levels of coincident

operation and possible locations for DER units on the feeder. The results shown in

Chapter 3 indicate that the potential number of occurrences where the operating limits

are exceeded is relatively small. These results are, however, only representative of the

test network used in the study. In general, the characteristics of distribution networks

can vary quite substantially. Therefore, the level of DER that could be successfully

accommodated will also vary greatly from network to network. Using deterministic

and stochastic tools, like those demonstrated in Chapter 3, will prove to be beneficial

in predicting the potential for particular networks to adapt DER technology.

In Chapter 4, a method for coordinating the operation of DER units on a distribu-

tion feeder was proposed. High penetrations of DER units operating simultaneously

may lead to certain network limitations being exceeded, e.g. voltage limits, thermal

overloading. By exploiting the sensitivities of the network voltage and loading levels
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to the addition of DER units, the control technique optimises the operating set point

of each unit in order to maximise its output/demand, while maintaining acceptable

operating levels on the network. By doing so, the method allows for more efficient use

of existing network capacity, thus deferring the need for costly network reinforcement.

The method was demonstrated on a test LV network with a high penetration of EVs

connected for charging. At each time step, load-flow analyses determined the sensitiv-

ity of the network node voltage and loading levels to the addition of EV load. These

sensitivity values were then employed within a linear programming algorithm to de-

termine the optimal rate of charge for each EV. In doing so, the total power delivered

to the network is maximised while maintaining network operating conditions within

acceptable limits, thereby utilising the network capacity to its fullest. However, due

to the radial topology of the network, it was found that the method tended to specify

higher charging rates to EVs located nearer the sending end of the feeder than to those

located at the extremities. In order to provide a more even distribution of energy across

the feeder, the optimisation objective function was modified to account for the charge

requirement of each EV. By doing so, the total energy delivered to the EVs was greater

than that which was achieved by using the non-weighted objective function method.

The method used for the coordination of DER devices in Chapter 4 is based on

centralised control of DER units, whereby a controller has real-time knowledge of net-

work conditions and the operating status of each DER unit. The implementation of

such a control scheme would require sufficient communications infrastructure to be in-

stalled across the distribution system, which may be costly for DSOs to install and

operate. In Chapter 5 a method based on a decentralised, local control approach was

proposed. In this method, each individual DER unit determines its own operating set

point according to the voltage and cable loading at its connection point to the network.

Therefore, there is no requirement for a widespread communication infrastructure to

implement the technique. Predetermined sensitivity values for the voltage and loading

were implemented in a linear programming algorithm to optimise the operating set

point according to the particular objective, e.g. maximise EV charging rate. As was

the case in Chapter 4, the method was implemented on a test network with a high
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penetration of EVs and the results were compared to those of the centralised control

method. The local control method could deliver a similar amount of total energy to the

EVs as the centralised method. However, it was not as accurate at maintaining voltage

and loading levels within the specified limits and may require larger safety margins

to ensure acceptable network operation. Overall, the cost savings from implementing

a local control strategy may outweigh the loss of accuracy with regard to maintain-

ing acceptable network operating levels, especially so for initial penetrations of DER

devices.

6.1 Future Work

The method used for coordinating the operation of DER units in Chapter 4 was tested

using EV technology. In the analysis, the EVs were considered to have a flexible load

capability only. The concept of using EVs to supply energy either back into the distri-

bution network (Vehicle-to-Grid (V2G)) or for supplying household load (Vehicle-to-

Home (V2H)) has been the focus of much recent research (Clement-Nyns et al., 2011;

Haines et al., 2009; Kempton and Tomić, 2005; Tomić and Kempton, 2007). The im-

pact of exporting energy from EVs would have much the same impact on network oper-

ating conditions as that of micro-generation units with a similar rated export capacity.

By utilising the export capability of DER technology (i.e. controllable micro-generation

and/or EVs with V2G capability) in the coordinated control method of Chapter 4, it

may be possible to increase the total energy deliverable to the load on the network.

While investigating the potential for increasing the load capacity of existing networks

in this manner would be an interesting topic for future research, such studies must also

consider the impact on the DER devices themselves, e.g. the impact on the life cycle

of EV batteries (Zhou et al., 2011).

For the most part, loads at the LV level of the distribution system are connected via a

single-phase connection to the network. This normally causes an unequal flow of current

on each of the phases of a distribution feeder. Maximum levels of permissable unbalance

are normally specified in DSO grid codes. Typically, the level of unbalance across the
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phases of distribution networks is small due to the coincident use of load by customers

on each phase (Willis, 2004). The introduction of DER to certain households on a

network will potentially increase the levels of unbalance at certain times on the network,

and in some cases may exceed permissable limits. The control method proposed in

Chapter 4 accounts for the impact on each phase of the network from the connection

of a DER unit to a particular phase. Incorporating a similar methodology for use in

an unbalanced optimal power flow tool may be beneficial in future impact studies for

DER on unbalanced networks.

In Chapter 5, a method for operating DER devices on a feeder using a local control

method was proposed. This method relies on robust values for network sensitivities to

the addition of DER. In the method, a conservative approach was taken in calculat-

ing the sensitivities in order to reduce the potential for network conditions to exceed

acceptable limits. Allowing local controllers to select sensitivity values from a num-

ber of predefined sets, based on expected residential loading conditions (i.e. time-of

day, weekday/weekend, seasonal), may improve utilisation of network capacity by the

controllers and, thus, the method itself.

The work presented in this thesis investigates the impact on certain technical as-

pects of distribution system operation and proposes methods to mitigate those impacts

through intelligent control techniques. With the introduction of micro-generation, flex-

ible load and new DSM schemes in future years, customers will have the ability to take

a more active approach in managing their energy usage. For example, with the im-

plementation of time-of-day tariffs along with reimbursements for exporting electricity

back into the grid, customers may alter their energy usage in order to maximise their

financial gain/minimise costs. Future work could consider incorporating time-of-day

tariffs together with the DER control techniques proposed in this thesis to schedule the

operation of DER units. By doing so, customers could avail of cheaper electricity tariffs

while, at the same time, utilisation of network capacity could be maximised. However,

some degree of load prediction capability for the household demand may be necessary

in order to make optimal use of spare network capacity while satisfying customer en-

ergy requirements. Understanding the potential changes in customer behaviour and
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how price signals will affect their demand/DER usage will be crucial to the successful

integration of DER technology in the future.
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Appendix A: Test Network 1

Table A.1: Test Network 1 Cable Characteristics

Line
Length R1 X1 R0 X0 C Irated

(m) (Ω) (Ω) (Ω) (Ω) (µF) (A)

MV 10,000 20.8 4 10 12 0.01 1000

1-2 190 0.032 0.014 0.095 0.041 0.053 510

2-3 27.5 0.008 0.002 0.024 0.006 0.008 368

3-4 85 0.024 0.006 0.073 0.018 0.026 368

4-5 97.5 0.028 0.007 0.084 0.021 0.029 368

5-6 154 0.062 0.011 0.185 0.033 0.046 300

4-7 119 0.048 0.009 0.143 0.026 0.036 300

2-8 32.5 0.009 0.002 0.028 0.007 0.01 368

8-9 59 0.017 0.004 0.051 0.013 0.018 368

9-10 106 0.03 0.008 0.091 0.023 0.032 368

10-11 95 0.027 0.007 0.082 0.021 0.029 368

9-12 217.5 0.087 0.016 0.261 0.047 0.065 368

Service Cable
0.8 0.07 - - 0.4 80

(per km)

R1 Positive sequence resistance R0 Zero sequence resistance
X1 Positive sequence reactance X0 Zero sequence reactance
C Capacitance Irated Rated current

116
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Figure A.2: Geographical topology of Network 11

1Image source: Google Maps (Jan. 2012)



Appendix B: Test Network 2

Table B.1: Test Network 2 Cable Characteristics

Line
Length R1 X1 R0 X0 C Irated

(m) (Ω) (Ω) (Ω) (Ω) (µF) (A)

MV 11,000 18.9 4.4 11 13.2 2.75 1000

1-2 24 0.005 0.002 0.003 0.005 0.006 425

2-3 36 0.008 0.002 0.003 0.007 0.01 425

3-4 45 0.01 0.003 0.005 0.009 0.013 425

4-5 46 0.01 0.003 0.005 0.01 0.013 425

5-6 59 0.013 0.004 0.006 0.012 0.017 425

6-7 49 0.028 0.004 0.014 0.011 0.014 245

6-8 59 0.013 0.004 0.006 0.012 0.017 425

8-9 60 0.03 0.004 0.015 0.013 0.045 212

9-10 54 0.027 0.004 0.014 0.012 0.041 212

Service Cable
1.18 0.037 - - 0.28 130

(per km)

R1 Positive sequence resistance R0 Zero sequence resistance
X1 Positive sequence reactance X0 Zero sequence reactance
C Capacitance Irated Rated current

118
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Figure B.2: Geographical topology of Network 22

2Image source: Google Maps (Jan. 2012)
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Figure B.3: Customer phase connections for Network 2
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Optimal Charging of Electric Vehicles in Low
Voltage Distribution Systems

Peter Richardson, Student Member, IEEE, Damian Flynn, Member, IEEE and Andrew Keane, Member, IEEE

Abstract—Advances in the development of electric vehicles,
along with policy incentives will see a wider uptake of this
technology in the transport sector in future years. However, the
widespread adoption of electric vehicles could lead to adverse
effects on the power system, especially for existing distribution
networks. These effects would include excessive voltage drops and
overloading of network components, which occur mainly during
periods of simultaneous charging of large numbers of electric
vehicles. This paper demonstrates how controlling the rate at
which electric vehicles charge can lead to better utilisation of
existing networks. A technique based on linear programming is
employed, which determines the optimal charging rate for each
electric vehicle in order to maximise the total power that can be
delivered to the vehicles while operating within network limits.
The technique is tested on a section of residential distribution
network. Results show that, by controlling the charging rate of
individual vehicles, high penetrations can be accommodated on
existing residential networks with little or no need for upgrading
network infrastructure.

Index Terms—road vehicle electric propulsion, linear pro-
gramming, load flow analysis, optimisation methods, power
distribution

I. INTRODUCTION

ELECTRIC vehicle technology is seen by many countries
as a key component in the effort to reduce harmful

greenhouse gas emissions, while also reducing the dependence
on imported petroleum within the transport sector. As a result,
many automotive manufacturers have begun to place increased
emphasis on the development of various types of electric
vehicle (EV). These include battery electric vehicles, which
operate purely from battery power, and plug-in hybrid electric
vehicles, which operate on power from a combination of an on-
board battery and a combustion engine. The batteries for both
technologies can be recharged from external energy sources,
e.g. an electricity network. Ambitious targets and incentives
for introducing EVs into the transport sector have been pro-
posed in many countries [1]–[3]. Such targets, along with the
likely increase in the cost of fossil fuels over the coming years,
will see EV technology become more widespread.

Distribution networks are rated (kVA limit) to deliver elec-
tricity depending on the number of customers in a given area
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and the historical electricity demand data for each of those
customers. The widespread adoption of EVs will introduce
new customer demand patterns, and large vehicle penetrations
could result in adverse effects on the network. Investigations
into the potential impact of EVs on load patterns and the
need for load management at the distribution network level
have been conducted since as early as the 1980s [4], [5].
More recent work in this area has sought to investigate the
limitations from large numbers of EVs on network infras-
tructure in terms of increased loading, impacts on efficiency
and loss of life for network assets [6]–[10]. These studies
examined varying scenarios, such as unrestricted charging,
peak and off-peak charging, diversified charging, and charging
at varying power levels. The general consensus from these
studies is that existing distribution networks should be able
to accommodate substantial penetration levels of EVs if the
majority of charging is restricted to low charging rates at off-
peak times. Uncoordinated charging, especially fast, 3-phase
charging, will lead to an increase in the number of occurrences
of component overloading and excessive voltage deviations
if it coincides with existing peaks from the residential load.
Staggering the charging start times for localised groups of
EVs is also shown to help avoid these adverse effects, as well
as spikes in demand due to simultaneous commencement of
charging. The impact on voltage levels from high penetrations
of EVs is also investigated in [11] and shows how high levels
of coincident charging can cause voltages to drop beyond
acceptable limits during times of high residential demand.

The introduction of advanced metering infrastructure (AMI)
systems in residential housing, be it for real-time pricing
or active demand side management, or both, will aid the
control/predictability of the load patterns on residential net-
works. AMI could potentially have the ability to control
certain loads within the household (including EVs) and allow
DSOs or demand side aggregators to manage these loads in
a coordinated manner. Such concepts have been investigated
previously. The work described in [12] proposes management
strategies for EV charging/discharging in LV microgrids. By
allowing network control devices to respond to voltage and
frequency levels, it is shown that the EV load can enable
LV microgrids to be operated in a stable manner. In [13], a
technique is employed to minimise power losses and on-load
tap changes for the network transformer, mainly due to the
charging/discharging of EVs located far from the slack bus.

In [14], various techniques are utilised to investigate the
impact of varying penetrations of EVs on residential networks.
Quadratic and dynamic programming techniques minimise the
impact from EV charging on network losses and voltage de-
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viation in particular. By controlling and optimising individual
EV charging rates, network losses and voltage deviations are
reduced for all penetration levels examined. The methodology
is examined using both deterministic and stochastic methods
and concludes that while the difference in the results obtained
using the quadratic or dynamic technique is negligible, the
dynamic technique is more computationally intense. Work
in [15] investigated the use of voltage control on EVs with
charge/discharge capabilities. Here the objective was to min-
imise the charging cost to the EV owner while maintaining
network voltage levels within acceptable limits. Results were
shown to vary significantly depending on the initial state of
charge of the EV batteries, with high dependence on the tariffs
associated with charging and discharging.

The work in this paper differs in its approach to the coordi-
nated charging of EVs described above. Instead of minimising
power losses and/or voltage deviations, the objective of the
optimisation technique employed here is to maximise the total
amount of energy that can be delivered to all EVs over a
charging period while ensuring that network limits are never
exceeded due to high levels of coincident EV charging. Such
an approach ensures that optimal use is made of available
network capacity while avoiding excessive voltage drop and
component overloading, which have been shown, in work
cited above, to be potential issues with high levels of EV
charging. The technique employs linear programming that
takes advantage of the approximately linear characteristics of
both the network voltages and component loading sensitivities
to the addition of EV load.

The methodology for this work is presented in Section II.
Section III describes the modelling of the test network, the
residential load and the electricity demand profiles of EVs.
Results and discussion for two specific charging periods are
presented in Section IV along with generalised results for a
wide range of network scenarios. Conclusions are presented
in Section V.

II. METHODOLOGY

A. Assumptions

Coordinated charging of EVs could be achieved in a variety
of ways. It is assumed here that EV owners are incentivised
to charge their vehicles at off-peak times of day. Once the
off-peak period has begun, no additional EVs will connect for
charging and no EVs will disconnect before reaching a full
battery state of charge (BSOC). Smart metering technology
with load control capability is also assumed to be present in
each household. It is assumed that this load control capability
can be utilised by the DSO (or a third-party aggregator), from
a remote location, in order to manage certain loads on the
consumer side of the meter. Such a scheme would be subject
to prior agreement by both the consumer and the DSO. For the
purposes of this work, the ability to control the load extends to
EV charging only and allows the operator to vary the charging
rate of each EV on the feeder. Each EV can charge at any
rate between zero and the maximum rated output, subject to
certain restrictions, which are outlined later in this section. The
ability to vary the charge rate of individual EVs in a continuous

manner has been studied for use in optimal charging strategies
previously [14], [16], [17]. While the possibility exists for
fast, 3-phase charging, it is assumed that each EV will be
connected to the network via a standard single-phase AC
connection. Although the concept of vehicle-to-grid for local
system support or otherwise exists [12], [13], [15], [17], bi-
directional flow of electricity to and from an EV battery is not
considered in this work.

B. Standard Objective Function

The objective of the method is to maximise the energy
delivered to all EVs within a set period of time. This is
achieved by optimising the charging rate of each connected EV
in order to maximise the total power that can be delivered for
each 15 minute time interval, subject to network constraints.
Coordinating the charging of EVs ensures that the network is
utilised to its fullest extent in terms of energy delivered.

The standard objective function, F, is given as

F =
N∑
i=1

PEVixi (1)

where N is the number of customers being served by the
network, and PEVi is the power delivered, measured in kW,
to the EV connected at the ith customer point of connection
(CPOC). It is assumed that PEVi is a continuous control
variable that can vary between 0 kW and the maximum power
output of the charger at node i. xi is zero when an EV is not
connected at the ith CPOC or the EV battery is fully charged,
while xi equals one when the EV at the ith CPOC is connected
and the EV battery is less than fully charged.

C. Constraints

At each time step, the objective function, F, is maximised
subject to certain constraints. The first of these is that the
power demand of an EV cannot exceed the rated power output
of the charger supplying that vehicle, (2).

0 ≤ PEVi ≤ P max
EVi

(2)

In order to avoid large variations in the charging rate over
consecutive time steps, which is undesirable for current battery
technology [18], a rate of change constraint is also imposed
(3).

P t−1
EVi

−∆ ≤ P t
EVi

≤ P t−1
EVi

+∆ (3)

Here, t is the current time step and ∆ is a defined limit, in kW,
by which the charging rate can vary, compared to the charging
rate at the previous time step, excluding on/off transitions.

The next constraint relates to the acceptable voltage range
for the LV network. The addition of EV loads, for the most
part, will cause the voltage at various points of the network
to drop. The extent of the voltage drop can vary depending
on a number of factors, which include the location of the EV
and the rate of charge. The voltage at each CPOC must be
maintained within the rated voltage range specified for the
network, (4).
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Vmini ≤ Vi ≤ Vmaxi i∀N (4)

Here, Vi (V) is the voltage at the ith CPOC, while Vmini

and Vmaxi are the minimum and maximum allowable network
voltage levels respectively.

The thermal loading of network components refers to the
ratio of the apparent power flowing through the component to
its rated capacity. For this study, the thermal loading of both
the network transformer and the mains cable connecting the
transformer to the network are considered. These constraints
are summarised in equations (5) and (6) respectively.

LTX ≤ LTXmax (5)

LMC ≤ LMCmax (6)

where LTX and LMC are the thermal loading (kVA) for
the transformer and mains cable respectively, while LTXmax

and LMCmax are the associated maximum loading of the
components.

D. Network Sensitivities

A time-series, unbalanced, 3-phase load flow analysis of the
test network is performed in order to determine the network
voltage and thermal loading levels as a result of the residential
household load. This is performed using power system analysis
software [19] and applying residential load information. The
voltage sensitivities at each CPOC are also calculated for both
the addition of EV load at their own terminal and at each of the
other household terminals on the network, i.e. the change in
voltage due to charging demand from the EVs. For each time
step, EV load is added incrementally at each CPOC in turn and
the change in voltage at each CPOC is recorded. This data is
then used to calculate the voltage sensitivities of the network to
the addition of EV load. The addition of EV load to any CPOC
on the network causes variations in the voltage at each of the
other CPOCs. Thermal loading sensitivities for the network
components of interest are calculated in the same manner. The
addition of EV load at any point of the network causes an
increase in the thermal loading experienced by the transformer.
Analysis of the load flow results shows that the assumption of
linearity for both the voltage and thermal loading sensitivity
characteristics is adequate [11]. The constraint for the voltage
level can be summarised as,

Vmini ≤ Viniti + µiPEVi +
N∑
j=1

µjiPEVj ≤ Vmaxi

i∀N , i ̸= j

(7)

where Viniti is the initial voltage at the ith CPOC of the
network with no EVs charging, µi (V/kW) is the sensitivity
of the voltage at the ith CPOC due to power demanded by the
EV connected at the same CPOC, µji is the sensitivity of the
voltage at the ith CPOC due to power demanded by an EV
connected at the jth CPOC.

The thermal loading constraints are summarised as

Fig. 1. Methodology for optimising the charging rates of EVs.

LTXinit +
N∑

k=1

δkPEVk
≤ LTXmax k ∀N (8)

LMCinit +

N∑
k=1

βkPEVk
≤ LMCmax k ∀N (9)

where LTXinit and LMCinit are the initial thermal loading
levels of the network transformer and mains cable respectively,
and δk (kVA/kW) and βk (kVA/kW) are the sensitivities of the
transformer and mains cable loading to power demand (PEVk

)
of an EV at the kth CPOC.

The voltage and thermal loading sensitivities are determined
for each time step of the analysis. Subsequently, a linear
programming tool in [20] determines the optimal charging
rate for each connected EV for each time step, in order to
maximise the total amount of energy that can be delivered
over the considered period. A summary of the methodology
is outlined in the flow chart presented in Fig. 1.

E. Weighted Objective Function

Due to the radial layout of the majority of LV residential
networks, the standard optimisation technique tends to charge
EVs connected near to the transformer at a higher rate than
those located far from the transformer. This is due to the
voltage levels being less sensitive to the addition of EV
load near to the transformer. In order to provide a more
even distribution of energy to the charging EVs and prioritise
batteries with a low BSOC, a modified objective function
is applied to the optimisation algorithm, which applies a
weighting according to each individual EV’s BSOC at the
previous time step. It is assumed that the BSOC of each EV
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Fig. 2. Single line diagram of test network. Circles show houses where EVs
are connected for charging.

is known at the beginning of each optimisation time step. The
modified objective function, F, is summarised as follows:

F =
N∑
i=1

(
1−

(
BSOCi

BSOCmaxi

))
PEVixi (10)

where BSOCi is the current battery state of charge (kWh)
of the EV connected at the ith CPOC and BSOCmaxi is the
maximum battery capacity of that EV.

III. MODELLING OF TEST NETWORK

A. Distribution Network

The test network is based on a LV residential distribution
feeder in a suburban area of Dublin, Ireland. A simplified
representation of the feeder is given in Fig. 2. In the actual test
feeder, each household, EV and service cable are modelled
separately. The model incorporates a 400 kVA, 10/0.4 kV
step-down transformer supplying a feeder of 134 residential
customers through 1.2 km of 3-phase copper mains cables and
980 m of single-phase copper service cables. A lumped load
model, representing a similar number of residential customer
loads with no EV loads, is included to represent another feeder
being supplied from the same transformer.

In Ireland, the LV distribution network is operated at a
nominal voltage of 230/400 V with a voltage range tolerance of
+/-10% [21]. For the most part, LV substation transformers in
Ireland do not have tap-changing capabilities, which is the case
for the transformer modelled in the test network. As such, the
medium voltage (MV) network supplying the LV transformer
is included in the model as an equivalent impedance in order
to take account of the voltage drop at this network level. The
MV network is modelled such that at maximum residential

load (with no EV charging), the voltage at all points of the
network does not exceed -10% of nominal. Specifications for
the network model components were supplied by Electricity
Supply Board (ESB) Networks, who are the DSO in the
Republic of Ireland, and are given in Table III in the Appendix.

B. Residential Customer Load Modelling

Typical load data for domestic electricity demand customers
was obtained from the DSO consisting of 15-minute time-
series demand data for high, medium and low use customers
over a one year period. Different electricity demand profiles
were randomly assigned to each of the houses in the test
network. However, in order to confirm that these load profiles
portrayed an accurate representation of the power demanded
by a real distribution feeder, the coincidence factor of the test
network was determined. The coincidence factor is defined as
the ratio of the maximum diversified demand divided by the
maximum non-coincidental demand [22]. From assessing the
yearly load profiles for each of the households on the network,
the coincidence factor was found to be 0.32, which compares
favourably with similar residential networks [23].

For modelling purposes, the power factor for each house-
hold load is set at 0.97 inductive during the day and 0.95
inductive at night. Here, daytime is specified as between 6 am
and 10 pm, and nighttime as between 10 pm and 6 am. The
load is modelled as a combination of constant power (P) and
constant impedance (Z). From April to September inclusive,
the load is modelled as 60% constant P, 40% constant Z.
From October to March inclusive, the load is modelled as 40%
constant P and 60% constant Z, due to an increase in electric
heating load. It is common practice to model residential loads
in this manner when exact information on the load type is not
available [23].

C. Electric Vehicle Load Modelling

It is assumed that each EV is connected at the same CPOC
as the household load through a single-phase connection.
Charging profiles for EVs can vary depending on battery type,
charging equipment and the electricity supply network. For
this work, EV batteries are modelled based on lithium-ion
battery technology. It is assumed that once connected, an
individual EV with no charge controlling capability charges
at a rate of 4 kW up to a BSOC of approximately 95%. After
this point the vehicle charges at a rate of 1.5 kW until the
battery has reached its maximum capacity. For this work, all
EV batteries are modelled with a capacity of 20 kWh. The
EV charging equipment is assumed to have a 90% efficiency
rating. The charging rate of 4 kW is appropriate in terms
of the power delivery capabilities of existing LV distribution
networks in Ireland [21]. EV batteries are modelled as constant
power loads with unity power factor.

D. Time Periods for Investigation

In order to demonstrate the benefits of the optimisation
technique, two specific periods of time within the one year
period of residential load data were chosen. For this study,
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Fig. 3. Distribution of the initial BSOC for each EV.

the charging period occurs from 10 pm to 7 am the next day.
One test period was chosen because it contained the highest
15-minute residential demand during the off-peak charging
periods (winter scenario). The maximum 15-minute residential
demand for this time period was approximately 152 kW. The
other test period chosen was a low-demand mid-week charging
period in the summer (summer scenario).

For the simulations, half of the residential households were
randomly assigned an EV, as shown in Fig. 2. This amounts to
67 EVs on the network with a potential combined maximum
demand of 268 kW. It was assumed that all EVs remain
connected to the network for the entire charging period, with
each EV randomly assigned an initial integer valued BSOC.
The distribution of the initial BSOC for each EV is shown in
Fig. 3. The average initial BSOC of all the EVs was 7.8 kWh,
or 39% of the maximum BSOC.

Table I shows the breakdown of EVs allocated to the
network as well as the total energy requirement of these
vehicles on a phase-by-phase basis. It is clear from this table
that there is a greater number of EVs on phase c, and thus
a larger energy requirement, compared to the other phases.
While a 50% penetration of EVs on a distribution feeder may
not be experienced in reality for many years to come, it was
deemed appropriate to examine such a demanding scenario
in order to fully capture the main benefits from controlled
charging strategies compared to uncontrolled charging.

TABLE I
INITIAL EV CONDITIONS

Combined Combined Total
Number Battery Initial Energy
of EVs Capacity BSOC Required

(kWh) (kWh) (kWh)
Phase a 19 380 139 241

Phase b 18 360 146 234

Phase c 30 600 236 344

Total 67 1340 521 819

E. Stochastic Scenario Analysis

The charging periods identified above are chosen to examine
the optimisation technique for specific network scenarios.
However, in order to demonstrate the benefits of the optimisa-
tion technique for a wider range of scenarios, a stochastic tool
is developed to generate different residential load scenarios
with probabilistic conditions for varying residential load, EV
location and initial BSOC.

Probability distribution functions (PDFs) for the household
load were created based on the residential load data provided
by the DSO with PDFs for low, medium and high use cus-
tomers. 15-minute household load profiles were then generated
for each house for a 9 hour period from 10 pm to 7 am the
next day, similar to the deterministic analysis. It is assumed
that all EVs are connected for charging at the beginning of this
period and remain connected until the end. At the beginning of
each 9 hour charging period the EV locations on the network
were randomly selected with each one then assigned an initial
BSOC. As no real charging data was available, a PDF (mean
= 10.75 kWh, standard deviation = 6 kWh) for assigning
initial BSOC was created. For each charging period time step,
network sensitivities are determined which are then used to
optimise the charging rate of each EV. The load model and
power factor for both the residential and EV load remain the
same as for the deterministic analysis.

IV. RESULTS AND DISCUSSION

The optimisation technique is tested with the two different
objective functions, (1) and (10). The results for each approach
are outlined below and are compared to scenarios with no EV
charging present and with uncontrolled EV charging.

A. Network Sensitivities

For each 15-minute time interval, a series of three-phase,
unbalanced load flow calculations are performed using the
customer demand profiles in order to determine the voltage
and thermal loading sensitivities of the network due to the
introduction of EVs. These sensitivities inform the optimal
charging rate of each EV for each time step of the charging
period. The voltage sensitivity at each CPOC is measured for
varying charging rates and varying EV charging locations on
the network. Fig. 4 demonstrates how the voltages measured
at the CPOCs closer to the transformer (i.e. 3 and 8 from Fig.
2) are less sensitive to the addition of EV loads as compared
to those located near the end of the feeder (i.e. points 6, 7, 11
and 12).

Since the household loads for this network are connected to
individual phases of the network, the addition of EV load to
a particular CPOC affects the voltage at that particular CPOC
as well as the voltage on the other phases of the network,
as demonstrated in Fig. 5. As can be seen, the addition of
EV load on phase c only causes the voltage on that phase to
decrease while the remaining phase voltages increase slightly.
This effect is not uncommon in unbalanced networks [22] and
is captured in the voltage constraint equation, (7), where the
sensitivity, µ, of the voltage at a particular CPOC can be either
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Fig. 4. CPOC voltage sensitivities to charging EVs at 6 network points for
the Winter Scenario.

Fig. 5. Interdependence of 3 CPOC voltages with EV charging on phase c
for the Winter Scenario.

positive or negative depending on the phase to which an EV
is connected.

The voltage sensitivities can vary significantly due to the
changes in the domestic household load, and therefore they are
calculated for each time step of the analysis. This information
is then subsequently used to optimise the EV charging rates,
the results of which are outlined in the following sections.

In order to determine the accuracy of the optimisation tech-
nique, error margins were calculated based on the difference
between the predicted CPOC voltages from the optimsation
algorithm and the CPOC voltages recorded from the sub-
sequent load-flow calculations. The average maximum error
margin over the summer charging period was found to be
1% for the standard and weighted objective functions. For the
winter charging scenarios these values were recorded as 1.4%
(standard objective function) and 1.5% (weighted objective
function). As can be seen in the results presented below, the
accuracy of the sensitivities is adequate to ensure that no
operating limits are exceeded due to EV charging.

Fig. 6. Voltage level for a CPOC at node 6 for base case and uncontrolled
charging scenarios with charge profile for an EV charging at the same CPOC.
(Winter scenario)

B. Uncontrolled EV Charging

With no active control over EV charging rates, all of the EVs
would be expected to commence charging at the beginning of
the charging time period at the maximum rate of charge. As
the network is not rated for this high level of demand, the
network operating conditions are severely impacted. Fig. 6
shows the voltage level at a CPOC at node 6 for the winter
scenario base case. The charge profile for an EV connected
at the same CPOC is also displayed. The initial BSOC of
this EV was 3 kWh or 15%. While all EVs on the network
would be fully charged by the end of the charging period the
lower voltage limit at this CPOC, i.e. 0.9 pu, is exceeded for
over 3 hours at the start of the charging period. The lowest
voltage experienced at this node is approximately 0.68 pu. It
is clear that such a scenario could not be permitted to occur
and it is likely that the number of EVs on the network would
be restricted to a predetermined limit. For the purposes of
comparison, an uncontrolled charging scenario was created
whereby there is a limit to the number of EVs that are allowed
to charge simultaneously. This number was determined by
incrementally adding EVs, charging at the maximum rate of
charge, to the extremities of the feeder up to the point before
the feeder exceeds an allowable operating limit. This test was
performed with the residential load at the maximum expected
midnight demand. Charging was restricted to begin only after
midnight to ensure that the residential load is off-peak. For the
test network utilised in this work, the predetermined number
of EVs that could be allowed to charge in an uncontrolled
scenario was found to be 21.

C. Controlled EV Charging

By employing the methodology described in Section II, the
rate at which each EV charges is now optimised in order to
deliver the maximum power to the EVs while maintaining all
voltages and network flows within acceptable operating limits
for each time step. At the beginning of the charging period, the
total energy required to return all EVs to 100% BSOC is 819
kWh. For the optimisation, the lower voltage limit is set at 210
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V or 0.913 pu, which allows for a margin of safety with respect
to the lower voltage limit defined in the Irish distribution
network code [21]. This ensures that any unexpected short
term variations in the demand, will not cause the network to
exceed its operating limits. The maximum variation allowable
for the rate of charge between time steps, i.e. ∆ in (3), is set
at 0.25 kW for each of the control strategies.

1) Standard Objective Function: From Table II it can be
seen that using the standard objective function a total of 810
kWh in the summer and 798 kWh in the winter were delivered
to the EVs by the end of the respective charging periods.
Although this means that the total EV energy requirement (819
kWh) was not met, in both cases the network was maintained
within normal operating limits for the entire duration of the
charging period.

TABLE II
TOTAL ENERGY DELIVERED TO EV BATTERIES

Total Energy % Energy
Delivered (kWh) Requirement

Uncontrolled Charging Summer 238 29
(21 of 67 EVs) Winter 238 29

Standard Objective Summer 810 98.9
Function Winter 798 97.4

Weighted Objective Summer 818 99.9
Function Winter 815 99.5

The voltage profile of a CPOC at node 6 with an EV
charging and the corresponding EV charge profile is given in
Fig. 7. It is evident that the voltage here is a binding constraint
for the optimisation technique as it is held just above the lower
voltage limit for the majority of the charging period. It can also
be seen that the EV connected to this CPOC does not truly
begin charging until the third hour of the charging period and
does not approach a maximum rate of charge until towards
the end of the period. This particular EV had an initial BSOC
of 3 kWh (15%) and had reached a BSOC of 15 kWh (75%)
by the end of the charging period. Clearly, this would be an
unacceptable outcome for an EV owner that desired a full
BSOC.

Fig. 8 shows the distribution function for the BSOC of each
EV at the end of both the summer and winter charging periods.
It is evident in both cases that a number of EVs, including the
one shown in Fig. 7, have not reached a full BSOC by the end
of the charging period. In the summer scenario, 64 of the 67
EVs were fully charged, while for the winter charging period,
63 EVs had a full BSOC. In both cases, the EVs with a BSOC
of less than 100% are all located near the end of the branches
of the feeder and are connected to phase c. From Table I it can
be seen that a greater number of EVs are connected to phase c
than either of the other phases, which results in a larger energy
requirement. Additional load due to EV charging at CPOCs
near the end of feeder branches will have a greater effect on
network voltage levels than if located closer to the transformer.
As a result, the optimisation method allocates low charging
rates to these EVs until the other EVs are fully charged. The
combination of both factors leads to a number of EVs not

Fig. 7. Voltage profile for a CPOC at node 6 and charge profile for EV
charging at the same CPOC with optimised charging employing the standard
objective function. (Winter scenario)

Fig. 8. Distribution function of the battery state of charge for all EVs at end
of the summer and winter charging periods: standard objective function.

receiving a full BSOC by the end of the charging period. This
outcome is displayed in Fig. 9, which shows the active power
demand, with and without EV charging, on each phase of
the network over the charging period. It is clear that, while
the EVs connected to phase a and phase b have completed
charging, power is still being delivered to some EVs connected
to phase c. Also shown in this figure is the lowest CPOC
voltage measured on each phase of the feeder for each time
step. It is clear that while power is being delivered to the EVs
on the feeder, the voltage levels at each of the CPOCs are held
above the lower voltage limit.

2) Weighted Objective Function: The standard objective
function optimisation technique will consistently tend to assign
low charging rates to EVs located further from the transformer.
Such a situation would clearly be unacceptable. In order
to overcome this, the optimisation process was repeated, as
described in Section II, with the objective function weighted
according to the current BSOC of each charging EV, (10).

By employing this method, 818 kWh of energy are delivered
to the EVs for the summer charging period and 815 kWh
are delivered in the winter charging period, which represents
99.9% and 99.5%, respectively, of the total energy required
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Fig. 9. Power delivered to network on each phase for the case with no EVs
charging and the optimised charging case employing the standard objective
function (Winter). The lowest CPOC voltage for each phase at each time step
for the optimised charging case is also shown.

to return all EV batteries to a full BSOC. The total power
delivered to the EVs for the uncontrolled and optimised
charging scenarios is shown in Fig. 10. While both objective
function methods deliver similar energy totals by the end of
the charging period, the individual EV charging patterns vary
significantly across the network. During the early stages of the
charging period, the SOF prioritises EVs that are located close
to the transformer, whereas the WOF assigns higher charging
rates to EVs with a low BSOC, wherever they may be located
in the network. Later in the charging period, applying the SOF,
vehicles located at the network extremes begin charging. As
the voltage is more sensitive to additional load at these points
of the network, the charging rates for these EVs are lower and
less energy can be delivered. The same restrictions are not as
severe using the WOF as the energy delivered to the EVs is
more evenly distributed across the network, resulting in more
energy being delivered towards the end of the charging period
(Fig. 13 and 14).

Fig. 11 shows the voltage profile, for the same CPOC as
shown in Fig. 7, as a result of the weighted objective function
optimisation technique. Once again, it is apparent that the
voltage at this CPOC is a binding constraint. However, the
EV begins charging much earlier and the BSOC by the end
of the charging period has reached 100%, as compared with a
figure of 75% using the standard objective function method.

The distribution function of the BSOC for the EVs by the
end of the charging period is given in Fig. 12, and shows
an increase in the number of EVs with a full BSOC for
both charging period scenarios when compared to the previous
method. Specifically, 67 EVs have a full BSOC by the end of

Fig. 10. Total power delivered to EVs for uncontrolled and optimised winter
charging scenarios.

Fig. 11. Voltage profile for a CPOC at node 6 and charge profile for EV
charging at the same CPOC with optimised charging employing the weighted
objective function. (Winter scenario)

the summer charge period, while 66 of the 67 EVs have a full
BSOC in the winter scenario. This compares favourably to the
standard objective function method where the lowest BSOC
of all the EVs was 68% and 58% for the summer and winter
charging periods respectively. As was the case for the previous
method, the EV that was not fully charged was connected to
phase c and is located near the end of the feeder branches.

It should be noted that the particular allocation of EVs in
this work resulted in there being a greater number of EVs
connected to one phase compared to the others. As this work
has shown, even an optimal method for maximising the energy
that can be delivered to charging EVs may be insufficient if
a large number of the EVs are connected to the same phase
of the network at the same time. Such scenarios may require
that the DSO reconfigure the distribution of load across the
phases.

D. Thermal Loading of Network Components

Thermal loading constraints of certain feeder components
are also taken into account by the optimisation technique.
Fig. 13 shows the loading of the LV transformer over the
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Fig. 12. Distribution function of the battery state of charge for all EVs at
end of the summer and winter charging periods: weighted objective function.

charging period for the winter scenario, while Fig. 14 shows
the loading for the 3-phase mains cable (Line 1-2 in Fig. 2)
that supplies the feeder from the transformer for the same
scenario. In both cases, it is evident that neither the transformer
nor the mains cable loading are the binding constraint on
this network. Clearly, the network equipment is more than
adequately rated for accommodating the additional load that
would be demanded by this high penetration of EVs, assuming
that the majority of charging occurs at off-peak times of day.
This may not be the case for all residential distribution feeders,
many of which may experience overloading of network com-
ponents due to large numbers of EVs charging simultaneously
at both peak and off-peak times of day. Without some form
of controlled charging for EVs, a significant increase in the
number of overloading incidences will impact on the lifetime
of these network components [6]. By employing a controlled
charging technique, like the one described in this paper, the
overloading of network components due to EV charging can
be avoided by incorporating certain constraints, (8), (9). While
this would result in increased loading levels during the off-
peak period, a flatter transformer load profile would impact
less on the transformer lifetime than a profile with large
overloads due to on-peak EV charging [24]. Together with
the introduction of other demand side management schemes,
many forms of residential load could be controlled in a manner
which would allow networks to be utilised to their fullest
extent while not impacting on component lifetimes.

E. Network Losses

The network losses as a percentage of the total energy
delivered to the network are presented in Fig. 15. For each
of the cases studied, the losses ratio is greater in the winter
charging period than in the summer period due to the increased
residential demand in the winter. The added demand from EVs
charging causes the losses ratio to increase significantly. This
is evident for both the standard (SOF) and weighted (WOF)
objective function methods. For the SOF case the losses ratio
increases from 0.3% to 4.1% in the summer and 1% to 4.5%
in the winter. For the WOF method these values increase to
4.6% in the summer and to 4.8% in the winter scenario.

Fig. 13. Thermal loading of LV transformer for winter charging period.

Fig. 14. Thermal loading of 3-phase mains cable supplying feeder for winter
charging period.

Fig. 15. Network losses for standard objective function (SOF) and weighted
objective function (WOF) cases.

F. Stochastic Scenario Analysis

A stochastic analysis of the network loading is carried out
in order to provide insight into the effects of the optimisation
technique while accounting for the variability associated with a
high penetration of charging EVs. The optimisation technique
using the weighted objective function was simulated for 500,
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Fig. 16. Distribution of measured voltages at network CPOCs.

9-hour charging periods (i.e. 18,500 time steps). Residential
load profiles for typical mid-week, winter scenarios were
generated based on the associated PDFs.

Fig. 16 shows the distribution of measured voltages for all
CPOCs over all charging periods for the scenario with no EVs
on the network and the scenario with 50% EV penetration with
optimised vehicle charging. This graph shows that the majority
of pre-optimisation voltage measurements are near or above
1 pu with reduced occurrences for decreasing voltage levels.
Following the application of the optimisation technique, the
majority of voltage measurements are recorded between 0.91
and 0.95 pu indicating that the optimisation technique was
able to maintain CPOC voltages above the low voltage limit
for the network. Any occurrence of voltage levels below the
lower voltage limit, in both the case with no EVs and the
optimised case, is due to the household demand. As a result,
these voltages remain unaffected in the optimised case as the
technique does not allow EV charging if the network is already
exceeding limits.

The distribution of thermal loading results for the trans-
former during the analysis is presented in Fig. 17. Prior to the
addition of EVs, the majority of loading measurements were
found to lie between 10% and 30% of rated loading. Following
the introduction of EVs, charged according to the optimisation
method, the majority of recorded measurements were found to
be in the region of 50-70% of rated loading.

Fig. 18 shows the distribution of measured thermal loading
for each phase of the 3-phase mains cable supplying the feeder
from the LV transformer. These measurements are from the
optimised case only. As can be seen from the loading results
for both the transformer and the mains cable, the rated loading
limit for either component is never the constraining factor for
the optimisation method. It is apparent that, for this particular
network, the electrical components are more than adequately
rated to accept the increased loading due to a high penetration
of charging EVs. Instead, the voltage limits are more likely
to be an issue with off-peak EV charging and, as a result, are
typically the constraining factor in the optimsation method.

Fig. 19 shows results for the final BSOC of all EVs after
each charging period, representing the BSOC of the EV with

Fig. 17. Distribution of measured thermal loading levels for the network
transformer.

Fig. 18. Distribution of measured loading levels on each phase of the 3-
phase mains cable supplying the network from the transformer (optimised EV
charging).

the least BSOC, as well as the average BSOC of all EVs.
For the high penetration level of charging EVs examined, the
optimisation technique results in an average BSOC of 99.9%.
While it is possible that not every EV will have a full BSOC
by the end of the charging period, such cases occur far less
frequently. The lowest final BSOC recorded over the analysis
was 13.3 kWh (66.5%).

The average losses on the LV feeder over all charging
periods were found to be 11 kWh for the case with no EVs and
80 kWh for the optimised charging case using the weighted
objective function method.

V. CONCLUSION

The introduction of large penetrations of EVs will have
significant impacts on the operating conditions of distribution
networks. If they are to be charged in a passive, uncontrolled
manner then major infrastructure upgrades may be required.
Controlled charging by the DSO could help to alleviate some
of these issues and allow EV owners to charge their vehicles
while maintaining the network within acceptable operating
limits. The work presented here has demonstrated how the
charging rates of a high penetration of EVs on a test network
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Fig. 19. Distribution of minimum and average BSOCs for all EVs recorded
at the end of each charging period.

can be optimised in order to deliver the maximum amount
of energy to the EVs within a set charging period subject
to network constraints, while ensuring that the underlying
residential load remains unaffected.

Results from this work have shown that maximising the
total power to all EVs according to network constraints will
favour those EVs that are connected near to the transformer,
rather than those connected towards the extremes of the radial
network. Therefore, a weighted objective function was studied,
which optimised the EV charging rates according to both the
impact on the network operating conditions and the BSOC of
the EVs. Results show that the modified objective function
increases the total energy delivered to the EVs. This objective
function was also tested for various charging period scenarios
and was shown to return an average BSOC of 99.9% for all
EVs over all periods examined.

Due to the use of linear programming, large amounts of data
are not required by the DSO at each time step in order to find
the optimal rate of charge for each EV. The technique is not
computationally intense nor does it require storage of historical
load data for subsequent use, and therefore could be easily
incorporated into a coordinated charging scheme. Determining
the various network sensitivities to additional load provides
insight into the condition of the network and could prove
very useful for DSOs employing such schemes. Assuming
the use of AMI within residential households and sufficient
communication links between the DSO and the AMI meter-
ing, practical implementation of the optimal charging method
would provide significant benefits in terms of accommodating
high penetrations of EVs.
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APPENDIX

TABLE III
CABLE CHARACTERISTICS

Line
Length R1 X1 R0 X0 C Irated

(m) (Ω) (Ω) (Ω) (Ω) (µF) (A)

MV 10,000 20.8 4 10 12 0.01 1000

1-2 190 0.032 0.014 0.095 0.041 0.053 510

2-3 27.5 0.008 0.002 0.024 0.006 0.008 368

3-4 85 0.024 0.006 0.073 0.018 0.026 368

4-5 97.5 0.028 0.007 0.084 0.021 0.029 368

5-6 154 0.062 0.011 0.185 0.033 0.046 300

4-7 119 0.048 0.009 0.143 0.026 0.036 300

2-8 32.5 0.009 0.002 0.028 0.007 0.01 368

8-9 59 0.017 0.004 0.051 0.013 0.018 368

9-10 106 0.03 0.008 0.091 0.023 0.032 368

10-11 95 0.027 0.007 0.082 0.021 0.029 368

9-12 217.5 0.087 0.016 0.261 0.047 0.065 368

Service Cable
0.8 0.07 - - 0.4 80

(per km)

R1 Positive sequence resistance R0 Zero sequence resistance
X1 Positive sequence reactance X0 Zero sequence reactance
C Capacitance Irated Rated current
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Local vs. Centralised Charging Strategies for
Electric Vehicles in Low Voltage Distribution

Systems
Peter Richardson, Student Member, IEEE, Damian Flynn, Senior Member, IEEE

and Andrew Keane, Member, IEEE

Abstract—Controlled charging of electric vehicles offers a
potential solution to accommodating large numbers of such
vehicles on existing distribution networks without the need for
widespread upgrading of network infrastructure. Here, a local
control technique is proposed whereby individual electric vehicle
charging units attempt to maximise their own charging rate for
their vehicle while maintaining local network conditions within
acceptable limits. Simulations are performed to demonstrate
the benefits of the technique on a test distribution network.
The results of the method are also compared to those from a
centralised control method whereby EV charging is controlled
by a central controller. The paper outlines the advantages and
disadvantages of both strategies in terms of capacity utilisation
and total energy delivered to charging EVs.

Index Terms—linear programming, load flow analysis, op-
timisation methods, power distribution, road vehicle electric
propulsion

I. INTRODUCTION

THERE is growing interest in electric vehicle technology
across the world, with many countries setting targets for

the integration of electric vehicles (EVs) into their respective
transportation sectors. The term “electric vehicle” can cover
a number of technologies that employ electrical energy as a
means of propulsion. These include battery electric vehicles,
which operate purely from battery power, and plug-in hybrid
electric vehicles, which operate on power from a combination
of an on-board battery and a combustion engine. The batteries
for both types of technology can be recharged from external
energy sources, in particular an electricity network.

Widespread implementation of plug-in EVs would lead to
significant changes to the way in which distribution systems
are planned and operated. Recent work in this area has sought
to investigate the limitations from large numbers of EVs on
network infrastructure in terms of increased loading, impacts
on efficiency and loss of life for network assets [1]–[5]. The
consensus from these studies is that existing distribution net-
works should be able to accommodate substantial penetration
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levels of EVs if the majority of charging is restricted to single-
phase charging at off-peak times.

The introduction of advanced metering infrastructure (AMI)
systems in residential housing, be it for real-time pricing
or active demand side management, or both, will aid the
control and predictability of the load patterns on residential
networks. In order to accommodate large numbers of EVs in
distribution systems, charging strategies could be implemented
to control the rate at which individual EVs charge. Previous
work has shown that by controlling the charge rates of EVs
on a low voltage (LV) residential network, so as to deliver
the maximum amount of power while maintaining the network
within its acceptable operating limits, many more vehicles can
be accommodated for charging than would be possible in an
uncontrolled scenario [6].

In [7], quadratic and dynamic programming techniques are
utilised to minimise the impact from EV charging on network
losses and deviations from nominal voltage on residential net-
works. By controlling and optimising individual EV charging
rates, network losses and voltage deviations are reduced for all
penetration levels examined. The work described in [8] and [9]
propose management strategies for EV charging/discharging
in LV microgrids. By allowing network control devices to
respond to voltage and frequency levels, it is shown that
the EV load can enable LV microgrids to be operated in a
stable manner. In [10], optimal charging strategies are devel-
oped whereby aggregated EV load can be used for network
regulation purposes. A number of optimisation methods for
determining the EV charging rates are examined. Depending
on the particular algorithm used, the techniques were shown
to provide significant benefits in terms of cost savings for
the customer and aggregator, and flexibility for utilities ac-
commodating variable renewable energy sources. The work
described in [11] uses an estimation of distribution algorithm
to schedule EV charging for large numbers of EVs in a parking
deck. The method optimises the energy allocation to the EVs
in real time while considering various constraints associated
with EV battery limits and utility limits. The method compares
favourably to other optimisation techniques in terms of total
energy delivered upon departure of the EVs. In [12], the
ability of a large number of EVs to smooth the load profile
of residential networks is investigated. By controlling the bi-
directional flow of energy to and from the EV batteries, it is
demonstrated that EVs can supply power to meet residential
load peaks while also creating more predictable load profiles.



2

Utilising EVs for the smoothing of load profiles is also
shown to be beneficial in terms of accommodating renewable
distributed generation.

This paper proposes a strategy for optimising the charging
rates of EVs based on a local control charging (LCC) method.
The objective of the strategy is to deliver the maximum
amount of energy to the EVs while maintaining the network
within acceptable operating limits. The LCC method allows
the optimal charging rates of the EVs to be determined
individually based solely on local network conditions and their
battery state of charge. This paper investigates the potential
advantages and disadvantages of the LCC strategy in terms
of network capacity utilisation and total energy delivered
to EVs. The results are compared to those of a centralised
control charging (CCC) method whereby a single controller
manages the charging rates of all the EVs on the network
simultaneously [6].

The methodology for this work is presented in Section II.
Section III describes the modelling of the test network, the
residential load and the electricity demand profiles of the
EVs. Results and discussion for a sample charging period are
presented in Section IV along with generalised results for a
wide range of network scenarios. Conclusions are presented
in Section V.

II. METHODOLOGY

A. Assumptions

In order to implement any type of active control at the LV
distribution system level, it is assumed that EV charging units
with load control capability are present in each household with
an EV present. AMI, which is also assumed to be present in
each household, enables time-of-day electricity tariffs which
incentivise customers to avoid the more expensive peak load
time of day. Each EV can charge at any rate between zero and
the charger’s maximum rated charge, subject to certain restric-
tions, which are outlined later in this section. It is assumed
that each of the EV charging units on the network have the
same charging capabilities. The ability to vary the charge rate
of individual EVs in a continuous manner for use in optimal
charging strategies has been studied previously [7], [10], [13].
While the possibility exists for fast, 3-phase charging, it is
assumed that each EV will be connected to the network via a
standard single-phase AC connection. Although the concept of
vehicle-to-grid for local system support or otherwise exists [8],
[10], [14], bi-directional flow of electricity to and from an EV
battery is not considered in this work. For the CCC method, it
is assumed that the load control capability of the EV charging
units can be utilised by the distribution system operator (DSO),
or a third-party controller, from a remote location.

B. Local Control Charging

Local control charging of EVs is achieved by each indi-
vidual EV charging unit maximising the charge rate of their
connected EV, subject to the voltage at its own customer point
of connection (CPOC) and the loading of its own single-phase
service cable. For each distributed control charging unit, the
sensitivity of the CPOC voltage and service cable loading to
the addition of EV load at its charger unit is predetermined

and is not updated at each time step (Section II-D). With the
predetermined sensitivity value, along with information about
the instantaneous voltage at the CPOC and loading of the
service cable, the charging unit maximises the rate of charge
of the EV without exceeding either the local voltage or single-
phase loading limits.

The objective of the charging units in the LCC strategy is
to maximise the amount of power delivered to their individual
EV at each 15 minute time step, subject to certain constraints.
Each charging unit aims to maximise its own charge rate and
cannot communicate with any other charger unit on the feeder.
The process is performed using the linear programming tool
in [17] and the optimisation occurs for each EV connected
to the feeder and available for charging. The optimisation
is calculated at each time step t. In this case, the objective
function, FLCC, is given as

FLCC = PEVx (1)

where PEV is the power delivered. It is assumed that PEV is
a continuous control variable that can vary between 0 kW and
the maximum power output of the charger. x is zero when an
EV is not connected at the CPOC or the EV battery is fully
charged, while x equals one when the EV at the CPOC is
connected and the EV battery is not fully charged.

C. Constraints

While each of the charging units has the ability to vary
their output in a continuous manner, the charging rate limits
are defined in (2), where PEVmax is the rated output of each
charging unit.

0 ≤ PEV ≤ PEVmax (2)

In order to avoid large variations in the charging rate over
consecutive time steps, which is undesirable for current battery
technology [15], a rate of change constraint is also imposed
(3).

P t−1
EV −∆ ≤ P t

EV ≤ P t−1
EV +∆ (3)

Here, t is the current time step and ∆ is a defined limit, in kW,
by which the charging rate can vary, compared to the charging
rate at the previous time step, excluding on/off transitions.

For the LCC method, the EV charger unit has the capability
to monitor the voltage at its own CPOC and the loading on
the service cable supplying the customer residence only. The
addition of EV loads, for the most part, will cause the voltage
at various points of the network to drop. The extent of the
voltage drop can vary depending on a number of factors, which
include the location of the EV on the network and the rate of
charge. The voltage at each CPOC must be maintained within
the rated voltage range specified for the network, (4).

Vmin ≤ VCPOC ≤ Vmax (4)

Here, VCPOC (V) is the voltage at the CPOC, while Vmin

and Vmax are the minimum and maximum allowable network
voltage levels respectively. The thermal loading of the service
cable refers to the total current flowing through the cable. This
constraint is summarised in (5).
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LSC ≤ LSCmax (5)

Here, LSC is the thermal loading of the service cable and
LSCmax is the current rating for the fuse at the CPOC for
the household.

D. Network Sensitivities

As stated in Section II-B, for the LCC method, the network
voltage and loading sensitivities to the addition of EV load
are predetermined. Only one set of sensitivities is used for all
time steps, which allows the charging unit at each household to
determine an optimal charge rate without the need to calculate
a new set of sensitivities at each time step. However, these
sensitivity values cannot be expected to match the constantly
varying load on the feeder. In order to determine the set of
voltage and loading sensitivities for the LCC method, a series
of unbalanced, 3-phase load flow calculations are performed
on the test network using power system simulation software
[16]. These load flow calculations determine the change in
voltage and loading levels at all points on the network subject
to the addition of EV load at each CPOC. In order to model
the expected residential load during charging periods, each
household is assigned a 2 kW load, which approximates the
maximum average household demand over all time steps in
winter. The sensitivity values for the voltage and loading
assigned to a charging unit are the summation of all the voltage
and loading sensitivities at all other CPOCs on the feeder
respectively. This takes account of the impact that multiple EV
loads, charging simultaneously, can have on a particular node
and service cable on the feeder. This fixed sensitivity value
is used in conjunction with the CPOC voltage and service
cable loading measurements at each time step in order to
determine the optimal charging rate for the EV. The constraint
equations for the CPOC voltage and service cable loading are
summarised as,

Vmin ≤ Vinit + µPEV ≤ Vmax (6)

LSCinit + βPEV ≤ LSCmax (7)

where, in (6), Vinit is the initial voltage at the CPOC. µ
(V/kW) is the summation of the voltage sensitivities at each
CPOC due to power demanded by that EV. For (7), LSCinit

is the initial loading on the service cable supplying the EV,
and β (A/kW) is the summation of the loading sensitivities
for each service cable due to power demanded by that EV.

E. Centralised Control

Centralised control of EV charging involves monitoring the
voltage at each CPOC, the thermal loading of each household’s
single-phase service cable, the loading of the LV transformer
and the 3-phase mains cable supplying the feeder, and also the
battery state of charge for each connected EV. This information
is sent to a centralised controller which incorporates additional
network information to determine dispatch signals at each
time step for the individual EV charger units accordingly. The

sensitivities of the voltage and thermal loading of the network
to EV load are calculated in advance for each time step. The
centralised controller is also aware of all network voltages and
line flows, which allows for a more accurate insight into the
instantaneous network condition than is possible with the local
control method. The controller then optimises the charge rate
of each vehicle in order to deliver the maximum amount of
power delivered to all EVs on the feeder, and thereby making
best use of the network capacity. The process occurs at each
time step and is independent of all other time steps with the
exception of the rate of change of charge constraint (3).

The objective function for the centralised control method,
FCCC, is given by

FCCC =

N∑
i=1

(
1−

(
BSOCi

BSOCmaxi

))
PEVixi (8)

where N is the number of customers being served by the
network, and PEVi is the power delivered, measured in kW,
to the EV connected at the ith CPOC. xi is zero when an EV
is not connected at the ith CPOC or the EV battery is fully
charged, while xi equals one when the EV at the ith CPOC
is connected and the EV battery is less than fully charged.
BSOCi is the current battery state of charge (kWh) for the EV
connected at the ith CPOC and BSOCmaxi is the maximum
battery capacity of that EV.

In (8), the objective function is weighted according to the
current BSOC of each individual EV. This weighting provides
a more even distribution of energy to charging EVs and
prioritises EVs with a low BSOC [6].

The centralised control charging technique considers the
same constraints as the local control method (i.e. (2),(3),(4)
and (5)), along with constraints ensuring that the rated loading
of the network transformer and the mains cable supplying the
feeder from the transformer are not exceeded. It is assumed
that the necessary monitoring and communication equipment
is installed on the feeder and that the data collected, along
with the data from the AMI of the customers, can be utilised
in determining the optimal charging rates for the EVs on
the feeder. A more detailed description of the method and
constraints for the centralised control method can be found in
[6].

III. SIMULATION DATA

A. Distribution Network

The test network is based on a LV residential distribution
feeder in a suburban area of Dublin, Ireland. A simplified
representation of the feeder is given in Fig. 1. In the actual test
feeder, each household, EV and service cable are modelled
separately. The model incorporates a 400 kVA, 10/0.4 kV
step-down transformer supplying a feeder of 74 residential
customers through 432 m of 3-phase mains cables and 2.16
km of single-phase service cables. A lumped load model,
representing a similar number of residential customer loads
with no EV loads, is included to represent another feeder being
supplied from the same transformer.

In Ireland, the LV distribution network is operated at a
nominal voltage of 230/400 V with a voltage range tolerance of
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Fig. 1. Single line diagram of test network.

+/-10% [18]. The transformer modelled here does not have any
tap-changing capability, which is typical of LV transformers in
Ireland. As such, the medium voltage (MV) network supplying
the LV transformer is included in the model as an equivalent
impedance in order to take account of the voltage drop at
this network level. The MV network is modelled such that at
maximum residential load (with no EV charging) the voltage
at all points of the network does not exceed -10% of nominal.
The voltage at the sending end of the MV network is set at 1.05
pu. Specifications for the network model components were
supplied by Electricity Supply Board (ESB) Networks, who
are the DSO in the Republic of Ireland.

B. Residential Customer Load Modelling

Load data for domestic electricity demand customers was
obtained from the DSO consisting of 15-minute time-series
demand data for high, medium and low use customers over
a one year period. These profiles were subject to time-of-
day pricing whereby the cheaper, off-peak tariff begins at 11
pm each day and ends at 8 am the following day. Different
electricity demand profiles were randomly assigned to each of
the houses in the test network. In order to confirm that these
load profiles portrayed an accurate representation of the power
demanded by a real distribution feeder, the coincidence factor
of the test network was determined. The coincidence factor
is defined as the ratio of the maximum diversified demand
divided by the maximum non-coincidental demand. From
assessing the yearly load profiles for each of the households
on the network, the coincidence factor was found to be 0.36,
which compares favourably with networks serving a similar
number of customers [19]. For modelling purposes, the power
factor for each household load is set at 0.95 inductive. The
load is modelled as a combination of 50% constant power (P)
and 50% constant impedance (Z).

C. Electric Vehicle Load Modelling

It is assumed that each EV is connected at the same CPOC
as the household load through a single-phase connection.
Charging profiles for EVs can vary depending on battery type,
charging equipment and the electricity supply network. For
this work, all EV batteries are modelled with a capacity of
20 kWh. The EV charging equipment is assumed to have a
maximum charging rate of 4 kW with a 90% efficiency rating.

The charging rate of 4 kW is appropriate in terms of the power
delivery capabilities of existing LV distribution networks in
Ireland [18]. The EV batteries are modelled as constant power
loads at unity power factor.

D. Time Periods for Investigation

1) Sample 24-hour Period: In order to demonstrate each of
the charging strategies, a sample 24-hour time period within
the one year period of residential load data was chosen. The
time period selected is from 12 noon to 12 noon the following
day and spans two weekdays in January. Due to the assumption
that all customers are subject to a time-of-day tariff scheme,
a large residential demand is experienced on the feeder once
the cheaper off-peak period begins. The maximum demand on
the feeder during this period is 270 kW.

In both cases, a 50% penetration of EVs on the feeder
was examined, which means that 37 of the 74 households
had exactly one EV charging at certain stages of the 24-hour
period. While a 50% penetration of EVs on a distribution
feeder may not be experienced for many years to come, it
was deemed appropriate to examine such a scenario in order
to fully capture the benefits of controlled charging strategies
compared to uncontrolled charging. For the simulations, the
EVs were allocated to the network in a random manner and
the locations remained fixed for each of the charging strategy
cases examined. The potential combined maximum demand
from a 50% penetration of EVs is 148 kW. EV usage data was
obtained from DSO led vehicle trials in order to determine a
plausible range of connection times, durations of connection,
and initial BSOC levels for the EVs in the simulations [20].
Based on this data, the connection time for each EV is
randomly assigned within a time frame of +/-3 hours of 11
pm, which is the start of the off-peak period. The duration of
connection for each EV is also randomly assigned, whereby
a vehicle remains connected for anywhere between 6 and 15
hours. Each EV is also assigned an initial BSOC, independent
of the connection time, at the beginning of the charge period,
determined as a random value between 0% and 75% of the
maximum battery capacity of 20 kWh, which ensures that each
EV has a charge requirement of at least 25% of their battery
capacity upon connection. The distribution of the initial BSOC
for each EV is shown in Fig. 2. Table I shows the breakdown
of EVs allocated on the feeder along with the total energy
requirement of these vehicles on a phase by phase basis.

TABLE I
INITIAL EV CONDITIONS

Combined Combined Total
Number Battery Initial Energy
of EVs Capacity BSOC Required

(kWh) (kWh) (kWh)
Phase a 12 240 86 154

Phase b 13 260 84 176

Phase c 12 240 53 187

Total 37 740 223 517
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Fig. 2. Distribution of the initial BSOC for EVs.

2) Stochastic Scenario Analysis: The charging period iden-
tified above examines the LCC and CCC optimisation tech-
niques for a specific network scenario. In order to investigate
a wider range of scenarios, a stochastic tool, similar to one de-
veloped in [21], was used to generate different residential load
scenarios with probabilistic conditions for varying residential
load, EV location, initial BSOC and duration of connection.

Probability distribution functions (PDFs) for the household
load were created based on the residential load data pro-
vided by the DSO, with PDFs for low, medium and high
use customers. 15-minute household load profiles were then
generated for each house for a 24-hour period from 12 noon
on a winter weekday to 12 noon the following day, similar
to the example 24-hour period. At the beginning of each 24-
hour period the EV locations on the network were randomly
selected with each EV then assigned an initial BSOC and
duration of connection time. The duration of connection is
randomly determined between 6-15 hours. The load model
and power factor for both the residential and EV load remain
the same as for the example 24-hour period analysis.

IV. RESULTS AND DISCUSSION

Both controlled charging strategies are tested for the sample
24-hour period, with the results compared to cases with no
EVs charging and with uncontrolled EV charging.

A. Uncontrolled EV Charging

In a scenario where no active control of EV charging is
present, an EV, once connected, will charge at a maximum
rate of 4 kW until it reaches a full BSOC. With distribution
networks not rated to accommodate large penetrations of this
type of load, a limit on the number of EVs allowed would have
to be put in place to ensure that the network always remains
within acceptable operating limits.

For the purposes of comparison, an example uncontrolled
charging scenario was created whereby there is a limit to the
number of EVs that are allowed to charge simultaneously.
This number was determined by incrementally adding EVs,
charging at their maximum rate of charge, to the feeder up
to the point before the feeder exceeds an allowable operating

Fig. 3. Lowest CPOC voltage for base case and uncontrolled charging case,
including the power demand from the EVs for the uncontrolled case.

limit. This test was performed with the residential load at the
maximum expected demand for the example 24-hour period.
For the test network utilised in this work, the predetermined
number of EVs that could be allowed to charge in an uncon-
trolled scenario was found to be 7 (≈ 10% of households).

Fig. 3 shows a profile of the lowest recorded CPOC voltage
on the feeder for each time step for both the base case with no
EVs and an uncontrolled case with a 10% penetration level.
The total power delivered to the EVs at each time step is
also shown. EV charging is assumed to commence once the
off-peak period begins (i.e. 11 pm), although a number of
EVs connect after this time also. As the figure shows, the
introduction of EV charging during this time period pushes
the lowest CPOC voltage towards the lower acceptable limit.
Any further increase in the number of charging EVs at the
beginning of the off-peak time period would likely result in
the lower voltage limit being exceeded. The amount of energy
delivered to the EVs in this scenario was 80.1 kWh.

B. Controlled EV Charging

The LCC method described in Section II is employed to
optimise the charging rates of the EVs connected to the
network. The rate at which each EV charges is now optimised
individually in order to deliver the maximum power to the EVs
while maintaining the voltage and service cable loading within
acceptable operating limits for each time step. At the beginning
of the charging period, the total energy required to return all
EVs to 100% BSOC is 517 kWh. For the optimisation process,
the lower voltage limit is set at 0.92 pu, which allows for
a margin of safety with respect to the lower voltage limit
(0.9 pu) defined in the Irish distribution network code [18].
This ensures that any unexpected short term variations in the
demand will not cause the network to exceed its operating
limits. The maximum variation allowable for the rate of charge
between time steps, i.e. ∆ in (3), is set at 1 kW for both control
strategies. Values for the voltage sensitivities, µ in (6), were
calculated to be in the range -0.02 to -0.045 V/kW. CPOCs
located at the extremities of the feeder were found to be more
sensitive to the addition of EV load than those located near
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Fig. 4. Lowest CPOC voltage for base case and local control charging case,
including the associated power demand from the EVs.

the start of the feeder. This characteristic is to be expected
of a radial feeder. The loading sensitivities, β in (7), of the
single-phase service cables were calculated to be in the range
8.2 to 8.7 A/kW.

The sample 24-hour time period is tested utilising the
controlled charging method for an EV penetration level of
50%. Fig. 4 shows the lowest recorded CPOC voltage on
the feeder for the base case and the LCC case, and shows
that the control method has maintained the lowest voltage
above the lower voltage limit of 0.9 pu. The method has
achieved this by curtailing EV charging during periods of
high residential demand and shifting it to a later stage of the
night. However, due to the inability of individual charging
units to know the network conditions at the other CPOCs
on the network, each unit is unaware of how many EVs are
charging at the same time step. This can potentially lead
to network conditions exceeding values determined by the
individual charger units in their optimisation calculations. An
example of this can be seen in Fig. 4, where the lowest CPOC
voltage has reached a value closer to the network limit of
0.9 pu, rather than the specified limit of 0.92 pu. At the
following time step, individual charger units recognise that
a limit has been exceeded and automatically attempt to rectify
the situation by adjusting their charging rate accordingly.

Fig. 5 shows the results for the lowest CPOC voltage
recorded for the case employing the centralised control
method. When compared to the LCC method, it can be seen
that the centralised control technique results in the lowest
recorded CPOC being much tighter to the specified voltage
limit than in the local control case. Due to the calculation of
a new set of sensitivities and knowledge of current network
conditions at each time step, the network controller has a
much greater insight to the condition of the network at all
CPOCs. This allows for a far more accurate dispatch of
EV charge rates, resulting in more charge being delivered
to the EVs while maintaining acceptable network operating
conditions. An example of this can be seen in the EV demand
profile for both methods. In Fig. 4, even though the base
case lowest voltage is already at the specified lower limit just
after midnight, the local control technique leads to some EVs

Fig. 5. Lowest CPOC voltage for base case and centralised control charging
case, including the associated power demand from the EVs.

requesting charge, which results in a further voltage drop. At
the same instant, using the centralised control technique, the
controller switches off all EV charging on the network until the
lowest base case voltage increases above the specified limit.

The centralised control method’s ability to update the set of
sensitivities and measure all network conditions at each time
step allows it to deliver the maximum amount of power to
the EVs, which results in the network capacity being utilised
to the fullest extent at each time step. However, in the local
control case the sensitivities are fixed, which results in less
power being dispatched to the EVs even though the network
is not at any of the specified limits. This results in the LCC
method taking longer to charge all of the EVs, as shown in Fig.
6, where the black area represents the electricity demand from
the EVs. In some cases, this can result in EVs finishing their
charge period with less than 100% BSOC due to the charger
units not utilising the network capacity to its fullest. For both
methods, the BSOC upon disconnection from the network is
shown in Fig. 7. It can be seen that the local control case
results in 3 of the 37 EVs having a final BSOC of less than
100%, with the lowest being 90%. Because the centralised
control method can deliver more power earlier in the charging
period it results in all 37 EVs having a full BSOC by the end
of the period. Details of the total energy delivered to the EVs
for both control charging methods are given in Table II.

TABLE II
TOTAL ENERGY DELIVERED TO EV BATTERIES

Total Energy % Energy
Delivered Requirement

(kWh) (for 50% EVs)
10% EVs (Uncontrolled) 80.1 15.5

50% EVs (LCC) 513 99.2

50% EVs (CCC) 517 100

For both of the methods tested, the lowest CPOC voltage
was found to be the binding constraint for the optimisation.
Fig. 8 shows the greatest loading for all service cables at each
time step. While the service cable loading is considered by
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Fig. 6. Network demand profiles for the local control and centralised control
charging scenarios.

Fig. 7. Final BSOC for EVs for local and centralised control charging
scenarios.

Fig. 8. Loading of service cable with greatest loading for each time step for
the local control and centralised control charging scenarios.

both methods it is clear that it is never a binding constraint
for the 24-hour period examined.

The CCC technique also considers the loading on the

network transformer and the loading on the 3-phase mains
cable supplying the feeder from the transformer. For the 24-
hour period examined here, neither the transformer nor the
mains cable loading are ever the binding constraint, as shown
in Table III.

TABLE III
MAXIMUM NETWORK COMPONENT LOADING

Mains Cable
Transformer Phase a Phase b Phase c

(%) (%) (%) (%)
No EVs 75.7 55.2 37.1 53.6

10% EVs 81.9 59.4 52.1 57.8

50% EVs (LCC) 82.1 61.8 55.5 69.3

50% EVs (CCC) 80.1 68.9 64.0 71.5

Network losses as a percentage of the total energy delivered
to the network over the 24-hour period were also recorded.
The increased demand from EV charging causes the losses
ratio to increase slightly for all cases compared to the base
case (1.1%). For the 10% EV penetration with uncontrolled
charging, the losses ratio was found to be 1.3%. The local
control case (1.8%) incurs less losses on the network when
compared to the centralised case (2.1%) but has delivered less
energy to the EVs over the charging period.

C. Stochastic Scenario Analysis

A stochastic analysis of both charging strategies was per-
formed in order to provide insight into operation of the
optimisation process while accounting for the variability and
uncertainties associated with EV charging, as described in Sec-
tion III-D2. Each of the charging techniques were simulated on
the test network for 300 distinct 24-hour periods (i.e. 28,800
time steps) during winter.

Fig. 9 shows the distribution of measured voltages for all
CPOCs over all charging periods for the scenario with no EVs
on the network and the scenarios for both controlled charging
methods. There is a significant increase in the frequency
of voltage levels nearer to the specified lower voltage limit
(0.92 pu), with a small increase in the number of occurrences
below this limit for both controlled charging methods. There
are also more occurrences, using the CCC method, when
the lowest CPOC voltage is at the specified limit, which
demonstrates better utilisation of the network capacity. As
explained in Section IV-B, this is due to the LCC method
operating on a fixed set of sensitivity values and utilising
local network information only, as opposed to the CCC method
which updates the sensitivities at each time step and has exact
knowledge of all network voltages and line flows.

The distribution of thermal loading levels measured on each
of the single-phase service cables is shown in Fig. 10. For the
majority of recorded values the loading is below 60% of the
rating. The service cable loading is only a binding constraint
for a very small fraction of the measured samples (i.e. less
than 0.01%).

Finally, the distribution of the final BSOC for all the EVs
for each charging period is shown in Fig. 11. The LCC method



8

Fig. 9. Distribution of measured voltages at network CPOCs.

Fig. 10. Distribution of measured thermal loading levels of single-phase
service cables.

Fig. 11. Distribution of final BSOC levels for all charging periods.

resulted in over 90% of all final BSOC values being within
95-100%, with 97% of all values above 80%. For each of the
CCC method charging periods, 100% of the final BSOC values
were found to be within 95-100% of the maximum capacity.

V. CONCLUSION

This work has demonstrated the benefits of controlled
charging for a high penetration of EVs charging on a LV
network. A local control method was proposed whereby each
individual EV charger maximises the charging rate of its EV
while maintaining the CPOC voltage and service cable loading
within acceptable limits. The method was tested on a LV test
network and the results were compared to those employing a
centralised control method.

The results indicate that the local control method allows a
far greater penetration of EV charging on a feeder than that
which could be accommodated with uncontrolled charging.
While the technique can deliver a similar amount of energy
to the EVs within a certain time period when compared
to the centralised control method, it is not as capable at
maintaining network parameters within specified limits and
may require larger safety margins. However, introducing a
number of predefined sets of sensitivities, each calculated
based on the expected residential load for a given scenario (e.g.
day/night, weekday/weekend, seasonal, etc.), could improve
the performance of the local control method.

The network and communications infrastructure required
to implement the local control method would be far less
than that required for the centralised control case. Individual
controllers would also be able to act independently and not
be reliant on external controller signals in order to operate.
As such, investing in a centralised control technique may
not be required until very high penetrations of EVs on LV
networks become a reality. With the introduction of AMI, a
local control technique may be sufficient for accommodating
initial penetrations of EV charging while maintaining network
limits within the desired operating regions.

A summary of the advantages and disadvantages for both
the LCC and CCC methods is given as follows:

Local Control Charging
Advantages:
· Minimal communications infrastructure required
· Sufficient for lower EV penetration levels
Disadvantages:
· No communication links to rest of network
· Larger safety margin required to maintain operating limits

Centralised Control Charging
Advantages:
· Real time insight into operating conditions at all points on
network
· Better utilisation of network capacity
· Option to include BSOC weighting
Disadvantages:
· Requires significant communications infrastructure across
network
· Requires 3rd party to control charging rates
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