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Abstract

Electric vehicles (EVs) are seen as a key future trend in the automotive industry. These vehicles

rely on rechargeable batteries to store energy on board. The optimum size of this energy store,

often referred to as the battery capacity measured in ampere-hours (Ah) or kilowatt-hours

(kWh), depends on the specific application, design limitations, costs and the degradation of the

particular battery pack.

Validated by ’real-world’ driving data from the Imperial College Racing Green Endurance

(RGE) flagship electric supercar, the SRZero, a software model following a quasi-steady,

backward-forward facing and equivalent circuit approach is introduced. This model is also

supported by the results of the 2010, 2011 and 2012 RAC Future Car Challenges as well as

by battery life testing from a lab environment. Furthermore, travel surveys from the United

Kingdom (UK), Germany and the United States (US) have been analysed and then converted

into input parameters for this algorithm. The work considers five different electric vehicle classes

ranging from mini cars to sport utility vehicles (SUVs).

Results show that varying kerb weights combined with differing levels of driving resistances

(aerodynamic drag, rolling resistance, climbing resistance, etc.) lead to reference ’driving forces’

of 70-290 Wh/km for the five reference vehicle classes. On average, SUVs consume more than

four times as much energy per unit distance as mini cars. Also, driving behaviour has a significant

impact on energy consumption and thus on the optimum nominal battery capacity. Empirical

data has shown that the mean driving force can vary up to 23% between drivers who follow

exactly the same route at comparable traffic conditions and driving another vehicle of exactly

the same make and model. Daily range requirements of EVs vary between 150-700 km based

on the 95th percentile of the number of all daily trips or the cumulative distance of all trips

combined for the UK, Germany and the US. Thus, optimum nominal battery capacities range

between 11-203 kWh.

In addition, it is shown that the optimum actual size of a battery pack for an electric vehicle

depends on the battery’s degradation as well. Over time and number of cycles the available

capacity as well as the available power fades. This is mainly due to the effects of increased

internal resistance, polarisation, corrosion and passivation. Therefore, first it is recommended

to reduce the depth of discharge (DOD) to 80% when the battery is in use. Second, a spare

capacity at the beginning of life of around 20-40% is recommended in order to satisfy range and

power requirements also towards the end of the EVs lifetime. It follows that the optimum actual

battery capacity is around 1.25-1.75 times the optimum nominal battery capacity for an EV.
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1. Introduction

Road transport describes the movement of people and goods from one location to another by

the means of automobiles, buses, trucks, motorcycles and other road-worthy vehicles. It is

important for economic growth as well as for quality of life, enabling international trade and

worldwide travel. In 2011 the global vehicle fleet for the first time surpassed one billion units [1].

The following sections highlight the present challenges facing the road transport sector (1.1),

make the case for electric vehicles, justify the need for an in-depth analysis of the sizing and the

degradation of batteries for electric vehicles (1.2) and finally define the research problem (1.3).

1.1. Background

Currently, the traditional road transport sector is being challenged in multiple ways:

• Fuel prices are expected to keep rising

• Governments around the world are increasingly tightening emission and safety standards

• Continuing urbanisation is leading to new road transport requirements

Oil prices, which alongside taxation dominate global petrol and diesel prices, have seen a rising

trend for the past 14 years. This is illustrated in figure 1.1, which shows the inflation-adjusted
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Figure 1.1.: Yearly Averaged Crude Oil Prices per Barrel in 2011 USD [2]

crude oil price over time. Three remarkable peaks stand out. First, in 1864 a combination of
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1. Introduction

short-time short supply and great demand led to the oil price’s all-time high of $115.45 per

barrel. In 1980 the second oil crisis caused the oil price to peak at $100.54. Since then prices

were falling until 1998. The average oil price from 2011 presents the third oil price peak. At

$111.26 the 2011 price is just below the all-time high of 1864. Economists argue that oil prices

are very likely to continue rising as the oil supply will decline in the foreseeable future while,

due to a growing world population (see figure 1.4) and booming emerging markets, the demand

for fuel is expected to increase.

Rising fuel prices lead to growing economic concerns about the impacts of road transport [3].

In addition, road transport is considered to cause environmental damage [4] and bring about

harmful health-related side-effects for society [5]. Internal combustion engines (ICE), which in

2011 powered 97% of the global vehicle fleet [6], convert chemical into kinetic energy by means of

combustion. In the ideal case of complete combustion of gasoline and oxygen (O2) a hydrocarbon

(CnH2n+2) is converted into water (H2O) and carbon dioxide (CO2) (equation 1.1). In reality,

carbon monoxide (CO) and pure carbon (C) in the form of soot are also emitted.

2C8H18 + 25O2 → 16CO2 + 18H2O (1.1)

It follows from equation 1.1 that fuel consumption and CO2 emission levels of an ICE are

proportional. Consequently, fuel efficiency and CO2 emissions are inversely proportional. CO2

emissions lead to localised pollution of the air and on a bigger scale are believed to cause global

warming. Figures from the International Energy Agency (iea) show that the transport sector

accounts for almost 1⁄4 (23%) of global energy-related CO2 emissions [7]. Road transport in

particular is responsible for more than 1⁄6 (17%) of global energy-related CO2 emissions as can

be seen from figure 1.2. Consequently, governments around the world put regulatory pressure
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Figure 1.2.: Global Energy-Related CO2 Emissions in 2008 [7]

on the vehicle manufacturing industry to develop more fuel efficient vehicles. Strict emission

standards are in line with energy policies of most governments, who seek to provide secure,

clean and affordable energy. Since 2000 CO2 emission levels for passenger vehicles in the major
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Figure 1.3.: Fleet Average CO2 Emissions for Medium-Sized Passenger Vehicles [8]

vehicle markets have been decreasing continuously. This is illustrated by the solid lines in figure

1.3, which represent historical performance. The figure shows past, present and expected future

fleet average CO2 tailpipe emission levels for medium-sized passenger vehicles based on the New

European Driving Cycle (NEDC) [8]. In the European Union (EU) for instance average CO2

emission levels have been reduced by almost 18% from 2000 to 2010. Any emission level data

points after 2011, shown with dashed lines, represent either enacted or proposed future targets.

Ambitious reduction targets can be observed in China, Europe, Japan and the United States

(US). From 2015 until 2020 these countries on average aim to lower their fleet average by 7

gCO2/km per year.

While CO2 emissions for individual passenger vehicles have been brought down over the last

decade, the total amount of CO2 emissions stemming from road transport has been rising [7].

This is owed to an increasing global vehicle fleet, which in turn is caused by two major trends.
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Figure 1.4.: World Population Trends [10]
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First, thanks to growing prosperity in developing countries, vehicle ownership per capita has

been rising in these countries [9]. Secondly, the world population has been growing too (see

figure 1.4). Thus, improving individual vehicles’ fuel efficiency alone will not reduce emissions

from road transport. Figure 1.4 also shows that since 2007 more people have been living in cities

than in rural areas. According to the United Nations (UN) urbanisation is likely to progress

for the next couple of decades [10]. Urbanisation has profound implications on road transport

as well. In order to cope with an increasing vehicle fleet and rising emissions, many major

city councils have introduced low-emission zones, congestion charge zones, and/or designated

parking areas for low/zero-emission and/or car sharing vehicles only.

To conclude, the road transport sector is currently facing rising fossil fuel prices, increasing

emission standards and urban driving as well as parking restrictions. Electric vehicles (EVs)

charged from renewable energy sources (e.g. hydro, solar, wind and/or geothermal) do not rely

on fossil fuels while driving. They offer zero tailpipe emissions at all times and, if charged

from non-fossil fuel based energy sources, even zero well-to-wheel emissions. Consequently, EVs

present one possible solution to overcoming the aforementioned challenges.

However EVs themselves pose new challenges for both battery and vehicle manufacturers.

Each of the vehicle parameters must be selected for an exceptional dynamic performance, out-

standing drivability, improved safety, and better fuel economy, all at a competitive price for

the consumer [11]. In particular energy density, power density, durability and costs of trac-

tion batteries are presently seen as major bottlenecks for the mass-commercialisation of electric

vehicles.

1.2. Rationale

Electric vehicles rely on rechargeable batteries to store energy on board. Lithium-ion (Li-ion)

type batteries are the preferred choice of energy storage for EVs at the moment because of their

relatively high specific energy, no memory effect and a slow self-discharge rate. Research into

Li-ion batteries for electric vehicles so far has concentrated on improving safety and durability,

on widening the operational temperature range and on increasing both the volumetric and the

gravimetric energy density while at the same time reducing costs [12]. Thus, the focus has for

long been on the microscopic level looking at electrochemical processes and structures. This has

led to major breakthroughs since 1976 when the Li-ion battery was first discovered. However,

there remains a vacuum with regards to the macroscopic inspection of batteries for electric

vehicles. The question is: What is the optimum battery capacity for electric vehicles with

particular focus on battery degradation?

Automotive manufacturers intending to introduce a new electric vehicle model first work

out the total energy requirement in order to size the battery pack. But, as most automotive

manufacturers are planning for a ten-year vehicle life span covering around 100,000-250,000 km

(≈106 km for lorries) [13], they need to take account for expected battery degradation as well. For
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example, an original equipment manufacturer (OEM), whose electric city car nominally requires

a 15 kWh battery, is likely to specify a 25 kWh battery instead, so that after ten years and 40%

performance degradation, the battery will still have sufficient energy capacity for unrestricted

operation. This may be too much, exactly right or just not enough. At the moment there is still

relatively big uncertainty as to how much exactly the capacity and power fades under differing

conditions. Consequently, there is a need for the detailed analysis of the optimum battery size

for electric vehicles, which draws particular attention to battery degradation.

1.3. Problem Statement

Sizing traction battery packs for electric vehicles is a complex and multi-disciplinary task. Fig-

ure 1.5 shows a selection of factors that affect the optimum battery capacity. The main fac-

tors include the individual vehicle’s energy consumption, the battery’s intrinsic properties, the

battery’s reliability, design constraints within the vehicle, safety considerations, environmental

aspects, costs and the available infrastructure. Several more lead to these main factors. Many

considerations also correlate with each other. A bigger battery pack due to the effects of bat-

tery degradation for instance will have an impact on the battery pack’s weight and volume
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Figure 1.5.: Factors Influencing Optimum Battery Capacity for EVs
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and also on the vehicle’s energy consumption. This work focuses on the individual vehicle’s

energy consumption and the battery’s degradation. The aim is to accurately predict an effec-

tive and efficient battery size, which ultimately saves volume, weight, and costs for automobile

manufacturers. In particular it intends to answer the following questions:

• What does ’optimum battery capacity’ mean in the electric vehicle context?

• Which are the main factors that affect the optimum battery size and how?

• What is the expected lifetime of an EV and therefore of its battery pack?

• What does battery degradation mean?

• How does battery degradation affect the sizing of a traction battery for EVs?

1.4. Outline

The rest of this work is divided into five chapters. The following chapter (2) is devoted to an

outline of the fundamentals and a comprehensive literature review. It first lays out the basics of

electric vehicles and batteries. Second, it reviews and critically assesses the available literature

on electric vehicles as well as on batteries for electric vehicles. At the end of this chapter

knowledge gaps as well as modelling gaps concerning the optimum battery capacity for electric

vehicles are identified. Chapter 3 explains the methodologies applied for this work. Specifically,

it outlines the main underlying assumptions, modelling and simulation tools used as well as the

validation techniques. The chapter on the nominal energy requirements of electric vehicles (4)

brings together two key elements, which affect the optimum battery size: driving force and range.

It concludes with the optimum battery capacity for various vehicle categories while neglecting

battery degradation. Chapter 5 ties in with the latter. It deals with battery performance and

degradation and their implications for the optimum battery capacity. The penultimate chapter

(6) discusses the main findings of this work and brings them together. It identifies the optimum

battery capacity for electric vehicles with particular focus on battery degradation. The final

chapter (7) concludes this work and suggests areas for further work.
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2. Fundamentals & Literature Review

The objective of this work is concerned with two main areas of research: electric vehicles and

batteries. Therefore, after a very short discourse on the terminology (2.1), sections 2.2-2.3 lay

out the basics and review the currently available literature about electric vehicles and about

traction batteries for electric vehicles respectively. The two sections are linked and thus several

cross-references are made. Both sections are divided into subsections that describe the particular

history, fundamentals as well as software models and close with a short summary. The history

outlines the main technological advancements of the past and the challenges, which still lie

ahead. Basic functionalities are explained in the subsections dealing with fundamentals. Major

software models for both EVs and batteries are introduced, analysed and critically assessed.

Ultimately, their gaps are identified.

2.1. Terminology

Software models and simulations will be reviewed, analysed and applied extensively for this work.

Consequently, it is important to define the common terms used in modelling and simulation.

These have been defined by P. Fritzson of Linköping University in Sweden [14] and extended by

[11]:

System: The object or collection of objects the software designer wishes to study

Inputs: The variables of the environment that influence the behaviour of the system.

These inputs may or may not be controllable by the designer

Outputs: The variables that are determined by the system and may influence the

surrounding environment

Experiment: The process of extracting information from a system by exercising its inputs

Model: Anything an ’experiment’ can be applied to in order to answer questions

about that system

Simulation: An experiment performed on a model

Modelling: The process of building a model that sufficiently represents a system

Simulator: A computer program capable of executing a simulation
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2.2. Electric Vehicles

Electric vehicles are not new. They have been commercially available for more than 115 years.

The idea of a vehicle being propelled by electricity is in fact older than that of internal combustion

engine vehicles (ICEVs). Consequently, the literature available about electric vehicles is both

broad and solid. In the following, the history of electric vehicles is outlined. This is followed by

an explanation of the basic principles of this alternative power train type. Subsection 2.2.3 is

devoted to the modelling of EVs, which also leads to the summary of this section (2.2.4).

2.2.1. History of Electric Vehicles

The history of electric vehicles is best characterised by an initial excitement during the turn

from the 19th to the 20th century, which is followed by a steep loss of interest until the early

1980s. After this, the interest in EVs has continuously been picking up again. Figure 2.1 depicts

these three phases, which are described in detail in the following paragraphs.
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Figure 2.1.: Electric Vehicle Hype Cycle (adapted from [15])

The Beginning (1828-1900)

The groundwork for electric vehicles was laid in 1800 when the Italian Alessandro Volta demon-

strated that electric energy could be stored chemically. In 1821 the Briton Michael Faraday

developed the first electric motor/generator. Who invented the very first electric vehicle re-

mains uncertain and several inventors have been given credit. In 1828 the Hungarian Ányos

Jedlik developed an early type of electric motor that powered a very small model car shown in

figure 2.2. Around the same time, in 1829, the Englishman Robert Stephenson assembled the

most advanced steam locomotive of its day, Stephenson’s Rocket . Three years later the French-

man Hippolyte Pixii demonstrated an operating electric motor at the Académie des Sciences in

Paris [17]. Between 1832 and 1839 Robert Anderson, a Scottish inventor, came up with the ‘first

crude electric carriage’, which attained a speed of 6.4 km/h [18]. In 1835 Thomas Davenport,
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Figure 2.2.: Jedlik’s Electric Vehicle Model from 1828 [16]

the inventor of the first American direct current (DC) motor, presented a small electric car

running on a short circular electrified track. Similar to Jedlik’s device and in the same year

of Davenport’s discovery Sibrandus Stratingh and his assistant designed a small-scale electric

car that first used primary (i.e. non-rechargeable) cells as the on-board energy storage device.

Stratingh’s car is considered to be the first battery electric vehicle (BEV).

Reliable secondary (i.e. rechargeable) cells only became available in 1859 thanks to the works

of the French chemist Gaston Planté. For more details on the history of traction batteries for

electric vehicles see section 2.3. Exploiting these scientific developments, the French inventor

Gustave Trouvé presented the first fully working full-scale three-wheeled electric vehicle at the

International Exhibition of Electricity in Paris in 1881. It was also during this show that

electrical engineers and scientists from around the world agreed on a standardised terminology

for this new area of research. The units included Ampere (current), Faraday (capacity), Gauss

(magnetic flux), Henry (magnetic inductance), Ørsted (magnetic intensity), Ohm (resistance)

and Watt (power), honouring the respective electrical experimenters [17].

Thanks to them operating independently of precious oxygen (O2), electric vehicles soon after

were deployed as trolleys in coal mines. Until the early 1880s electric motors were struggling with

reliability. Nikola Tesla, a Serbian-American engineer and scientist, is credited with overcoming

this issue by developing the first induction motor in 1883. This also fuelled the development of

a six-passenger electric wagon capable of reaching a speed of 23 km/h by the American William

Morrison in 1891. The first commercially available automobile however, presented in 1895 by

the German Carl Benz, was propelled by an internal combustion engine. EVs saw their first

commercial application in 1897 with the introduction of an electric vehicle taxi fleet in New

York. Thanks to their quiet, odourless, non-vibrating, and gearless operation this seemed an

ideal application for these low-range vehicles. Changing gears and hand-cranking in order to

start the engine were the most difficult tasks related to early ICEVs. Neither was required

for EVs, which greatly enhanced the ease of operation for women as well. Consequently, EVs

soon were perceived as ‘women’s cars’. Their limited range was quickly identified as the biggest

drawback. Thus, as early as 1896 an exchangeable battery service was proposed [19].

In 1899, it was an electric vehicle developed by the Frenchman Camille Jenatzy that would

be the first vehicle to go faster than 100 km/h. The ‘Jamais Contente’ (English: ‘The Never
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Figure 2.3.: Jenatzy’s Record Breaking ‘Jamais Contente’ from 1899 [20]

Satisfied ’), pictured in figure 2.3, reached a top speed of 105.88 km/h. Certainly by the end

of the 19th century the millennia-long land transport domination of the horse-drawn carriage

was brought to an end. Steam, petrol and electric driven vehicles were taking over instead and

would coin the so-called ’horseless age’. The share of electric vehicles as part of the total vehicle

fleet rose to 38% in 1900 in the US, the country where electric vehicles were most popular. This

is illustrated in figure 2.4.

St eam : 4 0%

E l ect r i c : 3 8%

P et r o l : 2 2%

Figure 2.4.: Power Train Types in the US in 1900 [21]

Lost Interest (1900-1980)

For a number of reasons electric vehicles lost their appeal at the beginning of the 20th century.

An improved road infrastructure connecting major cities both in the US and Europe meant that

in the absence of a battery-charging infrastructure vehicles with a greater range were sought

after. Due to their limited range (50-65 km), relatively low top speed (24-32 km/h) and long

charging time, electric vehicles remained limited to urban use. In addition, economic reasons led

to a losing interest in electric vehicles. During the 1910s and the 1920s the American Henry Ford

popularised mass production for petrol cars, which led to steep price cuts. In 1912 an electric

roadster sold for $1,750, while a petrol car cost $650 [22]. Dropping petrol prices during the
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early years of the 20th century (see figure 1.1) also played in the hands of petrol cars. Finally,

in 1912 the American Charles Kettering came up with the electric self-starter, an application of

battery power. It eliminated the difficult hand-cranking for petrol cars and thus enabled their

use for women as well [21].

Beginning with the 1920s electric vehicles would only cater for a very small share of a rapidly

growing passenger car market. Only a few manufacturers offered them on special order until

World War II [21]. During the war, both the Allies and the Axis were struggling with fuel

shortages. Especially at the home fronts they increased efforts to avoid the use of petrol. This

led to the development of electric milk floats in Great Britain (see figure 2.5), ‘the most long-

lived fleet of electric vehicles the world has ever seen’ [23]. However, compared with the total

Figure 2.5.: Typical Milk Float [24]

passenger vehicle market, the share was insignificant. Electric vehicles remained popular only

for a very limited range of applications. These mainly included the aforementioned milk floats,

forklifts and golf buggies.

After World War II several attempts by different car manufacturers have been made to revive

the electric car. One example is the ‘Henney Kilowatt ’ which was introduced in the US in 1959.

It featured a top speed of 96 km/h and a range of over 97 km. Despite these significant perfor-

mance improvements compared with earlier electric cars, the ‘Henney Kilowatt ’ proved to be too

expensive to penetrate the market. Several similar projects were also cancelled due to excessive

costs, unsatisfying range and/or performance. EVs remained niche products, exemplified by the

first manned vehicle on the moon during the Apollo 15 mission of 1971.

Anew Interest (1980-today)

The oil shocks during the 1970s and the 1980s (see figure 1.1) caused a renewed interest in

electric vehicles. California’s Air Resources Board (CARB) was among the first governmental

institutions to incentivise zero-emission vehicles (ZEV) in 1990 [25]. Despite an initial success

with carmakers developing a range of ZEVs including the Chrysler TEVan, the Ford Ranger EV

pickup and the GM EV1, the ZEV initiative got overturned in Federal Court in 2001. Chrysler,

Toyota, and a group of GM dealers successfully sued CARB alleging ‘the new ZEV rules violate

a federal law barring states from regulating fuel economy in any way ’ [26].
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In 1997 the Kyoto Protocol was adopted in order to stabilise ‘greenhouse gas concentrations

in the atmosphere at a level that would prevent dangerous anthropogenic interference with the

climate system’ [27]. Under the Protocol, 37 countries including Australia, Canada, China, the

EU, Japan and South Korea but excluding the US commit themselves to a significant reduction of

four greenhouse gases: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and sulphur

hexafluoride (SF6). Since road transport emissions present a major share of total greenhouse

gas emissions (see figure 1.2), worldwide emission standards for road vehicle have been becoming

stricter ever since (see figure 1.3). As a consequence car manufacturer have been introducing

more low-emission vehicles. These include pure EVs, fuel cell electric vehicles (FCEVs), range-

extended electric vehicles (REEVs), plug-in hybrid electric vehicles (PHEVs), hybrid electric

vehicles (HEVs) and downsized internal combustion engine vehicles. The most prominent low-

emission vehicles during the 1990s have been the Toyota Prius and the Honda Insight, both

hybrid electric vehicles [23].

During the 1990s and the 2000s most major car manufacturers did not offer EVs for sale.

Instead they have been focussing on the development and selling of internal combustion engine

vehicles and some hybrid electric vehicles. Consequently, small companies have filled the gap of

developing and selling EVs. In 2001, after seven years of research and development the REVA

Electric Car Company of India launched the REVAi, a small micro electric car. In the United

Kingdom (UK) it is known as G-Wiz and has become particularly popular in urban spaces. Due

to safety concerns in many countries it does not qualify as a highway-capable motor vehicle.

Instead it is classified as a neighbourhood electric vehicle (NEV), which can only be driven on

roads with speed limits of up to 72 km/h depending on local regulations. According to Pike

Research, globally there were 475,000 NEVs registered in 2011 [28]. NEVs, which also include

electric fork lifts, golf carts and milk floats, constitute the largest share of commercially available

EVs.

As of December 2012 the number of commercially available and highway-capable EVs is

limited. Table 2.1 lists a selection of currently commercially available and highway-capable

EVs. Out of 28.4 million cars registered in the UK in December 2012 around 2,000 are fully

electric, i.e. 0.007% [29]. The Tesla Roadster, the Tesla Model S and the Nissan LEAF (leading,

environmentally friendly, affordable family car) are the two most prominent electric vehicles of

the 2000s and 2010s so far.

The main technical challenges facing EV development today have broadly remained the same

over the past century. They include limited range, deteriorating range (as a function of time,

number of driving cycles, temperature, etc.), accurate and real-time predictions of the remaining

energy level, high capital costs and an insufficient charging infrastructure. However, most of

these (range, energy level and costs) are directly related to the traction battery.
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Table 2.1.: Selection of Commercially Available EVs as of December 2012 [30]

Make Model Vehicle Peak Top Range1 Battery Price
Mass Power Speed [km] Capacity [$]
[kg] [kW] [km/h] [kWh]

BMW ActiveE2 1,800 125 140 151 32.0 n/a
BMW Mini E2 1,465 150 150 153 35.0 n/a
Bollor Bluecar 1,120 50 110 150 30.0 n/a
BYD e6 2,020 200 140 300 48.0 35,000
Citroën C1 ev’ie 890 30 100 100 16.0 30,890
Coda Sedan 1,660 100 130 142 31.0 38,000
Ford Focus Electric 1,674 107 135 122 23.0 36,000
Kewet Buddy 994 13 80 100 15.0 35,000
Lumeneo Smera 550 30 110 100 9.3 33,000
Mercedes-Benz Vito E-Cell 2,275 60 89 100 36.0 30,000
Mia electric 764 9.7 100 130 8.0 33,700
Mitsubishi i-MiEV 1,080 47 130 100 16.0 45,100
Nissan Leaf 1,521 80 150 120 24.0 32,780
Renault Fluence ZE 1,543 70 135 185 22.0 32,000
Renault Zoe 1,392 65 135 210 22.0 25,000
REVA i 665 13 80 80 9.6 12,000
REVA L-ion 565 13 80 120 9.6 n/a
Smart ED 870 30 100 135 16.5 20,000
Tazzari Zero 542 15 100 140 12.3 29,900
Tesla Roadster 1,235 215 200 240 56.0 92,000
Tesla Model S 2,108 310 200 393 85.0 95,400
Th!ink City 1,038 34 110 160 23.0 30,000
Toyota RAV4 EV 1,830 115 137 148 41.8 49,800
Wheego Whip LiFe 1,284 45 95 160 30.0 32,995

� 1287 80 122 156 27.13 38,428

2.2.2. Fundamentals of Electric Vehicles

The following paragraphs first explain the basic working principles of ICEVs, HEVs and PHEVs

and then describe the functionality of an EV in more detail.

Working Principle of ICEVs, HEVs and PHEVs

The power train of an EV differs significantly from that of a conventional internal combustion

engine vehicle. Figure 2.6 shows the basic power train layouts for different types of vehicles. The

ICEV power train layout, shown on the far right, solely relies on fossil fuels as energy source.

The most commonly used fuels for ICEVs, petrol and diesel, have approximate energy contents

(gross calorific values) of 13,083 Wh/kg and 12,663 Wh/kg respectively [31]. The fuel is burnt

in the internal combustion engine, which results in relatively high rotational speeds (1,000-8000

rpm) of the crankshaft. The crankshaft is connected to a gear box, which converts speed and

1based on both NEDC and US FTP-75
2demonstration fleet
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EV PHEV HEV ICEV

Figure 2.6.: Basic Vehicle Power Train Configurations [32]

torque while keeping the power coming from the ICE constant. This description ignores losses,

which for an ICEV are relatively high. Figure 2.7 demonstrates that for a mid-sized ICEV

during an urban cycle less than 1⁄5 of the fuel energy is converted into useful propulsion energy.

More than 3⁄5 of the initial fuel energy is lost in the ICE in form of heat.
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Figure 2.7.: Representative Energy Flow of an ICEV During an Urban Drive Cycle [33]

A typical parallel hybrid electric power train layout is shown on the left of the ICEV power

train layout in figure 2.6. It features an ICEV power train in parallel with an electric power

train with a relatively small battery pack (≈ 1-2 kWh), power electronics and one or several

electric motor(s). Both power trains can power the vehicle either individually or together. The

series hybrid electric power train on the left of that has a relatively larger battery pack (≈ 4-5

kWh). Only the electric motors power the drive train, whereas the ICE works as a generator to

charge the battery pack. For a series HEV the battery cannot be charged externally, whereas

for a PHEV it can.

Working Principle of EVs

The EV drive train, illustrated on the far left in figure 2.6, exclusively takes its energy from the

battery pack. Consequently, the EV’s battery pack is the largest (≈ 10-100 kWh) and usually

is also bigger and heavier than the fuel tank of a comparable ICEV. This is due to the relatively

low specific energy of modern lithium-ion batteries, which currently ranges in between 100-250

Wh/kg [12] (see also figure 2.26). EVs do not necessarily require a transmission like ICEVs

as their power electronics can match speed and torque requirements accordingly. Also, they
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can have one, two, three or four electric motors installed. Figure 2.8 illustrates how the power

electronics including the electronic controller and the motor controller(s) manage the energy

flow from the AC power source to the wheels. Thick arrows represent energy flows, thin ones
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Figure 2.8.: Basic EV Configuration [34]

stand for electronic signals. First, the EV is charged from an alternating current (AC) power

source (e.g. power socket or charging point). The on-board battery charger acts as a rectifier

converting AC to DC power. The battery pack usually operates at a relatively high voltage

(75-600 V) in order to avoid high currents, which cause increased ohmic losses. Most current

commercial EVs operate at a pack voltage of in between 300-400 V, which allows lower currents

for the same power level. Equation 2.1 clarifies the relationship between current and heat loss.

Ploss = I2R (2.1)

The ohmic power loss Ploss is proportional to the square of the current I. Depending on the

type of electric motor(s), the use of inverters may be necessary. Despite their increased control

requirements and the need for inverters, AC motors are the preferred choice over direct DC

motors, because of their superior power and energy density. In this example (figure 2.8) an

AC motor is applied. From the DC battery pack the electric potential energy is transferred to

one or several inverters which convert the DC power back into AC power. At the same time

the inverters act as motor controllers by adjusting voltage and current in order to cater for

the requested speed and torque values respectively. Finally, depending on the layout, one or

more electric motors apply a traction force to the wheels. For a direct-drive design this is done
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immediately, alternatively a gear box can be added in between. The all-electric Nissan Leaf and

Tesla Roadster feature final gear ratios of 7.98 and 8.28 respectively [35]. In addition to the high

voltage system and the power train system there usually is a low voltage system (≈ 12 V) as well.

A DC/DC converter reduces the high system voltage to approximately 12 V. The low voltage

system, which typically consumes only about 2% of the total available power [36], caters for

the starting, lighting and cooling requirements of the vehicle as well as for auxiliary needs such

as radio, air conditioning (A/C) and heating. Losses of electric power trains are significantly

smaller compared to those of ICEV drive trains. Figure 2.9 demonstrates that more than 3⁄5 of

the input grid energy is converted into useful propulsion energy at the wheels.
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Figure 2.9.: Representative Energy Flow of an EV During an Urban Drive Cycle [37]-[39]

2.2.3. Modelling of Electric Vehicles

The modelling of EVs is as old as the EV itself [40]. However, due to the prevalence of the internal

combustion engine vehicle during the 20th century (see section 2.2.1), simulation software for

ICEVs and in particular internal combustion engine modelling has advanced far beyond electric

vehicle and its component modelling. The following paragraphs present an overview and a critical

appraisal of the currently available and most popular software models for electric vehicles.

Most modern vehicle simulations can be categorised according to two parameters; direction

and accuracy of modelling [11]. First, depending on the direction of the simulation, vehicle

models can be forward-facing, backward-facing or a combination of the two. Secondly, depending

on the level of details, vehicle models may be steady-state, quasi-steady, or dynamic. Here,

forward-facing models are considered first, then backward-facing and finally mixed models are

examined. Some models were first developed more than 20 years ago, but have been updated

continually since.
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Forward-Facing Models

Forward-facing vehicle models describe simulations which use control signals like the driver

stepping on the accelerator or brake as inputs (see figure 2.10). This means that the physical

causality is respected. If the vehicle is required to follow a speed-time trace, a drive cycle,

the forward-facing model derives the required control signals [41]. Typically, this is done via

a proportional-integral-derivative (PID) controller [42]. The control signals are then used to

determine the required torque and speed values from the electric motor(s). These values are

Driver Controller Battery Inverter Motor Transmission Wheel 

Figure 2.10.: Forward-Facing EV Software Schematic

then used as inputs for the transmission system, which again are used as inputs for calculating

the speed and torque of the wheels. The resulting layout, which is similar to that in figure

2.8, has one direction of information/simulation flow only. The forward-facing approach is

very beneficial for a detailed causality analysis and in order to work out maximum speed and

acceleration. Practically, it calculates the effect at the wheel caused by the driver’s inputs. Thus,

the forward-facing modelling approach has distinct benefits:

• Follows physical causality

• Quick and computationally easy integration with vehicle control systems (e.g. LabVIEW

[43] or MATLAB/Simulink [44])

• Good dynamic response

However, for the detailed analysis of power train components such as the electric motor or the

battery pack the forward-facing approach has disadvantages:

• Most validated component models are defined as backward-facing only

• Exact knowledge of control inputs requires expensive and complicated sensor equipment

In the following six well-established forward-facing vehicle simulation models that also cover

electric vehicles are presented in alphabetical order.

Autonomie , the successor software of PSAT, was developed by the Argonne National Lab-

oratory (ANL) and General Motors (GM) in 2007. As a forward-facing simulation it predicts

and analyses fuel efficiency and performance of various power train types [45]. Autonomie de-

termines system hardware and software requirements, which concentrate on component control

parameters regarding variation and/or robustness.
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AVL CRUISE is a commercial power train simulation software developed by the Austrian au-

tomotive consultancy AVL List GmbH [46]. CRUISE follows an object-oriented forward-facing

physical modelling approach. It can be linked with other simulation tools such as AVL DRIVE

(driving dynamics and comfort), Flowmaster, Kuli (both cooling fluid simulations), AVL In-

Motion (hardware-in-the-loop (HiL) simulation), MATLAB/Simulink (control simulation) and

Microsoft Excel. CRUISE supports conventional ICEV modelling as well as PHEV/HEV and

EV modelling for optimisation of fuel efficiency, emissions, performance and drivability.

Dymola is a commercial modelling and simulation environment for engineering applications

based on the the open-source Modelica modelling language [47]. Developed by the French

software specialist Dassault Systèmes, Dymola features model libraries which cover systems

like power trains, vehicle dynamics and electric drives. Thanks to the use of open software,

users are free to create their own model libraries or to modify the ready made model libraries

to better match their unique modelling and simulation needs. The smart electric drives library

focuses on the simulation of hybrid vehicles and not pure electric vehicles.

Modelica is an object-oriented, equation based modelling language for complex systems [48].

Dymola is one of its many simulation environments. The other environment that can be used for

power train analysis is CATIA (Computer Aided Three-Dimensional Interactive Application),

although its focus lies on computer-aided design (CAD). In addition to the libraries available to

Dymola, Modelica libraries feature more than 1,200 model components and over 900 functions.

PSAT describes the Powertrain System Analysis Toolkit first developed by ANL in 1999 [49].

At the price of a relatively high computing power input PSAT allows for the development of

realistic control strategies for internal combustion engine vehicles as well as for advanced power

train types including electric vehicles. PSAT follows a quasi-steady approach and in 2007 it was

overhauled in order to develop Autonomie.

SimDriveline is one of many commercial library extensions of the MATLAB/Simulink envi-

ronment [50]. Unlike the conventional Simulink blocks which represent mathematical operations

or operates on signals, SimDriveline models an entire vehicle drive train system. At best, these

models represent steady-state relationships [51]. SimDriveline’s focus is on conventional ICE

power train configurations and vehicle dynamics.

Backward-Facing Models

Backward-facing vehicle models run in the opposite direction of forward-facing vehicle models,

which means that the physical causality is not respected (see figure 2.11). They typically use a

drive cycle and vehicle parameters as input in order to deliver specific component behaviour like

that of the traction battery as output. It follows that the backward-facing approach calculates
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Drive Cycle Wheel Transmission Motor Inverter Battery 

Figure 2.11.: Backward-Facing EV Software Schematic

the power input given the power output. This leads to a number of benefits, which are closely

related to the drawbacks of the forward-facing approach:

• Most component models which include steady or dynamic efficiency maps are defined in

terms of output speed and torque.

• Vehicle performance benchmarking for fuel/energy consumption and CO2 emissions is

normally performed through standard drive cycles like the European NEDC, the American

FTP-75 or the Japanese 10-15 mode (see appendix D).

• Computation time can be reduced significantly since standard integration routines can be

used with the relatively large (often t = 1 s) time steps of drive cycles [52].

There are also disadvantages associated with the backward-facing approach:

• It assumes that the speed-time trace (drive cycle) is achieved by both the driver and the

vehicle.

• The approach fails to directly predict vehicle performance including climbing ability, max-

imum acceleration or speed.

• Modelling and developing a control system is not possible.

The following paragraphs are dedicated to popular applications of the backward-facing approach.

CarSim was first developed by AeroVironment, Inc. in 1992 [53]. It features a similar func-

tionality as that of SIMPLEV, emissions however cannot be predicted. CarSim’s focus lies on ve-

hicle dynamics and drivability, with detailed driver control, aerodynamic, 3D geometry, friction,

suspension, steering, brake and tyre models [54]. It offers interfaces with MATLAB/Simulink,

LabView and AVL Cruise.

JANUS is a road vehicle simulation package, first developed at the Engineering Department

of Durham University [55] in 1985. Written in the Fortran programming language, it allows

different power train types including electric ones to be simulated. Standard input parameters

are regulatory drive cycles and typical outputs include fuel/energy consumption.

MARVEL is a software written for the more holistic evaluation of electric and hybrid electric

vehicles [56]. First developed at ANL in 1991, it is a backward-facing model, which provides

relatively little flexibility. Its aim is to provide life-cycle cost evaluations. In order to achieve

this, it includes extensive modelling of the inter-relationships among battery parameters.
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QSS is the open Quasi-Static Simulation designed by the Institute for Dynamic Systems and

Control of the Swiss Federal Institute of Technology Zurich in 2007 [57, 58]. It is based on

the MATLAB/Simulink platform, which provides the user with great design flexibility. Its

input variables are speed, acceleration and the road gradient. With this information and the

vehicle’s main parameters, the required tractive force for the chosen profile can be calculated.

The vehicle parameters consist of the frontal area, the aerodynamic drag coefficient, the rolling

Figure 2.12.: Top Level Block Diagram for a HEV in QSS [58]

resistance coefficient and the vehicle mass. Quasi-static in the context of this approach means

that the velocities and accelerations are assumed to be constant for a given time step. The

time interval has to be chosen small enough in order to satisfy this assumption. Thus, for the

main regulatory drive cycles (see appendix D) this is equal to 1 s. The quasi-static approach

presents a compromise between the fast steady (or average-operating-point) approach and the

mathematically ‘correct’ but computationally intensive dynamic approach. QSS is relatively

accurate for long time intervals (i.e. t ≥ 1 s), but substantially inaccurate for short time

intervals (i.e. t < 1 s) [57]. The QSS battery model is presented in section 2.3.4.

SIMPLEV describes the Simple Electric Vehicle simulation program first developed at the

Idaho National Engineering & Environmental Laboratory in 1991 [59]. It is strictly backward-

facing, features a basic interface based on the disk operating system (DOS) and can plot typical

output results like energy consumption, and well-to-wheel emissions.
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Combined Models

Forward-facing vehicle models are powerful tools for vehicle performance analysis (e.g. climbing

ability, maximum speed and acceleration) and for control design, the processing time however is

long. Backward-facing vehicle models are convincing instruments for energy consumption and

emissions analysis as well as for the examination of individual component behaviour, but the

physical causality is neglected. Most of the time vehicle designers need to have overall vehicle

performance as well as individual component data available to them. Preferably for them, the

simulation is fast and also reflects real system setup. Consequently, software designers have

come up with hybrid models, which combine forward- and backward facing vehicle models.

These hybrid models are considered to be state of the art of electric vehicle modelling. The

following paragraphs introduce four popular ones.

ADVISOR is the Advanced Vehicle Simulator first developed by the National Renewable

Energy Laboratory (NREL) as a commercial software in 1994 [52]. Between 1998 and 2003

ADVISOR was made available free of charge before AVL, the company behind AVL Cruise,

licensed it until 2012. Since then the simulator is distributed under a permissive open-source

Figure 2.13.: ADVISOR 2.1 Vehicle Input Screen [60]

license and can be downloaded from [60]. In contrast to most of the other simulators presented,

ADVISOR includes all elements of the source code. This provides a high level of modelling

flexibility for the user. ADVISOR features a powerful graphical user interface (GUI) shown in

figure 2.13. The vehicle power train layout, in this case an EV, is shown on the top left hand

corner. Specific empirical component characteristics (in this case the variation of the battery’s

internal resistance with state of charge (SOC)) are mapped on the bottom left hand corner.

The right hand side of the input screen allows the user to manually change vehicle, energy

storage, transmission, wheel, accessory and control parameters. Fundamentally, ADVISOR is

an empirical backward-forward facing model, relying on static maps that reflect steady-state

behaviour of vehicle subsystems. Although the backward-facing approach is dominant (see
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Figure 2.14.: ADVISOR’s Top Level Block Diagram for an EV [60]

figure 2.14), feedback loops in the opposite direction represent forward-facing modelling. Two

assumptions are overriding ADVISOR’s modelling architecture. First, no drive train component

requires more power from its upstream (i.e. backward-facing) neighbour than it can use. Once a

component operating limit is reached, the input speed is either lowered or increased. Operating

limits include wheel slip, maximum engine speed, maximum torque at different speeds, maximum

controller current, minimum controller voltage, maximum and minimum battery voltage as well

as maximum battery current. Secondly, individual component efficiencies are the same for both

the forward- and the backward facing simulation. Using a standard personal computer (PC)

ADVISOR’s solution speed is on the order of 1⁄75 of real time [61]. It features five battery models,

two of which are only applicable to lead-acid batteries. The remaining three are introduced in

section 2.3.4.

FASTSim stands for the Future Automotive Systems Technology Simulator also developed at

NREL [62]. It aims at quickly evaluating the impact of technology improvements on vehicle

efficiency, performance, cost, and battery life in conventional vehicles, hybrid electric vehicles,

plug-in hybrid electric vehicles, as well as electric vehicles (EVs). FASTSim is written in Mi-

crosoft Excel and features a user-friendly interface. Inputs include engine power, battery power

and vehicle mass which lead to typical outputs like energy/fuel consumption, emissions and

costs. The battery model, which also estimates battery life time, is described in section 2.3.4.

V-Elph is a system-level modelling, simulation, and analysis package first developed by a

Masters student at Texas A&M University in 1996 [63]. It is based on MATLAB/Simulink

and uses visual programming techniques. V-Elph calculates parameters like energy efficiency,

fuel economy, and vehicle emissions. It aides designers for hybrid electric and electric vehicles

with component sizing, energy management strategies, and general optimisation. The schematic

shown in figure 2.15 is remarkably similar to that of ADVISOR, however less complex (see figure

2.14).
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Figure 2.15.: V-Elph’s Top Level Block Diagram [63]

Other Models

In addition to the aforementioned vehicle simulations, which basically pass on power require-

ments up and/or down the power train, more complex vehicle modelling platforms exist. The

Virtual Test Bed (VTB) from the University of South Carolina (USC) is designed for the pro-

totyping of large-scale, multi-disciplined dynamic systems [64]. Its focus lies on advanced power

systems, especially on hybrid or fully electric land, air and sea vehicles. Individual component

models can be integrated as ’black box’ models into a system without passing on valuable intel-

lectual property (IP) to other contributors. Similarly, PSIM is a simulation software for complex

systems, focussing on power electronics and motor control [65].

2.2.4. Interim Summary

Electric vehicles have been around for more than 100 years. They have been particularly popular

in the US around 1900 where they made up more than 1⁄3 of the vehicle fleet. Dropping petrol

prices, mass manufacturing and the limited range of electric vehicles amongst other factors led

to the dominance of internal combustion engine vehicles during the 20th century. This also led

to significant advances in the modelling of combustion engine vehicles compared with electric

vehicles. At the beginning of the 21st century several alternative power train types including EVs,

FCEVs, PHEVs and HEVs have become commercially available. Thus, the need to accurately

model and simulate alternative power train types is evident.

Vehicle simulators can be categorised according to the level of accuracy and according to the

direction of simulation. With the exception of AVL Cruise, Dymola, the VTB and PSIM all

presented vehicle simulations are either based on steady or quasi-steady assumptions. Dynamic

models are often limited to individual components like the internal combustion engine, electric

motors or the battery pack. Most dynamic power train models, which usually are formulated

using sets of ordinary differential equations (ODEs), cannot be executed in real-time [66]. They

suffer from the ’curse of dimensionality’, i.e. from a rapid increase in complexity with an

increasing number of dimensions. Steady and quasi-steady models can be computed in real time

or faster and apply empirical data, engineering assumptions, and physics-based algorithms.

Their main advantage is fast computation. Forward-facing models, which simulate the vehicle

starting with the driver input down to the forces at the wheels, are more accurate than backward-
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facing models. They are particularly powerful tools for the development of an effective control

strategy. On the other hand, their high level of complexity leads to increased computational time.

In contrast, backward-facing models are typically much faster. Hybrid models like ADVISOR,

which form the state of the art of electric vehicle modelling, are aimed at combining the strengths

of each approach.

The aim of this work is to establish a battery sizing model for electric vehicles, which also

considers battery degradation. None of the presented electric vehicle models currently incorpo-

rates such a component model. Both ADVISOR and QSS feature the most detailed battery

models out of the envisaged ones, which could be expanded for this purpose. Therefore, the

proposed component model needs to be mainly backward-facing with iterative loops in the

forward-direction in order to be incorporated into either ADVISOR or QSS.

2.3. Batteries for Electric Vehicles

An electrical battery describes one or more electrochemical cells that convert stored chemical

energy into electrical energy. Since its discovery it has become a common power source for

both stationary and mobile applications. The following paragraphs first outline the history of

batteries and then explain the fundamentals of batteries including battery degradation. These

are followed by paragraphs that outline the main modelling approaches regarding batteries and

a summary at the end of this section.

2.3.1. History of Batteries

The first batteries are considered to be more than 2,000 years old. In 1938 archaeologists

uncovered a set of clay jars near Baghdad in Iraq, each containing a copper cylinder that encased

an iron rod [67]. Replicas of the so called ’Baghdad Battery’, illustrated in figure 2.16, work

Figure 2.16.: Baghdad Battery with Copper Cylinder and Iron Rod [68]

and can produce voltages from 0.8 to nearly 2.0 V. Scientists assume that a common food acid

such as lemon juice, wine or vinegar could have served as electrolyte.

The first successful scientific examination of electricity in the modern sense was undertaken

by the American polymath Benjamin Franklin in 1749 nearly 30 years before the United States

declaration of independence. He coined the term ’battery’ by linking an array of capacitors
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with electricity. He used charged glass plates as capacitors. In 1780 the Italian physician and

physicist Luigi Galvani discovered ’animal electricity’ by twitching a frog’s leg, which was affixed

by a brass hook, with his iron scalpel. It took his friend Alessandro Volta more than 10 years to

prove Galvani wrong. Volta argued that the mysterious twitching of the frog’s leg was caused

by two different metals joined together by a moist intermediary instead. In order to verify

his hypothesis, Volta built an arrangement of pairs of copper and zinc discs stacked on top of

each other. This is known as the voltaic pile (figure 2.17). He used a layer of cloth soaked in

Figure 2.17.: Voltaic Pile [69]

brine in order to separate the two metals. Thus, he identified the frog’s leg in Galvani’s case

and the moist cloth in his own experiment as essential in order to produce continuous electric

currents and voltages. Today, this separator is known as the electrolyte (see section 2.3.2). Volta

continually improved his experimental setup and found that zinc and silver would give him the

best results. He also sealed his pile to prevent acid electrolyte leakage. Still, his voltaic pile

could only deliver an electric current for a relatively short period of time (up to one hour).

In 1836 the Englishman John Daniell improved Volta’s design significantly by introducing a

second electrolyte. He used zinc (ZnSO4) and copper sulphate (CuSO4) to separate metallic

zinc and copper. The role of the second electrolyte was to absorb the hydrogen (H2) produced

from the reaction with the first (aqueous) electrolyte. Before, hydrogen caused a steep increase in

internal resistance. This would drastically reduce the lifespan of the voltaic pile. Consequently,

the Daniell cell could deliver electric currents for prolonged periods of time. This led to the

application of the Daniell cell in telegraphs, telephones and doorbells for more than 100 years.

Using the same basic principles of electrochemistry as for batteries, the Welsh physicist

William Grove developed the first fuel cell in 1839. It combines oxygen (O2) and hydrogen

(H2) in order to produce water (H2O) and electricity via reverse electrolysis. Grove also came

up with an improved battery design, using a zinc anode dipped in sulphuric acid (H2SO4) and a

platinum cathode dipped in nitric acid (HNO3). The Grove cell featured a porous earthenware

to separate the two electrodes. Despite providing higher power than the Daniell cell, the Grove

cell emitted poisonous nitric oxide (NO), which prevented its mass commercialisation.

Up to this point, the electrochemical reaction in the electrochemical cells were irreversible
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and thus non-rechargeable. These cells are referred to as primary cells. Only with the invention

of the lead-acid battery by the Frenchmen Gaston Planté in 1859, electrochemical cells became

rechargeable. Thus, lead-acid cells, which today are mainly used as starting, lighting and ignition

(SLI) batteries in vehicles, were the first secondary cells. Their working principle is explained in

the following subsection. The first lead-acid cells were struggling with reliability, which meant

that primary cells continued to be the batteries of choice. During the 1860s the Frenchman

Callaud patented an electrochemical cell similar to the Daniell cell. In comparison, it was less

complex and featured a lower internal resistance. It was called the gravity cell, because zinc

sulphate crystals would be separated from copper sulphate crystals in a glass jar by their different

densities and the polarity of the cell.

In 1866 the French engineer Georges Leclanché invented the carbon-zinc cell. This cell pro-

vided a voltage of 1.4 V, but only for a relatively short period. Side reactions caused the internal

resistance to rise. In the following years a lot of research effort went into developing a dry cell,

because earlier cells with a moist electrolyte were leaking and also caused unwanted side re-

actions. These efforts were finally successful in 1886, when the German scientist Carl Gassner

patented a dry variant of the Leclanché cell. Instead of a liquid electrolyte he used a paste based

on gypsum plaster and ammonium chloride (NH4Cl). Soon after in 1899, the Swedish scientist

Waldemar Jungner came up with the first battery that was both dry and rechargeable. His

nickel-cadmium (NiCd) battery was the first one to use nickel and alkaline electrodes. The first

NiCd batteries were more reliable and featured a higher energy density than lead-acid batter-

ies. The main disadvantage was their high price. Jungner also worked on a nickel-iron battery,

but it produced hydrogen like early primary cells. Thomas Edison, the American inventor and

businessman, sought to improve Jungner’s nickel-iron battery in order to replace the relatively

heavy and unreliable lead-acid batteries for electric vehicles.

Thanks to the creative work of the Canadian chemical engineer Lewis Urry alkaline batteries

for the first time became cost competitive in 1959. He improved Jungner’s work on alkaline

batteries by implementing a manganese dioxide cathode and a powdered zinc anode. The first

nickel-hydrogen battery was brought into service in 1977 for commercial communication satel-

lites. Similar in design, nickel-metal hydride batteries (NiMH) entered the commercial market in

1989. NiMH batteries have a longer battery life and are considered to be more environmentally

friendly than NiCd batteries [70]. Although early experiments with lithium batteries date back

to the beginning of the 20th century, it was only in 1991 that Sony commercialised the first

lithium-ion battery. The American chemist John Goodenough contributed the LiCoO2 cathode

[71], whereas the French scientist Rachid Yazami discovered the electrochemical intercalation of

lithium into graphite on the anode side [72].

In 2009, the global battery market was worth $47.5 billion [73] and split according to figure

2.18. Primary batteries, which are mainly used in watches, remote controls and toys, made

up less than a quarter of that. Their share is expected to further diminish in the future.

Rechargeable lithium-ion batteries are the preferred choice for portable electronics like laptops
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Figure 2.18.: Global Battery Market Share by Chemistry in 2009 [73]

and mobile phones, but also for EVs, PHEVs and HEVs. Lead-acid batteries are mainly used

as SLI batteries in the automotive industry. Typically, batteries are available as coin (e.g. in

watches), pouch (e.g. in cell phones), cylindrical (e.g. in laptops) and prismatic cells (e.g. in

EVs).

Today’s research efforts regarding batteries for electric vehicles mainly focus on improving

their predictability, energy density, power density, cycle life, safety and cost effectiveness. This

work aims to improve the long-term predictability of batteries for electric vehicles in order to

suggest optimum battery capacities.

2.3.2. Fundamentals of Batteries

The following paragraphs explain the basic working principles of batteries, their main con-

stituents, performance characteristics, degradation and the recycling thereof. This subsection

deliberately ignores detailed electrochemistry. Readers interested in more electrochemical details

of modern batteries are referred to [74]-[78].

Working Principle

An electrochemical cell converts chemical energy stored in its two electrodes into all-purpose

electrical energy. The negative electrode (the anode) shown on the left-hand side in figure 2.19

is the reductant, i.e. it transfers electrons to the cathode during discharge while it is being oxi-

dised. The positive electrode (the cathode) shown on the right-hand side is the oxidant, i.e. it

gains electrons while it is being reduced. Consequently, there is a continuous oxidation-reduction

(redox) reaction between the two electrodes. Primary cells cannot be recharged as their electro-

chemical reaction is irreversible. Secondary cells can restore the chemical energy by applying a

charging current, which reverses the reaction [79]. In the case of lithium-ion cells, the working ion

is Li+. Lithium-type batteries take advantage of the so-called intercalation or insertion reaction,
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Figure 2.19.: Lithium-Ion Cell Schematic [12]

which means that lithium-ions can migrate into or out of the respective electrode [76]. Once an

external load (A) is connected, the lithium-ions get extracted (de-intercalation) from the anode

on the left hand-side, then move to the right hand-side and get inserted (intercalation) into

the cathode. The reverse happens during the charging process. This alternating insertion and

extraction process in lithium-type batteries led to them being dubbed ’rocking-chair ’ batteries

[80]. The solid layer, which is electrically insulating yet provides sufficient ionic conductivity,

is referred to as the solid electrolyte interphase (SEI). To counterbalance the ion movement,

electrons (e−) flow from the anode to the cathode as well, and back when charging. When the

battery is fully charged, there is a surplus of electrons on the anode giving it a negative charge

and a deficit on the cathode giving it a positive charge resulting in a potential difference across

the cell. This potential difference is called voltage or electromotive force (EMF ). Contact re-

sistances along the electrical circuit (internal resistances Rint), charge transfer resistances (Rct)

and diffusion resistances to the transfer of lithium-ions across the electrodes and through the

electrolyte (Rdiff ) cause a voltage loss, the steady-state activation overpotential η. It is the

difference of the electrochemical potentials of the electrodes or the open-circuit voltage VOC and

the terminal voltage V as illustrated in equation 2.2.

η(t) = I(t)× (Rdiff (t) +Rint(t) +Rct(t)) = VOC(t)− V (t) (2.2)

Depending on the system’s voltage and capacity requirements, several individual cells can be

connected in a series or a parallel arrangement, or a combination of both in order to form a

battery. The etymological roots of the word ’battery ’ are French and in military terms refer to

a coordinated group of artillery. Similarly, in electrical terms a battery describes a coordinated

group of cells. A battery pack’s voltage in a series arrangement is the sum of the individual cell

voltages as illustrated in figure 2.20. In a parallel arrangement (shown in figure 2.21) in contrast,

the individual cell voltages are the same as the total battery pack voltage. The total resistance

in series networks is equal to the sum of the individual cell resistances. In parallel networks, the

total resistance is the reciprocal of the sum of the individual cell resistance’s reciprocals.

46



2. Fundamentals & Literature Review

Cell 1 Cell 2 Cell 3 Cell 4 Cell n 

Vtot = V1 + V2 + V3 + V4 + Vn

Itot = I1 = I2 = I3 = I4 = In

Rtot = R1 +R2 +R3 +R4 +Rn

(2.3)

Figure 2.20.: Series Cell Arrangement for a Battery
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Figure 2.21.: Parallel Cell Arrangement for a Battery

An alternative and more mechanical way of looking at a battery is via the electric-hydraulic

analogy. The hydraulic analogy, first proposed by Oliver Heaviside in 1893 [81], facilitates the

understanding of a battery from a mechanical engineering point of view. The hydraulic circuit

shown in figure 2.22b is analogous to the electric circuit shown in figure 2.22a. Large tanks of

water (A & B) contain potential energy. Thus, the hydraulic head between the two presents a

varying pressure source.

(a) Electric Circuit (b) Hydraulic Circuit

Figure 2.22.: Electric-Hydraulic Analogy [82]

In contrast, the ideal battery is supposed to be an ideal voltage source. This means that

in theory it should deliver a constant voltage regardless of the current drawn. The hydraulic
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equivalent of the ideal voltage source/battery is a dynamic pump with feedback control in order

to keep the pressure difference between A and B constant. Real-world battery behaviour is more

complex and requires additional linear and non-linear effects to be factored in. This is addressed

in the following paragraph and a selection of available battery models is introduced in section

2.3.4.

Table 2.2 lists important electric circuit elements and their hydraulic circuit equivalents. Most

analogies including electric charge, electric potential, voltage, current and the wire are straight-

forward. The resistor and capacitor hydraulic equivalent however may need further explanation

as they also describe important real-world battery behaviour.

Table 2.2.: Electric and Hydraulic Circuit Equivalents

Electric Circuit Description Hydraulic Circuit

Electric Charge [C] Similar to magnetic charge, it causes a force
when exposed to electrically charged matter.

Quantity of water [m3]

Electric Potential [V] Electric potential energy. Hydraulic head [Pa]
Voltage [V] Refers to the potential difference between two

points, usually with the ground as reference.
Pressure difference [∆Pa]

Current [A] Flow of electric charge through a conductive
medium.

Volumetric flow rate [m3/s]

Wire Conductive, i.e. electrically non-insulating
charge transfer medium.

Simple pipe completely filled
with water.

Resistor Causes electrical resistance R measured in
Ohm [Ω].

Simple pipe with constricted
cross-section.

Capacitor Characterised by its capacitance (C ) mea-
sured in [F], it stores energy in an electric field.

Rubber diaphragm sealed in-
side a pipe.

Electrical resistance (R) describes the opposition of an electrical element (resistor) to the

transfer of electric current though it. As mentioned earlier (equation 2.2), resistances inside the

electrochemical cell cause the voltage to drop from the open-circuit voltage to the terminal volt-

age. The hydraulic equivalent of electrical resistance is a simple straight pipe with a constricted

cross section like in a venturi meter. The restriction of the flow results in a pressure drop of the

system.

Capacitance describes the ability of an element to store electrical charge (capacity) Q. In

other words, it is the charge a capacitor will accept for the potential across it to increase by

1 V. Electric charge causes a force (EMF ) when exposed to electrically charged matter and is

measured in Coulomb [1 C = 1 As], although the use of ampere-hour [Ah] is more common when

referring to batteries. Capacitance C on the contrary is measured in Farad [1 F = 1 C
V = 1 As

V ].

Any element that is capable of being charged with electricity exhibits capacitance. Thus, any

electrochemical cell also features capacitative attributes. A capacitor is an electrical component

that stores energy in an electric field.

The hydraulic equivalent of a capacitor is a flexible and impermeable rubber diaphragm sealed

inside a straight pipe. Energy is stored by the bi-directional stretching of the diaphragm. When
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the flow rate (current) increases, the back pressure on the rubber (voltage) increases as well.

Consequently, current leads voltage in a capacitor. Also, as the back pressure reaches the limiting

value of the applied pressure, the flow rate is reduced. This leads to the diaphragm acting like a

filter. Constant low-frequency pressure differences (low changing voltages) are filtered out while

high-frequency varying pressure differences (high changing voltages) are passed on to the next

stage in the circuit. This is analogous to the capacitor being charged and discharged by the

flow of current and explains its relatively high power as well as its relatively low energy density

compared with other electrochemical energy storage devices (see figure 2.26).

Ideal vs. Real Battery Behaviour

In the ideal case, as mentioned before, the battery acts as an ideal voltage source keeping a

constant voltage during discharge. Only after having consumed all available energy, i.e. when

the state of charge is equal to zero, there is an instantaneous voltage drop to zero in this

hypothetical case. In crude terms, the state of charge (SOC) is a measure of the charge level

still left in the battery. More precisely, it is the ratio between the available battery capacity

Qbat after time t and the original capacity Qbat,0 at t = 0 as shown in equation 2.5.

SOC(t) = 100
Qbat(t)

Qbat,0
[%] (2.5)

Also, the ideal battery capacity would be constant for all discharge rates [83].

Real battery behaviour is more complex and differs significantly regarding various aspects.

First, real battery cell voltage drops slowly during discharge. Second, the effective capacity is

lower for high discharge rates compared with low discharge rates. This means that when the
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Figure 2.23.: Capacity Rate Effect

battery is discharged faster, the total capacity is reduced, because the lower voltage limit is

reached earlier. The capacity rate effect is illustrated in figure 2.23. Third, the battery can
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Figure 2.24.: Voltage Relaxation Effect

’recover’ some capacity during periods of very low currents or when no current is drawn at all.

Usually this happens when a period of high discharge rates is followed by a sustained period

of very low or zero current draw. The voltage relaxation effect can be observed in figure 2.24.

Additionally, polarisation, corrosion and passivation phenomena occur in electrochemical cells.

Polarisation refers to the depletion of reactants (electrons and ions) leading to a voltage drop.

Corrosion is the successive destruction of materials in general by chemical (redox) reaction with

its environment. Passivation describes the process of the active materials becoming ’passive’,

i.e. becoming less affected by environmental factors. With varying extents these effects can be

observed in all practical battery types [83]. The modelling approaches presented in section 2.3.4

to varying degrees accommodate for them.

Constituents and Performance Characteristics

Any electrochemical cell features three main constituents: anode, cathode and the electrolyte.

Differences between cell types only arise from varying electrode and electrolyte materials. These

materials are typically selected for their voltage, charge capacity, conductivity, weight, cost,

reactivity with other components, longevity, ease of handling, ease of manufacturing, etc. [74].

In the case of an electric vehicle traction battery this means combining the individual materials

in order to achieve a maximum specific power density, a maximum specific energy density, a

maximum volumetric energy density with a maximum cycle life without sacrificing inherent

safety at minimum costs.

Figure 2.25 shows the standard periodic table of elements with general trends of electron

affinity. Reducing agents have surplus electrons in their outer molecular shell, which they

donate in a redox reaction and thus become oxidised. Consequently, elements on the left hand-

side in figure 2.25 tend to qualify for good anode materials. Oxidising agents have a deficit of

electrons in their outer molecular shell. Thus, they accept electrons in the redox reaction and
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Figure 2.25.: Peridodic Table of Elements (adapted from [84])

become reduced. They tend to be on the right hand-side of the periodic table. The strongest

reducing agent, i.e. the one with the lowest standard electrode potential E0 is lithium (Li). The

strongest oxidising agent, i.e. the one with the greatest standard electrode potential is fluorine

(F). Practically, however, not any potential reducing agent can be combined with any oxidising

agent. Not all electrode pairs can react reversibly, i.e. they cannot be used for rechargeable

batteries. Also, strong reducing/oxidising agents are highly reactive and thus tend to undergo

undesirable side reactions which lead to increased cell degradation. Electrolyte materials vary

greatly among cell types and depend upon the electrode materials chosen.

Table 2.3 lists some practically feasible and commercially viable combinations of anode and

cathode materials as of 2013 in order to form rechargeable cells. The table also depicts practical

properties that are relevant for any electric vehicle traction battery. Even though sodium type

batteries feature a relatively high energy density fabricated from inexpensive materials, their

high operating temperature (300-350 ℃) only allows for stationary applications. Lead acid

batteries are still dominating as SLI batteries in vehicles despite their relatively low specific

and volumetric energy densities. This is because of their ability to provide high surge currents

at very low costs. Nickel-type batteries have the lowest nominal voltage, whereas the three

lithium-type batteries have the highest nominal voltage thanks to lithium being the the strongest

reductant (-3.01 V vs. standard hydrogen electrode) in the periodic table [86]. Cell voltages for

lithium-ion type batteries are larger than the potential at which standard aqueous electrolytes

can electrolyse. Additionally, lithium is highly reactive to water. Consequently, non-aqueous
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Table 2.3.: Rechargeable Battery Chemistries and Practical Properties ([74, 76, 77, 85])

Cell Type Anode Cathode Nominal Specific Energy
Voltage Energy Density

[V] [Wh/kg] [Wh/L]

Alkaline Zn MnO2 1.5 85 250
Lead-acid Pb PbO2 2.0 35 70
Lithium cobalt oxide (LiCoO2) Graphite LiCoO2 3.7 250 630
Lithium manganese oxide (spinel) Graphite LiMn2O4 3.9 150 420
Lithium iron phosphate (LiFePO4) Graphite LiFePO4 3.3 90-150 333
Nickel-cadmium (NiCd) Cd Ni oxide 1.2 35 100
Nickel-metal hydride (NiMH) MH Ni oxide 1.2 75 240
Nickel-zinc (NiZn) Zn Ni oxide 1.6 60 120
Sodium-nickel chloride Na NiCl2 2.6 115 190
Sodium-sulfur Na S 2.0 170 345

electrolyte solutions are used for lithium-ion type batteries. These include liquid electrolytes like

lithium salts in an organic solvent. A high nominal battery voltage for an electric vehicle is not

only required from an energy/power density point of view. In addition, high nominal voltages

make sure that at a low state of charge (SOC), the battery can still deliver sufficient power.

Lithium-type batteries have the highest specific energy with up to 250 Wh/kg, because of

lithium being the lightest (6.94 g/mol) metal. This makes them an attractive choice for portable

consumer electronics including mobile phones and laptops, but also for power tools. Because of

its relative maturity LiCoO2 has been the preferred cathode material for these applications for

the past decade. Lead-acid and NiCd batteries have the lowest energy density compared with

lithium-type batteries, which demonstrate the highest energy density.

Overall, the best performance characteristics relevant for electric vehicle applications are

demonstrated by the lithium-type batteries. By examining table 2.3 the lithium-polymer battery

(LiCoO2) seems to be the ideal EV traction battery. However, lithium-cobalt-oxide (LiCoO2)

is relatively rare, expensive, partially toxic and thermally unstable. That is why lithium iron

phosphate (LiFePO4) and lithium manganese oxide (LiMn2O4) are seen as its ideal substitute in

the near- to medium-term future [12]. The biggest drawback of LiMn2O4 batteries is manganese

dissolution into the electrolyte during cycling, especially at temperatures above ambient [87].

This results in a relatively poor cycle life of LiMn2O4 as illustrated by figure 2.28. Despite these

disadvantages NISSAN uses this technology for its all-electric ’Leaf ’. As a cathode material

LiFePO4 is considered to be safer and cheaper than both LiCoO2 and LiMn2O4. Its main disad-

vantage is its relatively low specific energy and its relatively low energy density compared with

the other lithium-type batteries.

In 1995 Abraham & Jiang first proposed the design of a lithium-air cell [88]. This technology

offers practical specific energies of up to 1,000 Wh/kg, which is still more than one order of mag-

nitude below the specific energy of diesel (12,663 Wh/kg [31]) or petrol (13,083 Wh/kg [31]).
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Figure 2.26.: Ragone Plot (adapted from [89])

Also, there are still many challenges to overcome, ’from designing their cathode structure, to op-

timizing their electrolyte compositions and elucidating the complex chemical reactions that occur

during charge and discharge’ before these cells can be realized as high performance, commer-

cially viable products [89]. Figure 2.26 puts into perspective specific powers as well as specific

energies for different practical energy storage/conversion options. The diagonal lines indicate

discharge times, with high discharge rates displayed at the bottom right corner of the so-called

Ragone plot. It shows that the internal combustion engine still features the best combination

of power and energy per unit mass, which explains the existing prevalence of ICEVs.

However, battery technology has improved over time and currently lithium-type batteries

promise to become the most effective and efficient energy storage systems (ESS). Still, this

requires breakthroughs regarding innovative chemistries for both the electrode and electrolyte

components. These must overcome low specific energies and powers, limited temperature ranges

and degradation effects. Some current and future potential materials are listed in figure 2.27.

Recycling

Recycling refers to the processing of used materials (waste) into new products. There are

several drivers for recycling including the prevention of wasting potentially useful materials, the

reduction of the consumption of fresh raw materials, the reduction of waste and the reduction

of pollution from landfill or incineration. Battery recycling in particular is topical as they

53



2. Fundamentals & Literature Review

Figure 2.27.: Lithium-Ion Battery Chemistry Roadmap [90]
(** in development)

contain a number of heavy metals and toxic chemicals. Lead acid batteries are recycled by first

grinding them, neutralising the acid and separating the polymers from the lead [91]. Modern

lead acid factories can recover enough lead from one recycled SLI battery in order to manufacture

one new one thanks to improved recycling and battery technology. Recycling of lithium-type

batteries is not as common as lead acid battery recycling but nevertheless possible. Vacuum

distillation facilitates the recovery of nickel-containing iron, ferro-manganese, cobalt and copper

when lithium is being used as reductant [92].

2.3.3. Battery Degradation

The cycle life of an electric vehicle traction battery is based on the cumulative number of

charge/discharge cycles during which the battery is capable of retaining at least 80% of its orig-

inal capacity Qbat,0 measured in ampere-hours [Ah]. Alongside specific energy, energy density,

specific power, safety, recyclability and cost, the cycle life is one of the most important features

of a traction battery for EVs. Due to degradation and ageing the cycle life of a battery cell

is limited. Today’s ICEVs are designed for a lifetime of around ten years and a service life of

100,000-250,000 km [13]. In order to be competitive EVs must reach similar values. In terms of a

battery cycle life, this roughly equates to 150-1,700 cycles depending on the individual battery’s

capacity and charging/driving behaviour.

Degradation and ageing describe electrochemical phenomena, which modify a cell’s inherent

properties with time and use. Because of the relatively large variety of lithium-ion cells and thus

the relative large number of ageing reactions likely to occur, it is almost impossible to give an

exhaustive picture of all degradation mechanisms [93]. This work focuses on the physical conse-

quences of degradation and ageing in lithium-ion batteries with regards to battery sizing rather
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than on the electrochemical processes. The three most problematic symptoms of a degraded cell

are capacity loss, power loss and loss of integrity (i.e. cell damage or leakage) [34], which are

explained in the following.

Capacity Fade

The capacity of a battery cell Qbat is a measure of the maximum constant current Imax that a new

cell can supply for 20 hours at 20 ℃. Typically, the capacity for an entire battery pack of an EV

is expressed in kilowatt-hours (kWh), which is the ampere-hour rating multiplied by the nominal

voltage Vnom of the entire battery pack. Capacity loss in a cell and consequently in a battery

pack can result from irreversible loss of recyclable and electrochemically active lithium, referred

to as de-lithiation [94]. This can result from both cycling and resting (self-discharge). With

cumulative cycles the solid electrolyte interphase (SEI) layer between the functional graphite

at the anode and the electrolyte can grow due to side reactions which consume active Li+ [93].

Additionally, capacity loss can be caused by the ageing, transformation or reaction of non-active

materials like for instance binders, conductors and current collectors as well as by mechanical

modification of the composite electrode structure due to volume changes during cycling. A

rise in impedance, which is the AC circuit equivalent to resistance R explained in the previous

section (2.3.2), indicates this capacity loss. Capacity loss for an EV traction battery, which is

also referred to as capacity fade, is exhibited in figure 2.28. The figure shows the typical cycling
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Figure 2.28.: Nissan Leaf Battery Capacity Fade (adapted from [95])

behaviour of LiMn2O4 cells used by Nissan for their all-electric LEAF model. Nissan assumes

an annual mileage of about 20,000 km (12,500 mi), which according to their claimed range (76-

169 km) translates into 119-265 cycles per year. Thus, after 5 years and only about 595-1325

cycles their battery has already lost about 20% of its initial capacity. The figure demonstrates

that with an increasing operating/cycle life the capacity decreases. However, the capacity fade

rate decreases with an increasing number of cycles. This is in accordance with the theory of a

growing SEI layer that consumes active Li+ during cycling. In exceptional circumstances, with
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an increasing number of cycles the capacity fade rate may also increase. This can happen when

Li+ starts to plate significantly [93]. Lithium plating is the surface covering of the electrode

material with Li+. This causes the Li+ to become inactive, the electrode surfaces to clog

and ultimately the electrode surfaces to lose porosity. Lithium plating is assumed to be very

temperature sensitive with low temperatures encouraging the capacity fading rate [93]. On the

other hand, moderately low temperatures allow for high local current densities. Thus, there

is a trade-off between moderately low operating temperatures allowing for high local current

densities and moderately high operating temperatures avoiding lithium plating. For lithium-ion

batteries temperatures above 30 ℃ are considered to be high and temperatures below 10 ℃ are

referred to be low. The basic Arrhenius law for chemical reactions in equation 2.6 underlines

the temperature dependence of chemical reactions.

r = Aae
− Ea

R̄T (2.6)

All else being equal, the speed of any chemical reaction (rate constant) r increases with an

increasing temperature T. Aa is the pre-exponential Arrhenius factor, Ea the activation energy

and R̄ the universal gas constant. Consequently, for chemical reactions like those occurring

at room temperature in lithium-ion cells, the reaction rate doubles for every 10 ℃ increase

in temperature. This means that electrical conductivity as well as ionic diffusivity is greatly

enhanced at higher temperatures, which results in high power availability at high temperatures.

At the same time, reversible side reactions are also encouraged by high temperatures which

promote degradation [96]. At the upper extreme the active chemicals may break down.

This leads to the conclusion that moderately high temperatures are generally more favourable

than low temperatures for the capacity retention of lithium-ion batteries provided that high

temperature operation is not continuous throughout. In addition, the capacity of a battery pack

is believed to be better retained at low depths of discharge (DOD). The relation between the

state of charge (SOC) and depth of discharge (DOD) is illustrated in equation 2.7.

DOD(t) = 100− SOC(t) [%] (2.7)

The DOD describes the discharged capacity divided by the original capacity. Usually the maxi-

mum recommended DOD for lithium-ion batteries before recharging is 80-90% in order to limit

capacity fade. EVs may provide electricity not only for vehicle use, but also for vehicle-to-grid

(V2G) services. The idea is that electric vehicle traction batteries ’communicate’ with the power

grid and deliver electricity or reduce their charging rate in order to level the power grid. It is

suggested that V2G energy incurs approximately half the capacity loss per unit energy processed

compared to that of regular vehicle use [97]. The disadvantage is that with V2G the processed

energy is higher and thus degradation with respect to the car’s mileage is increased.

Several authors ([93],[94] & [96]) agree that lithium-ion cells degrade in response to capacity

(Ah) processed. However, the exact correlation is not known and depends on several other
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factors as well. 100 Ah for instance can be consumed very quickly in a moderate temperature

environment or very slowly in a hot temperature environment. The exact difference between

the two regarding capacity fade is yet to be established. In terms of the hydraulic analogy,

the effect of capacity fade can be compared to that of a leak in the system, which accumulates

(unusable) water with time. It follows that the capacity fade Qloss is some function of time t

(self-discharge), capacity processed
∫ t

0 I(t)dt, rate of charge/discharge dI
dt and temperature T as

illustrated in equation 2.8.

Qloss = f(t,

∫ t

0
I(t) dt,

dI

dt
, T ) (2.8)

Power Fade

The second problematic symptom of a degraded and an aged battery cell is power loss. The

maximum power Pmax of a cell is measured in watts [W] or kilowatts [kW], which is the product

of the nominal voltage Vnom and the maximum current Imax. The main sources for power fade are

an increased resistance due to the growth of the SEI layer and an increased electrolyte resistance

[98]. Like with any other electrochemical cell, lithium-ion cells have a limited maximum discharge

current Imax increasing with temperature. The maximum current Imax also limits the maximum

power output Pmax. Battery manufacturers use the so-called ’C-rate’ to categorise the rate of

charge/discharge currents. Most batteries are rated at 1 C and can take up to 20 C impulse

currents. Ignoring the capacity rate effect, this means that a 100 Ah battery would provide 100

A for one hour if discharged at 1 C rate. The same battery discharged at 0.5 C would provide

50 A for two hours. At 2 C, the 100 Ah battery would deliver 200 A in half an hour. Going

beyond the maximum current may lead to serious degradation and even damage. The maximum

current is limited by the discharge resistance Rdis which increases with cycle number and a lower

temperature.

Zhang et al. conclude that power fade at low temperatures rather than capacity fade is the

more serious performance limitation of LiFePO4 cells [98]. Also, the discharge resistance slowly

increases with the duration of the applied current. They found that electronic resistance of

electrode particles is dominant in the discharge resistance for a fresh cell whereas increasing

electrolyte resistance is dominant after considerable cycling resulting from lithium loss. Brous-

sely et al. suggest that power loss is directly related to impedance growth as well and that this

can be overcome by doping [93]. Doping in this context is adding impurities into the electrodes

in order to change their electrical properties. Consequently, power fade Ploss is very closely

related to capacity fade, but with a stronger dependence on resistance. The effect of power

fade can be compared to that of fouling in hydraulic systems, whereby the flow of water is

increasingly impeded by the build-up of a growing layer inside the pipes (compare with table

2.2). Hence, power fade Ploss is some function of the battery’s resistance R, which in turn is also

some function of time t (self-discharge), capacity processed
∫ t

0 I(t)dt, rate of charge/discharge
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dI
dt and temperature T as illustrated in equation 2.9.

Ploss = f(R(t,

∫ t

0
I(t) dt,

dI

dt
, T )) (2.9)

Cell Disintegration

The third problematic symptom of a degraded and an aged battery cell is loss of integrity of

the cell. This means that the battery cell is suffering from severe damage or leakage due to

cycling. Loss of integrity is usually caused exclusively by cycling and not by resting. Cycling

adds kinetically induced effects such as volume variations through swelling or contraction of the

electrodes. Concentration gradients of Li+ may also have a similar effect. These effects may lead

to severe damage or leakage. Blaiszik et al. claim that a cell’s anode, which swells while charging

and then shrinks during discharge, can eventually crack and thus lead to its disintegration [99].

Overcharging can also lead to severe damage of Li-ion batteries [100]. In hydraulic terms cell

disintegration can be compared with the bursting of a pipe leaving the system unable to function

anymore. Cell disintegration Celldis is primarily a function of capacity processed
∫ t

0 I(t)dt and

the rate of charge/discharge dI
dt as exemplified by equation 2.10.

Celldis = f(

∫ t

0
I(t) dt,

dI

dt
) (2.10)

Extreme operating conditions can lead to thermal runaway and thus to disintegration of a

battery as shown by the Boeing 787 lithium battery fire incidents in early 2013. More detailed

information on battery failure modes and their prevention mechanisms can be found in [101].

2.3.4. Modelling of Batteries

Like vehicle simulations, battery simulations can be categorised according to their accuracy.

However, the direction of battery models, which are relevant for EVs, is the same. As explained

Power 
Request Battery Power 

Output 

Figure 2.29.: Battery Modelling Logic

in section 2.2.3, EV traction battery models work out the battery’s power output given the

requested power. Hence, they are backward-facing. Figure 2.29 illustrates this modelling logic,

which forms the basis of the following paragraphs.

The modelling of batteries goes back to the first academic thoughts on electricity by Volta (see

section 2.3.1). However, the wide variety of electrochemical cells, their various parameters and

their inherent complexity make it very difficult to model batteries. The following paragraphs

present an overview and a critical appraisal of the currently available and most popular software
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models for batteries. They mainly include analytical models, electrochemical models, equivalent

circuit models and thermal models.

Analytical Modelling

The Shepherd equation is probably the best known and most simplistic battery model. The

equation describes the electrochemical behaviour of the battery directly in terms of voltage and

current [102]:

V (t) = VOC −RpolI(t)

(
1

1− SOC(t)

)
−RintI(t) (2.11)

The Shepherd equation extends the model for the overpotential η introduced with equation

2.2. According to the Shepherd model, the terminal voltage V is obtained by subtracting the

polarisation loss Vpol and the voltage loss caused by internal resistance Rint from the open circuit

voltage VOC . Shepherd refers to the SOC in the same way as defined in equation 2.5. The model

accounts for an increase in polarisation resistance with a decreasing SOC. The Shepherd model

is often used in conjunction with Peukert’s law, which expresses the capacity of a lead-acid

battery in terms of the rate at which it is discharged [55].

Qbat(t) = I(t)kt (2.12)

For constant discharge rates the Peukert constant k accounts for the capacity rate effect. Peuk-

ert’s law can also be applied to Li-ion batteries when making sure that both the ambient tem-

perature and the discharge current is held constant [103]. It is applied in the JANUS vehicle

simulation.

The major advantages associated with analytical battery models are as follows:

• Mathematically simple

• Computationally easy to implement

The major disadvantages of analytical battery models:

• Only valid for constant discharge currents

• Very inaccurate

Electrochemical Modelling

Electrochemical cell modelling refers to the modelling of batteries from a very detailed chemical

perspective. Ion and electron transfer processes are described in great detail. Consequently,

these models are very accurate, highly complex, difficult to configure and usually require high

processing power.

In [104]-[106], Doyle, Fuller & Newman from the University of California, Berkeley, have

developed the most popular electrochemical model for lithium-ion batteries. Their model, which
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they refer to as ’dualfoil ’, is also available as a FORTRAN software download from [107]. The

model inputs include more than 60 battery parameters like diffusion coefficients, electronic

conductivities, and the entropy of reaction for the cell. Six coupled and non-linear differential

equations take these inputs in order to solve for various outputs. Amongst other outputs, dualfoil

very accurately predicts heat and entropy generation, voltage and current values as a function

of time. With heat and entropy values one can work out losses and long term degradation.

Other electrochemical models that also consider degradation include crack propagation models

[108], porous electrodes and concentrated solution models [75], single particle models [109],

lumped parameter lithium-ion models [110] and lithium corrosion kinetic models [111]. They

are similar in their nature compared to the dualfoil model, but often concentrate on one very

specific aspect. The dualfoil model in contrast is probably one of the most comprehensive

electrochemical models as it is being used as reference model for its accuracy. Therefore, the

dualfoil model is regarded as the state of the art of battery modelling. It is estimated that even

more detailed electrochemical models, which lead to a better understanding and thus better

handling of batteries, can reduce the costs of batteries by 25% and cut recharging times in half

[112].

To summarise, these are the main advantages of electrochemical battery models:

• Very accurate

• Large set of output variables e.g. heat and entropy generation

On the other hand, there are also significant disadvantages associated with electrochemical

models:

• Difficult to configure

• Require high computer processing power

• Require detailed knowledge about electrochemistry

• Cannot be performed in real-time

• Poor robustness under extrapolation conditions

Equivalent Circuit Modelling

Equivalent circuit battery models are lumped parameter models putting together relatively few

individual circuit elements in order to form an equivalent circuit. This is the same approach as

with the hydraulic analogy (see section 2.3.2), however focussing on electrical circuit elements.

These circuits obey the laws of series and parallel networks explained in equations 2.3 and

2.4. Table 2.4 lists the most important equivalent circuit elements and their respective physical

meaning. They include a capacitor, a resistor, a voltage source and a wire. In [113], Hu, Li &
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Table 2.4.: Equivalent Circuit Elements and Their Physical Meaning

Circuit Element Description Symbol

Capacitor Represents the capacity Qbat in amp-hours [Ah] of battery

Resistor Stands for the various battery’s resistances R in [Ω]

Voltage Source Usually represents the open circuit voltage VOC

Wire Describes the ion/electron transfer without losses

Peng give a very good overview of equivalent circuit models for Li-ion batteries. In the following,

four of the most widely used equivalent circuit models for batteries are presented.

The Internal Resistance Model shown in figure 2.30 simply combines an ideal voltage

source in series with a resistor, representing the internal resistance of the battery. Both the

internal resistance Rint and the open-circuit voltage ROC are usually modelled as functions of

SOC only. Additionally, they can be modelled as a function of temperature as well. The current

VOC 

Rint 

V 

I 

V (t) = VOC −RintI(t) (2.13)

Figure 2.30.: Internal Resistance Model

I has a positive value during discharge and a negative one during charge. The terminal voltage

V is plainly the difference between VOC and the voltage drop due to internal resistance as

expressed in equation 2.13. The internal resistance model is included in the ADVISOR energy

storage <ess> library (see figure 2.14) [114].

The Thévenin Model extends the simple internal resistance model by adding an additional

resistor placed in parallel with a capacitor. The additional resistance Rpol represents polarisa-

tion resistance. The capacitance induced by the extra capacitor is representative of the transient

effects [115], which can be compared to that of a sealed diaphragm in a closed hydraulic system

(see section 2.3.2). Equations 2.14-2.15 summarise the electrical responses. The physical mean-

ing of the resistance Rpol placed in parallel with the capacitance CTh, also referred to as RC

ladder, is explained in figure 2.32. Electrochemical impedance spectroscopy (EIS) is a means
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VOC 

Rint 

V 

Rpol 

VTh 

CTh 

I 

V̇Th(t) = − VTh
RpolCTh

+
I(t)

CTh
(2.14)

V (t) = VOC − VTh −RintI(t) (2.15)

Figure 2.31.: Thévenin Model

of measuring polarisation (impedance) as a function of frequency ω for electrochemical devices

such as batteries. The figure shows negative imaginary impedance on the y-axis versus real

impedance (resistance) on the x-axis. The frequency is increasing to the left on figure 2.32. The

three parameters Rint, Rpol and CTh from figure 2.31 can be identified in figure 2.32.
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Figure 2.32.: Battery Electrochemical Impedance Spectroscopy (EIS) Schematic

The US Partnership for a New Generation of Vehicles (PNGV), which was cancelled in 2001

(see section 2.2.1), has extended the Thévenin model by adding a capacitor in series with the

internal resistance Rint (see figure 2.33). The additional element in the PNGV Model adjusts

the open-circuit voltage VOC according to the current drawn. It also forms part of the ADVISOR

library [114].

The Resistor Capacitor (RC) Model illustrated in figure 2.34 was first developed by
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VOC 
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V 

Rpol 
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CD 

V̇D = VOC (2.16)

V̇Th = − VTh
RThCTh

+
I

CTh
(2.17)

V = VOC − VD − VTh −RintI (2.18)

Figure 2.33.: PNGV Model
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Figure 2.34.: Resistor Capacitor (RC) Model
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SAFT, a French battery company. Unlike the previous models, the RC model does not feature

an ideal voltage source. Instead, in addition to wires connecting the individual elements, the RC

model only features resistors and capacitors in a mix of series and parallel arrangements. Two

capacitors are arranged in parallel. The bulk capacitor shown on the left hand-side features a

relatively large (bulk) capacitance CB, which represents the battery’s capability to store electri-

cal charge. The surface capacitor shown in the middle reflects surface effects of the cell. Hence,

its capacitance CS is significantly smaller than CB. The electrical behaviour is summarised in

equations 2.19-2.20. More complicated RC models with additional combinations of resistors and

capacitors have been suggested in [94] and [116]. While they can achieve better accuracy, they

are computationally more complicated and they tend to show little robustness outside their val-

idated range according to [113]. The RC model is also included in the ADVISOR energy storage

<ess> library (see figure 2.14) [114].

The MATLAB/Simulink Model developed by two Canadian engineers is mainly an equiva-

lent circuit model based on the internal resistance model (figure 2.30), but with added analytical

terms as shown in figure 2.35. It is the custom battery model used by MATLAB/Simulink in

Vdischarge = Voc −RintI −K
Q

Q−
∫ t

0 Idt

(∫ t

0
Idt+ I∗

)
+Ae−B

∫ t
0 Idt (2.21)

Vcharge = Voc −RintI −K
Q∫ t

0 Idt− 0.1Q
I∗ −K Q

Q−
∫ t

0 Idt

∫ t

0
Idt+Ae−B

∫ t
0 Idt (2.22)

Figure 2.35.: MATLAB/Simulink Battery Model [117]

order to simulate power systems. The symbols used in the figure have been changed for equa-

tions 2.21-2.22 in order to be consistent with the notation used in this work. The model applies

parameters, which are illustrated in figure 2.36, in order to work out the voltage during charge

and discharge respectively. According to [117] the lithium-ion battery discharge curve can be

divided into three distinct areas. First, the exponential area, which ranges from the voltage

of a fully charged battery Vfull to the exponential voltage at Vexp. Second, the almost linear

nominal area that starts at Vexp and finishes at the nominal voltage Vnom. The last area is

irrelevant as below Vnom the capacity is dropping at an accelerated rate. These characteristics

are reflected in equations 2.21-2.22. However, temperature effects are not considered in this
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Figure 2.36.: Matlab/Simulink Model Parameters [117]

model. The strength of this model is its intuitive and simple configuration on the basis of only

three data points from manufacturer’s data sheets. This means that experimental configuration

of the parameters is not necessary.

All presented equivalent circuit models assume the OCV to be a function of SOC, which is

calculated either via a look-up table or a piecewise linear function [113]. The OCV vs. SOC

relationship is not affected by degradation and/or temperature effects as demonstrated in [118]

and [119]. This leads to it being one of the most fundamental relationships in battery modelling.

Traditionally, the SOC has been established either by a method called ’coulomb-counting ’

or simply by waiting for the fluctuating terminal voltage V to ’relax’ until its equilibrium

state VOC is reached. Coulomb-counting means that the current drawn over time is integrated

with respect to time. Both methods, coulomb-counting and the voltage-relaxation method are

mathematically simple and computationally easy to implement. Their accuracy, however, can

be quite low especially in highly dynamic systems and where there is no time for the battery

to ’relax’. Consequently, adaptive methods and extended Kalman filtering (EKF) has been

proposed in order to overcome these limitations. A detailed description of the use of EKF for

SOC estimation can be found in [120]-[122]. In [118], Pop et al. suggest that EKF provides the

best long-term SOC estimation.

The main advantages of equivalent circuit models are summarised below:

• Relatively easy to implement

• Real-time results

• Good accuracy

• Relatively robust
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Equivalent circuit models for simulating battery behaviour also bears disadvantages:

• Lower accuracy compared with electrochemical models

• Oversimplification

• Results usually only include voltage and current values

Thermal Modelling and Others

In addition to the aforementioned battery models, thermal and other models co-exist. Thermal

models ([97] & [123]-[126]) are typically used for efficiency optimisation and cooling loop design.

Other commercial models include the Battery Design Studio from ANSYS [127] or COMSOL

[128], which integrates finite element models based on the dualfoil model.

2.3.5. Interim Summary

Battery models can be divided into analytical models, electrochemical models, equivalent circuit

models, thermal models and others. While analytical models are mostly mathematically simple

and easy to implement, they lack accuracy and robustness. Electrochemical models on the

contrary are the most accurate models, but they are difficult to configure and require detailed

knowledge about electrochemistry. Usually, they cannot be performed in real-time, which is

crucial for on-board vehicle applications. Equivalent circuit models may lack accuracy, but they

can be performed in real-time and therefore are the preferred choice for vehicle simulations.

They are accurate enough, yet not unnecessarily complicated.

Subsection 2.2.4 concluded that there is a knowledge and modelling gap regarding the siz-

ing of EV traction batteries, which also considers battery degradation for generic power train

models. This section has introduced and critically assessed available battery models. It was

shown that detailed battery degradation models exist, but not for the purpose of sizing an EV

traction battery pack. Existing battery degradation models are mainly electrochemical models.

Therefore, there is a modelling and knowledge gap regarding a battery sizing model, which is

quick, mathematically simple, easy to implement and also considers degradation.

2.4. Summary & Conclusions from Literature Review

This chapter has summarised, critically assessed and reviewed the developments of electric vehi-

cles and batteries. First, an historical outline of electric vehicles was presented highlighting that

EVs have been commercially available for more than 115 years and that their spread was greatest

around 1900 in the US. Since then ICEVs have been dominating road transport for reasons of

costs and range. Today, EVs are gaining interest again because of rising fuel prices and stricter

emission standards for passenger vehicles. Compared to that of ICEVs, the power train con-

figuration of EVs is relatively simple leading to significantly higher ’tank-to-wheel’ efficiencies
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and lower maintenance efforts. Electric vehicle simulations are either forward- or backward-

facing, or a combination of both. Thanks to their physical sequence of events, forward-facing

vehicle models are usually preferred for control design and performance analysis such as max-

imum speed. Backward-facing simulations in contrast are preferred for individual component

analysis such as that of the battery. Hybrid models like ADVISOR combine the two approaches

to allow for individual component analysis as well as for overall system performance analysis.

They present the state of the art of electric vehicle modelling. Consequently, ADVISOR is the

preferred vehicle simulation underpinning this work.

The second part of this chapter was devoted to batteries. It was shown that electricity was

discovered by accident, when Volta made experiments with twitching frog’s legs. Batteries are

devices, which convert electrochemical energy into electrical energy. They mainly consist of a

negative electrode (anode), a positive electrode (cathode) and an electrolyte, which separates

the two electrodes. The electrolyte needs to permeable for ions to move bi-directionally between

the electrodes, but impermeable for electrons, which have to flow through an external circuit.

The external circuit is connected to a load, which can use the applied current. Battery design is

mainly about choosing the best combinations of materials for the electrodes and the electrolyte

in order to achieve long-term high energy and power densities at low costs and with inherent

safety. Models that describe the complex battery behaviour can be categorised into analytical,

electrochemical, equivalent circuit and thermal models. Analytical models are too simplistic

and not accurate enough for highly dynamic applications like that in an EV. Electrochemical

models, which are the state of the art of battery modelling, are very accurate, however they

cannot be performed in real-time for vehicle applications. Equivalent circuit models offer a good

comprise for providing sufficient accuracy while not being too overcomplicated.

To some extent the existing equivalent circuit models can predict the relationship between SOC,

cycle life and the resulting loss of capacity quite accurately. However, most of these models

are either limited to experimental single cells and not entire battery packs, exclusively focus on

capacity fade and not on power fade as well, centre on very narrow temperature ranges (i.e.

20-30 ℃) only, address solely very low discharge currents (i.e. 1-3 C), ignore unsteady discharge

behaviour or disregard other influences like charging of the battery through regenerative braking

and humidity for example. Consequently, a new approach is required in order to find the

optimum battery size for electric vehicles with particular focus on battery degradation.
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This chapter outlines the scientific approach taken in order to find solutions for the research

problem introduced in section 1.3. The aim is to find the optimum battery capacity for electric

vehicles with particular focus on battery degradation through iterative steps as illustrated in

figure 3.1.

Nominal Driving Force (4) 
!

Environmental Parameters: α, ρair, g"
Drive Cycle Parameters: t, v, a"

Vehicle Parameters: mv, Af, Cd, Cr"
Vehicle Classes: A, B, C, D, J!

Battery Parameters: Vnom, Qbat, E/kg, E/m3!

Final Results (6) 
!

Battery Parameters: V, Q"
Vehicle Parameters: mv, r"

Range Requirements (4) 
!

Travel Survey Analysis!

Nominal Energy Requirements (4)  
!

Battery Parameters: Vnom, Qbat"

Battery Degradation (5) 
!

Battery Parameters: Qloss, Ploss"
Lifetime Parameters: neol"

1)  Initial Guess of Vehicle 

2)  Define All-Electric Range 
a)  If range cannot be satisfied, !
     vehicle parameters need to !
     be re-assessed 
b)  If range is satisfied, the !
     nominal battery capacity !
     can be passed on  

Process Outcome 

3) Define Battery Degradation 
a)  If battery degradation!
     cannot be accounted for, !
     vehicle parameters need to !
     be re-assessed 
b)  If battery degradation can !
     be accounted for, the !
     battery capacity is final  

Loop until range 
is satisfied!

Loop until lifetime 
is satisfied!

Figure 3.1.: Research Process & Expected Outcomes

First, with initial estimates the nominal driving force of EVs is calculated by considering

environmental, drive cycle, vehicle and battery parameters. Most parameters have a specific

range of possible values from very low extremes to very high extremes. Together with the

vehicle’s range requirements, the nominal energy requirements for the on-board traction battery

is worked out through an iterative process. This process is explained in detail in chapter 4 as

indicated by the numbers in brackets. The next step, working out the battery performance and
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degradation, is dealt with in chapter 5. Finally, the penultimate chapter (6) brings together these

findings and discusses their implications. The last chapter (7) summarises the main conclusions

and suggests areas for further work.

In crude terms, the optimum battery capacity is the product of driving force, range and

battery degradation as illustrated in figure 3.2. Therefore, each of the three headings in figure

3.2 presents a multiplier, which is the result of several individual analyses also listed in figure

3.2.

Optimum Battery Capacity 
[kWh] 

Driving Force 
[Wh/km] 

Range 
[km] 

Battery Degradation 
[-] 

-  Traction Forces!
-  Traction Ratio TR!
-  Optimum Steady Speed!
-  Sensitivity Analysis!
-  Recuperation Gain Gr!
-  Driving Force vs. Distance!
-  Altitude Profile!
-  Performance Requirements!
-  Driving Behaviour!
-  Vehicle Categories!

-  Individual Trips!
-  Cumulative Day Trips!
-  Number of Trips!
-  Total Distance!
-  UK, DE, US!
-  Overall Mean Speed!

-  SOC Estimation!
-  Battery Behaviour !
V-Q curve!

-  Empirical Evidence!
-  Long-term cycling!
-  Short-term cycling!
-  EIS!
-  High/Low Capacity!

-  Rainflow-Counting!

Figure 3.2.: Analytical Structure

The following sections of this chapter explain the main assumptions for the software model,

introduce the software environment itself and present the validation techniques.

3.1. Assumptions

First, vehicle dynamics are only assessed along the vehicle’s longitudinal axis, i.e. transverse

vehicle dynamics such as sideslip are ignored throughout this analysis. Second, vehicle as well as

battery characteristics are assumed to be ’steady’ for the duration of one second. This means,

a quasi-steady approach (introduced in section 2.2.3) is adopted. Third, this work takes a

mechanical engineering viewpoint of the battery sizing problem. Political, economic or social

analyses are mainly omitted. Also, electrochemical details affecting the functionality of batteries,

which are explained in section 2.3.2, are mostly ignored for the analysis. Fourth, the terminal

voltage is assumed to be in electrochemical equilibrium (VT = VOC) after a minimum of 30

minutes under the no-load condition. This means, battery dynamics are ignored when the last

current draw occurred 30 minutes ago or even earlier.
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3.2. Modelling & Simulation

The modelling and simulation environment chosen for this work is MATLAB and MATLAB-

Simulink. The commercial software enables the quick execution of algorithms and the visualisa-

tion of their results. It is particularly useful for the analysis and interpretation of large data sets

including log files from the Racing Green Endurance (RGE) project, the Future Car Challenge

(FCC) and travel surveys.

3.3. Experimental Methods

This section introduces and explains the experimental methods used within this work. First,

the RGE project is presented. This is followed by an introduction of the Future Car Challenge

(FCC) and an explanation of the use of travel surveys. Finally, the battery testing procedures

are commented on.

3.3.1. Racing Green Endurance (RGE)

From December 2008 until December 2010 the Racing Green Endurance (RGE) team, which

the author is part of, has been working towards developing an electric supercar and driving it

down the Pan-American Highway as shown in Figure 3.3. The mission was to disprove common

perceptions about electric vehicles, which include that they are slow, boring and of short range.

In particular, it was about demonstrating the viability of electric vehicles as an alternative to

conventional ICEVs. The project was based upon four aims. First, to show that sustainable

transport is possible. Second, to help encourage the next generation of scientists and engineers to

keep challenging common wisdom. Third, to excite people by being adventurous. And fourth, to

collect valuable real-world and long-term data from an electric vehicle, which without industrial

collaborations is very difficult to obtain.

Design

After the successful award of the required financial and in-kind sponsorship in August 2009, the

first task was to design the vehicle. Thanks to Radical Sportscars Ltd., the team was donated a

chassis of a SR8 racing car, which would form the basis of the new SRZero (zero emission). The

remarkable design (see Figure 3.4) deliberately would catch the attention of other drivers and

pedestrians along the way. Consequently, the team’s task was to design the entire power train

and not the exterior of the vehicle. The overriding design parameter for the SRZero was range.

Early research has shown that the longest stretches along the Pan-American Highway without a

built infrastructure are in the Chilean Atacama Desert and more than 400 km long. Thus, the

SRZero needed to have an all-electric range (AER) of at least 400 km in order to be charged

locally. The team decided that charging from a mobile generator would defeat the purpose of

promoting sustainability.
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Figure 3.3.: Major Cities Along the Pan-American Highway

Figure 3.4.: SRZero Schematic View
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Using initial estimates and iterative algorithms, which are presented in chapter 4, the required

battery capacity was found to be 54 kWh. In order to keep the maximum currents low, it was

decided to combine 164 lithium-iron phosphate (LiFePO4) cells with a nominal voltage of 3.3

V and a rated capacity of 100 Ah in a series arrangement. This 164S0P configuration resulted

in a relatively high nominal battery pack voltage of 541.2 V and a rated capacity of 100 Ah.

As explained in section 2.2.2 high system voltages (>200 V) are usually favoured over low

system voltages in order to reduce the losses associated with high currents (see equation 2.9).

Also, the team decided to use LiFePO4 cells instead of LiCoO2 or LiMn2O4 cells. As discussed

in section 2.3.2 ’temperatures of these cells during thermal runaway are unlikely to cause hot

surface ignition of the vent gases’ and thus are comparatively safe without the need for active

cooling [101]. Their main disadvantage is their comparatively low specific energy and their

comparatively low energy density. The cells were donated by the Chinese battery manufacturer

ThunderSky Ltd. (now Winston Battery Ltd.). More details on the exact battery specifications

can be found in appendix B.

The battery pack was placed at the rear directly behind the driver’s and the co-pilot’s seat

and in the two sidepods of the open-cockpit sportscar. In Figure 3.4 the individual battery cells

are shown in yellow. The high-capacity prismatic cells featured fins on the outer casing in order

to facilitate convective air (passive) cooling.

The electrical energy in the battery cells was converted from DC to AC power via two inverters

in parallel, mounted above the rear axle on top of two three-phase AC permanent magnet (PM)

motors [129]. The small and lightweight inverters were also used as motor controllers for the

electric axial flux motors mentioned above. Conversion of power is always associated with losses.

Consequently, inverter efficiencies are always <100% regardless of the direction of power flow.

In this case inverter losses are associated with the conversion loss from DC to AC power and

vice versa. During normal operation, when the power flow is from the battery to the wheels (i.e.

torque values are positive), DC power values are greater than the resulting AC power values.

On the contrary, during recuperation when kinetic energy from the wheels is fed back to the

battery, AC power values are greater than resulting DC power values. Equation 3.1 clarifies this

relationship.

PDC =
PAC

ηinverter
(3.1)

The axial flux motors, which were provided by EVO Electric Ltd., have a relatively high power

density of 3.6 kW/kg and allow for cruising speed efficiencies of >95% thanks to a custom design.

The electric motors are custom-wound (i.e. their peak efficiency is at lower speeds than normal)

for a nominal driving speed of ≈80 km/h (713 rpm in this case) as illustrated in figure 3.5. The

motors can run up to speeds of 1,800 rpm (202 km/h) and achieve a combined maximum torque

of 1,300 Nm, but experience field weakening at speeds above 1,500 rpm. Field weakening in

AC motors, the effect of which cannot be shown in figure 3.5, appears once the voltage remains

constant and the frequency increases. Then, the torque decreases in proportion to the increasing
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Figure 3.5.: SRZero Motor Efficiency Map

speed and the power remains constant (see figure 3.6). This means that at high speeds only

low torque is available. That is why very high speeds shall be avoided with this design. The

motors also act as generators while the SRZero is recuperating energy from deceleration and/or

braking. They are cooled using a water/glycol mixture.
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Figure 3.6.: Field Weakening Schematic

The supervisory control is carried out by a real-time controller, a CompactRIO which was

donated by the National Instruments Corporation (NI). The vehicle supervisory system follows

a torque control approach. Figure 3.7 illustrates this power train setup.

The relatively long range requirement not only demands a relatively large battery pack, but

also a highly efficient and robust power train. This leads to an additional design priority,

favouring endurance over speed. Thus, the two motor shafts are directly connected to the

wheels. It is only possible to leave out a gear box if the required combinations of torque and
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Figure 3.7.: SRZero Power Train Layout

speed values can be attained by the electric motors alone. Usually, this requires the motors to

be custom-wound for the specific application (see previous paragraph). In the absence of a gear

box losses associated with friction are reduced, also weight and volume can be saved.

On top of this, the SRZero only features the most basic auxiliaries. These include lighting,

Table 3.1.: Technical Specifications of SRZero

Attribute Value

Rated Battery Capacity 100 Ah (54.12 kWh)
Battery Chemistry LiFePO4

Number of Cells 164
Nominal System Voltage 541.2 V
Battery Pack Mass 574 kg
Motor Type 3-Phase AC PM
Max. Power Output 300 kW (400 bhp)
Max. Torque Output 1,300 Nm
Number of Motors 2
Drive System Rear Wheel Direct Drive
Kerb Weight 1,150 kg
Length 4.2 m
Width 1.8 m
Height 0.8 m
Wheel Diameter 0.5955 m
Frontal Area 1.44 m2

Drag Coefficient (Cd) 0.38 (estimated)
Rolling Resistance (Cr) 0.011 (estimated)
Range >515 km
Top Speed 190 km/h
Acceleration (0-100 km/h) 7 s
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a liquid crystal display (LCD) and radio communication powered by a 12 V battery. The low

voltage battery is also used to initialise the control system, which starts the car (compare with

figure 2.8 about the system layout). Air conditioning, heating and entertainment systems are

omitted. Detailed technical specifications of the SRZero are listed in table 3.1.

Data Collection

The CompactRIO, simultaneously serving as a real-time controller and also as a field-pro-

grammable gate array (FPGA), is used to implement an efficient and robust vehicle control

system [129]. It executes the vehicle’s battery management system (BMS) and additionally

manages the motor controllers, driver interface and safety systems. Most relevant in the con-

text of this work is the controller’s ability to store real-time data. The data logs sampled at a

frequency of 1 Hz include analogue and error state data, records from the chargers, the BMS,

motor controllers and motors. More specifically, table 3.2 lists the available log file information

in alphabetical order. This information is used to validate the results from the software model

Table 3.2.: Racing Green Endurance Log File Information

Information Sign Unit

Auxiliary Voltage Vaux V
Cell Temperature Tcell °C
Cell Voltage Vcell V
Current (fast �) Ifast A
Current (slow �) Islow A
Feedback Torque τout Nm
Inverter Current (AC) Imc ac A
Inverter Current (DC) Imc dc A
Inverter Voltage (AC) Vmc ac V
Inverter Voltage (DC) Vmc dc V
Motor Speed ωmotor rev/min
Motor Temperature Tmotor °C
Requested Torque τreq Nm
State of Charge SOC %
Time t s
Traction Voltage Vtrac V
Vehicle Speed v km/h

introduced in chapters 4-5. However, not all information such as individual cell temperatures is

available for the entire length of the trip. Approximately 15% of all data logs are not readable

because they are corrupted. More than 70% of the temperature logs are also corrupted.

After nine months of design and manufacture and after having passed the individual vehicle

approval (IVA) for the SRZero in the UK in early May 2010, the team was ready to start the

record-breaking journey (no other team has ever done something similar before) along the Pan-

American Highway on July 4th 2010. After 71 drive cycles, 87 battery cycles and a cumulative
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distance of 26,500 km (see appendix C for a detailed itinerary) the team accomplished its mission

and arrived at the southernmost city in the world, Ushuaia, on November 16th 2010. In the

meantime, the car withstood two accidents, three broken chargers, four broken shock absorbers,

a fire, after which the BMS was destroyed, and very rough road conditions. Figure 3.8 depicts the

SRZero in Patagonia, Argentina. More information on the RGE project as well as access to the

BBC World Documentary about the project is available from www.RacingGreenEndurance.com.

Figure 3.8.: SRZero in Patagonia, Argentina

3.3.2. Future Car Challenge (FCC)

The Future Car Challenge (FCC) is an annual motoring challenge organised on behalf of the

Royal Automobile Club (RAC). Its debut was in November 2010 [130] and since then participants

have been challenged to consume least energy while driving a 92-102 km route from Brighton

to London in a given time frame. The FCC provides a unique opportunity to compare the

energy consumption of different vehicle configurations on the same basis under real-world driving

conditions [131].

All road-legal electric, fuel cell electric, plug-in hybrid electric, hybrid electric and up to

110 gCO2/km (NEDC) internal combustion engine passenger motor cars and light commercial

vehicles (LCVs) produced after January 1st 2001 are eligible for this competition [132]. A

minimum time of 2 hours and 45 minutes and a maximum time of 3 hours and and 30 minutes

are set including a 15-30 minute stop-over approximately half-way at Crawley. Two adult

passengers have to be in the participating vehicles at all times. Vehicles are classed by power

train type, vehicle size (Euro Car Segments [133]) and by the type of build as shown in table

3.3.

From 2010-2012 there are 51, 40 and 23 individual vehicle energy data logs available for com-

parison respectively. Table 3.4 lists the available energy consumption information for different

power trains. Tickmarks indicate available information, whereas a cross indicates that this
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Table 3.3.: Future Car Challenge Entry Classes [132]

Power Source Vehicle Size Build

Electric Vehicle (EV) Small (A & B) Prototype
Fuel Cell Electric Vehicle (FCEV) Regular (C) Production
Plug-In Hybrid Electric Vehicle (PHEV) Large (D)
Hybrid Electric Vehicle (HEV) Sports (S)
Internal Combustion Engine Vehicle (ICEV) Multi-Purpose (M & J)

Light Commercial Vehicle (LCV)

information is not available for this particular power train type. Pure EVs rely on electrical

energy only for propulsion, whereas PHEVs may be powered by electrical as well as by chemical

energy from liquid fossil fuels. HEVs can also be powered by electrical and chemical energy, but

their battery cannot be charged externally. ICEVs exclusively depend on liquid (or gaseous)

fossil fuels for motion. Consequently, the methods used for measuring electrical and chemical

(fuel) energy are explained in the following two subsections. More detailed information on the

methods for measuring the energy consumption for the FCC can be found in [130]. The last

subsection describes how driving behaviour is assessed.

Table 3.4.: Future Car Challenge Data Log Information

Traction Voltage Current Fuel Flow
[V(t)] [I(t)] [l/s (t)]

EV X X 5
FCEV X X X
PHEV X X X
HEV 5 5 X
ICEV 5 5 X

Electric Energy

The electric ’tank-to-wheel’ energy consumption for EVs, FCEVs and PHEVs is calculated via

the time integral of electric power consumption. For a fixed time step ∆t = 1/f this becomes

a summation as illustrated in equation 3.2. The sampling frequency f varies within 1-100 Hz,

depending on the power train type.

Eel =

∑
V (t)I(t)∆t

ηchargeηbattery
(3.2)

This also takes into account charging (ηcharge = 93%) and battery/coulombic (ηbattery = 99%)

efficiencies. By convention, positive currents are defined as flowing out of the battery and

negative currents as flowing into the battery.
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EVs, FCEVs and PHEVs are fitted with a data logger, which records both traction voltage and

current on the high voltage (HV) DC bus between the battery pack and the motor controllers.

The loggers have been supplied by GEMS Ltd. Sensors include hall effect current sensors with

a range of ±750 A [130] as well as high value resistors across the bus to generate a small

leakage current, which is then measured using another current transducer giving a range of

0-450 V. Current and voltage signals are fed to a 10-bit analog-to-digital converter (ADC).

The transducers used for current and voltage measurement are temperature compensated and

individually calibrated before installation. For the challenges between 2010 and 2012 inclusively

there are 16, 26 and 11 individual electric vehicle energy data logs available for comparison

respectively.

Fuel Energy

The energy stored per unit volume in conventional liquid fossil fuels is based on the calorific

value, also referred to as the heating value. The relative difference between the higher heating

value (HHV) and the lower heating value (LHV) based on volume is 5.2% for petrol and 6.4%

for diesel respectively [31]. As the HHV represents the maximum energy content stored in a fuel

and official UK government publications (e.g. [134]) use the HHV when citing emission factors

for businesses, the HHV is the preferred reference value over the LHV for this analysis. Diesel’s

energy density with respect to volume (10.60 kWh/l) is 10% higher than the equivalent of petrol

(9.61 kWh/l) [31]. Hydrogen (H2) has a specific energy density (HHV) of 39.33 kWh/kg [135].

The fuel ’tank-to-wheel’ energy consumption for FCEVs, PHEVs, HEVs and ICEVs is described

by the following equation:

Efuel = HHVfuel
∑

Qfuel∆t (3.3)

It is equal to the product of the higher heating value (HHV) and the time integral of the

volumetric fuel flow rate Qfuel. The instantaneous volumetric fuel flow rate is retrieved from

the vehicle’s encrypted CAN bus message of the on-board diagnostics (OBD-II). Its time integral

is compared against a brim-to-brim fuel measurement at each end of the challenge.

Driving Behaviour

Driving behaviour in the context of this analysis refers to the different individual speed and

acceleration profiles of the vehicles. During the 2011 FCC for example more than 2⁄3 of partici-

pating vehicles (i.e. 27 of 40) were equipped with a Global Positioning System (GPS) receiver,

which logged vehicle position at either 50 or 100 Hz with an accuracy of the receiver of about

10 m. This allows for the generation of relatively accurate speed and acceleration profiles for

individual participants.
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Relevance

The FCC data logs present a valuable validation source for the nominal energy consumption

of various power train types and in particular of electric vehicles. With this information, the

assumptions and calculations made in chapter 4 can be checked against real-world values. Ad-

ditionally, the FCC logs present a valuable data source for the analysis of driving behaviour.

For each of the past three FCCs at least two data sets are available for an EV with the exact

same model and make. Thus, any difference in energy consumption for these vehicles can pri-

marily be attributed to the driving behaviour. The most detailed and most comprehensive data

set of the FCC with regards to EVs is available for 2011. During that year, the RGE SRZero

also participated in the run (see figure 3.9). More information on the FCC can be found at

www.FutureCarChallenge.com.

Figure 3.9.: SRZero at the 2011 Future Car Challenge

3.3.3. Travel Survey Analysis

Travel surveys are studies of individual travel behaviour. Most travel surveys are large data sets

(typically .txt or .csv files), which include socio-economic and demographic information about

individuals and their household, information about their modes of transportation and typically

a diary of their journeys on a given day. There are travel surveys on regional as well as on

national levels. Three countries, for which relatively detailed national travel surveys exist, are

analysed individually and compared against each other: the UK, Germany and the US.

The latest UK National Travel Survey (NTS) was published by the Department for Transport

(DfT) on December 13th 2012 and can be downloaded from [136]. Raw data sets are available

from the Economic and Social Data Service (ESDS) [137]. The latest German travel surveys

(Mobilität in Deutschland 2008 & Deutsches Mobilitätspanel (MOP) 2011/2012) were published

in 2009 and 2012 respectively. Their raw data sets can be ordered from [138]. For the United
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States, the most recent study is the 2009 National Household Travel Survey (NHTS) and it’s raw

data can be downloaded from [139]. In order to have a comparable and sufficiently large sample

size for averaging the results over a longer period of time and thus maximising the stability

of data, data from 2008-2010 has been analysed for all three countries. Therefore, the sample

sizes for the UK, Germany and the US are 409,770, 72,304 and 720,903 individual car journeys

respectively.

As shown in figure 3.1 the travel survey analysis serves the purpose of establishing range

requirements for electric vehicles. The underlying assumption is that private EVs are normally

charged overnight at the owner’s home and then discharged during the day. Also, it is assumed

that travel patterns including the frequency of trips and the lengths of trips are independent of

the vehicle power train type. Thus, using MATLAB, all raw data from the three surveys has

been analysed and filtered for private cars with an identifiable driver only. This way duplicated

journeys with the same vehicle but different passengers can be filtered out and information

about the vehicle including size and annual mileage can also be obtained. Weights are included

in the statistics in order to adjust for non-response, and also for drop-off in recording during

the survey trial. Furthermore, all data has been cumulated for the duration of a single day.

As shown in figure 3.10a, usually several individual journeys account for the total vehicle day

distance. Following this example, one person might leave his/her home in the morning to go to

work, leave work in the evening to go shopping before returning home. What is relevant here

Trip 1 

Trip 2 

Trip 3 

Workplace 

Home 

Supermarket 

(a) One Vehicle

Trip 1 Trip 2 

Trip 3 

Workplace 

Home 

Supermarket 

Trip 4 

(b) Two Vehicles

Figure 3.10.: Exemplary Daily Trip Distribution

is that trips 1-3 are all undertaken using the same vehicle and the same driver. The example

shown next to it in figure 3.10b demonstrates how one person might be going to the same places,

but following different routes and using a second vehicle. The person might be using his/her

car to go to work and back (trips 1-2), but his/her partner’s car to go to the supermarket and

80



3. Methodology

back (trips 3-4). This is to demonstrate the importance of following an individual vehicle’s

path during the day rather than an individual person’s path in order to establish daily range

requirements for EVs.

3.3.4. Battery Testing

The final validation method associated with this work is related to experimental battery testing

at Imperial College’s fuel cell lab. This section is closely related to the Racing Green Endurance

project introduced in section 3.3.1 as the battery cells in question are the traction batteries from

the RGE project.

In the following, two methods of battery testing used for this work are explained and described:

battery cycling and electrochemical impedance spectroscopy.

Battery Cycling

Battery cycling refers to the repeated charging and discharging of one or more battery cells under

very specific conditions. It is used to identify performance characteristics such as capacity and

nominal voltage and also to find faulty cells. Consequently, battery cycling is done prior to other

battery testing methods. A procedural battery cycling schematic with two cycles is presented

in figure 3.11. Real battery cycling tests can range within 1-10,000 cycles. The cell voltage is
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Figure 3.11.: Battery Cycling Schematic

plotted against time. A typical battery cycle consists of a full charge followed by a full discharge.

In figure 3.11 the charge is represented by an increasing voltage from the lower cut-off voltage

Vmin up until the upper cut-off voltage Vmax. The cell’s operating range is between Vmin and

Vmax. During cycling a voltage increase is achieved through a constant current (galvanostatic)

charge. After this the cell is further charged with currents being fed at a constant voltage Vmax

(potentiostatic charge) until the currents reach a minimum value Imin. The discharging process
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is somewhat simpler as it only involves a constant current discharge until Vmin. By increasing

the charge/discharge currents as well as the ambient temperature, long-term heavy-duty cycles

such as those occurring in EVs can be simulated at a fraction of real-time cycles. This method

is called accelerated life testing.

Battery cycling in a lab environment for the RGE battery cells was carried out during the

early months of 2010 and 2012 respectively. Basic battery cell parameters such as battery pack

voltage and current (see section 3.3.1) are also available throughout the journey from July to

November 2010. Thus, the battery characteristics before, during and after the drive down the

Pan-American Highway are known.

The first cycling tests in early 2010 were completed at the grounds of Frazer Nash Research

Ltd., the company which also sponsored the custom-made BMS and the three chargers for

the RGE project. Their BMS and their chargers were used in conjunction with a load bank

(heat sink) in order to cycle and balance all cells. Figure 3.12 shows this configuration. Cell

balancing refers to the levelling of individual electric cell potentials (voltages) when several cells

are combined to form a battery (pack). Ideally, each individual cell of a battery has the same

voltage as all other cells.

Figure 3.12.: SRZero Battery Pack with BMS and Heat Sink in early 2010

If, for example, in a series cell arrangement like that in figure 2.20 cell voltages are not bal-

anced, then the resulting resistances vary as well. As explained in section 2.3.2 the polarisation

resistance Rpol increases with a lower cell voltage, while the internal resistance Rint roughly stays

the same. Assuming the same resistance characteristics for all cells, this leads to the conclusion

that the cell with the lowest voltage has the highest resistance. According to Ohm’s Law (see

equation 3.4) the combination of a lower voltage Vmin and a higher resistance Rmax leads to a

lower current.

Imax =
Vmin
Rmax

(3.4)

Thus, the maximum current in a series cell arrangement is limited by the cell with the highest

individual cell voltage. This has profound consequences for an EV, which needs to draw high
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currents while accelerating and/or ascending. Consequently, regular cell balancing is mandatory

if the cell voltages are not levelled. Any active BMS balances cells during the charging process,

while passive battery management systems only monitor the cell characteristics.

For the RGE project the 164 cells were balanced before the first use in the vehicle in early

2010. Also, during the journey the BMS was actively balancing until Cartagena in Colombia

when the BMS was destroyed in a minor fire of the SRZero. Fortunately, the cells proved to be

robust and stable enough to sustain the rest of the journey without the need of active balancing.

The cycling tests in 2012 on a single cell were completed using a Maccor 4300 desktop auto-

mated battery tester. Featuring up to eight ±5 Ampere channels the flexible testing unit can

be programmed by the user in a similar way like a BMS and its comprehensive output data can

be exported as text files. Despite the potentiostat being automated, the testing requires fre-

quent and regular supervision. Disruptions for the tester include power outages, large ambient

temperature variations and loosened sensors. The input parameters for the automated battery

tester follow the same logic as illustrated in figure 3.11. The exact steps and their corresponding

commands are listed in table 3.5.

Table 3.5.: Battery Cycling Procedure

Step Description Data Log Step

1 Rest period (30 minutes) every 60 seconds
2 Constant current (10 A = 0.1 C) charge until Vmax ≥ 3.9 V for every ∆V = 5 mV
3 Constant voltage (3.9 V) charge until Imin ≤ 100 mA every 20 seconds
4 Rest period (30 minutes) every 60 seconds
5 Constant current (10 A = 0.1 C) discharge until Vmin ≤ 2.5 V for every ∆V = 5 mV

This means that in accordance with the battery specifications listed in appendix B, an indi-

vidual cell is considered to be fully charged at Vmax = 3.9 V (also see figure 3.11). For the entire

battery pack of the SRZero, which consists of 164 individual cells connected in series, this means

that it is fully charged at 639.4 V. In addition, the cell is considered to be fully discharged at

2.5 V i.e. at 410.0 V for the battery pack. Maximum charging and discharging currents were

constrained by the number of available channels (2). Thus, with a rated nominal capacity of

100 Ah, constant charge/discharge currents with a magnitude of 10 A had a comparatively low

capacity rate of 0.1 C.

Rest periods of 30 minutes each (steps 1 and 4) after the charging and the discharging process

made sure that the electrochemical cell would return back to its equilibrium state before being

subjected to yet another charging or discharging process.

Table 3.5 also highlights that the data logs feature a non-uniform sampling interval. Only for

rest periods (steps 1 and 4) and the constant voltage charge (step 3) data logs are generated

linearly with time. For the galvanostatic charge and discharge processes (steps 2 and 5), a log

is created for every incremental change of 5 mV of the cell voltage. Therefore, the data analysis
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needs to account for the non-linear and varying spacing of data logs. Three thermocouples also

measured the ambient temperature and the surface temperatures on the front and back face of

the cell.

Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) as a means of measuring impedance (polarisation

resistance) of electrochemical devices such as batteries was briefly introduced in section 2.3.4

(see figure 2.32). It is a non-invasive method, whereby a sinusoidal signal is induced into the

electrochemical system. The response gives the difference in amplitude and phase between

voltage and current at a given frequency. There are two types of impedance spectroscopy:

• galvanostatic: AC current is induced and the voltage response is measured

• potentiostatic: AC voltage is induced and the current response is measured

During the early months of 2012 several impedance spectroscopy measurements were carried out

at Imperial College’s fuel cell lab in order to establish various cell resistance values with time

and number of cycles. For this purpose one cell was cycled according to the procedure listed in

table 3.6. The procedure is principally the same as in table 3.5, but longer, more complex and

includes impedance spectroscopy every time the cell is fully charged.

Table 3.6.: Electrochemical Impedance Spectroscopy Procedure

Step Description Data Log Step

1 Rest period (60 minutes) every 120 seconds
2 Constant current (5 A = 0.05 C) charge until Vmax ≥ 3.9 V for every ∆V = 5 mV
3 Constant voltage (3.9 V) charge until Imin ≤ 0.1 A every 20 seconds
4 Rest period (60 minutes) every 120 seconds
5 Constant current (5 A = 0.05 C) discharge until Vmin ≤ 2.5 V for every ∆V = 5 mV

interrupted by six rest periods (30 minutes); each followed by every 120 seconds
constant current (0.4 mA) impedance spectroscopy for 51 for every frequency
frequencies (2,000-0.2 Hz)

First, the rest period of 60 minutes is longer, which further facilitates the cell’s return to it’s

equilibrium state, i.e. its open-circuit voltage (OCV). Second, the galvanostatic charge/discharge

is at a lower current (0.05 C). Third, the device, a galvanostatic impedance analyser, induces

an AC current at 51 distinct low amplitude signals (2,000-0.2 Hz) when the cell is fully charged

and also has rested sufficiently long. After the EIS, the cell is discharged with a pulsed load.

This means that the load is not applied continuously during discharge. Instead, six rest periods,

during which the cell voltage can return to its OCV, are included in the discharge procedure.

84



3. Methodology

3.4. Conclusions

This chapter has introduced the scientific approach taken for this work. For each of the main

chapters (4-5), a first principle analysis is compared against and adjusted to empirical test results

from various validation techniques. First principle analyses are executed in the MATLAB and

MATLAB Simulink programming environments. They usually follow a quasi-steady approach

and ignore transverse vehicle dynamics as well as electrochemical details. The main experimental

techniques for this work include the data logs of the Racing Green Endurance project, the 2010-

2012 Future Car Challenge, travel surveys and battery testing data.
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4. Nominal Energy Requirements of

Electric Vehicles

This chapter deals with the nominal energy consumption of electric vehicles. Nominal energy

consumption refers to the level of energy consumed for most of the driving. As illustrated in

equation 4.1, energy is the product of force (F ) and distance (d).

E = F (t)d (4.1)

Consequently, the first section of this chapter is devoted to the vehicle driving force Fd. The

second section deals with the range requirements of EVs. Finally, the last section concludes this

chapter and makes the transition to the subject of the next chapter.

4.1. Electric Vehicle Driving Forces

The vehicle driving force is the force required to keep a road vehicle moving. Everything else

being equal, it is independent of the power train type and thus applies to conventional ICEVs as

well as to EVs. The following subsections first approximate the nominal vehicle driving force via

theoretical assumptions. Then, these nominal driving force values are compared and contrasted

with real values from the RGE project and the 2010-2012 Future Car Challenges.

4.1.1. Theoretical Driving Force

The driving force describes the distance-specific energy consumption of a vehicle. While the

traction force describes an instantaneous force, the driving force is only valid over a certain

distance. Theoretically, the vehicle driving force is influenced by traction forces, vehicle param-

eters, operating modes, steady and dynamic conditions, performance characteristics, auxiliaries

as well as losses. Each are analysed in detail.

Traction Forces

Following Newton’s second law of motion, the longitudinal dynamics of a vehicle can be described

by the following equation:

Fi(t) = Ft(t)− [Fa(t) + Fr(t) + Fc(t)] (4.2)
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The inertial force of the vehicle Fi on the left hand-side of equation 4.2 is equal to the traction

force Ft minus the sum of the aerodynamic drag force Fa, the rolling resistance force Fr and the

climbing force Fc.

The inertial force Fi is described by the following ordinary differential equation (ODE):

Fi(t) = mvv̇(t) = mv
d

dt
v(t) = mva(t) (4.3)

The product of the vehicle mass mv and the instantaneous acceleration a(t) is equal to the

inertial force. It implies that large inertial forces need to be overcome for heavy vehicles and/or

fast accelerations.

The aerodynamic drag force Fa is described by the following expression, which ignores possible

headwind or tailwind:

Fa(t) =
1

2
ρairAfCdv(t)2 (4.4)

The density of the ambient air ρair decreases with an increasing altitude and/or a rise in temper-

ature. Thus, ρair is greatest in cold climates at sea level and ρair is smallest in hot climates at
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Figure 4.1.: Measured Drag Coefficients for Various Shapes [140]
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high altitudes. At sea level and 15°C air has a density of approximately 1.225 kg/m3 according

to the International Standard Atmosphere (ISA). The frontal area of the vehicle Af as well as

the aerodynamic drag coefficient Cd highly depend upon the design and shape of the vehicle.

Figure 4.1 shows the variation of the drag coefficient for different shapes with the same surface

area. The experimentally determined Cd is always associated with a particular surface area Af .

For passenger vehicles the frontal area can be approximated:

Af ≈ 0.9× wheel track × height (4.5)

Together Af and Cd determine how streamlined the vehicle is. The higher the speed, the

proportionally bigger the aerodynamic drag force. For every doubling of the vehicle speed the

aerodynamic drag force is increased fourfold. It follows that the aerodynamic drag force is

smallest if the vehicle is streamlined with a relatively small frontal area and driven at relatively

low speeds in high temperature climates at high altitudes. Typical values for the parameters

are listed in table 4.1.

The rolling resistance force Fr is described by:

Fr(t) = mvgCrcos(α) (4.6)

Fr is a linear function of the vehicle mass mv, the gravitational constant g, the rolling resistance

coefficient Cr and the cosine of the angle of inclination α. Cr depends on the road surface,

the tyre material, the contact area and tyre pressure. Typically, narrow large-diameter highly

pressurised tyres have a low Cr. The cosine of α is the horizontal leg in figure 4.2. Thus, the

α

Figure 4.2.: Road Grade Schematic

rolling resistance force is minimised with a low vehicle mass, a low rolling resistance coefficient

driving on an inclined road.

The climbing force Fc proportionally depends upon the vehicle mass, the gravitational constant

and the sine of α as shown in equation 4.7.

Fc(t) = mvgsin(α) (4.7)

Demonstrated by equation 4.2, the traction force Ft is equal to the sum of the aerodynamic

drag force Fd, the rolling resistance force Fr and the climbing force Fc if the vehicle is neither

accelerating nor decelerating. If the vehicle changes its momentum, the inertial force Fi gets
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added on top. In either case, the traction force is smallest if the vehicle mass, the vehicle frontal

area, the aerodynamic drag coefficient, the rolling resistance coefficient and the vehicle speed

Table 4.1.: Traction Force Parameters and Typical Values [57, 141]

Parameter Sign Typical Value Unit
Low High

Aerodynamic Drag Coefficient Cd 0.2 - 0.5 -
Ambient Air Density ρair - 1.23 - kg/m3

Frontal Area Af 0.5 - 2.5 m2

Gravitational Constant g - 9.81 - m/s2

Road Grade - 0 - 35 %
Rolling Resistance Coefficient Cr 0.008 - 0.013 -
Vehicle Acceleration a 0 - 5.0 m/s2

Vehicle Mass mv 750 - 2,000 kg
Vehicle Speed v 0 - 200 km/h
Wheel Radius rw 0.27 - 0.37 m

is minimised. Table 4.1 summarises all aforementioned parameters affecting the traction force

and lists typical ranges. The gravitational constant g is assumed to be constant. Following a

conservative approach, the air density is also assumed to be constant. Typically, the maximum

grade, at which the vehicle can start from standstill, also called gradeability, is 30%. Following

simple trigonometry (i.e. tan−1(0.3)), this translates into a 16.7° angle of inclination. For a

conservative estimate, we assume 35% to be the maximum road grade.

Vehicle Classes

Based on the vehicle classes first introduced in section 3.3.2 and the parameters from table 4.1,

representative vehicle specifications can be assigned. In alignment with the research aim of this

work, only passenger road cars are analysed. These can be categorised into mini cars (e.g. Ford

Ka or VW Up), small cars (e.g. Ford Fiesta or VW Polo), medium cars (e.g. Ford Focus or

VW Golf), large cars (Ford Mondeo or VW Passat) and sport utility vehicles (SUVs) like the

Range Rover or VW Touareg. Table 4.2 lists vehicle classes and representative parameter values.

This table forms the basis for the following analysis on nominal driving force, range and battery

degradation.

Table 4.2.: Vehicle Classes and Representative Parameter Values [57],[141]

Mini Car Small Car Medium Car Large Car SUV

Euro Car Segment A B C D J
mv [kg] 750 1,000 1,200 1,500 2,000
CdAf [m2] 0.3 0.6 0.7 0.8 1.2
Cr [-] 0.008 0.01 0.011 0.012 0.013
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Operating Modes

The traction force required to keep the vehicle moving is only exerted when the vehicle is in

traction mode. In theory, there are four possible operating modes for the vehicle power train as

shown in table 4.3.

Table 4.3.: Power Train Operating Modes

Operating Mode Description

Traction The power source applies a driving force to the wheels
Braking The mechanical brakes dissipate the kinetic energy of the

decelerating vehicle as heat
Recuperating The kinetic energy from the decelerating vehicle is (partly)

recovered and transferred back to an energy storage device
(battery, super capacitor, flywheel, etc.)

Coasting The power source is disengaged and ’the resistance losses of
the vehicle are exactly matched by the decrease of its kinetic
energy ’ [57]

Applying the traction force Ft over a distance d leads to the following expression for the

theoretical nominal energy consumption Enom:

Enom =
∑

Ft(t)d (4.8)

Consequently, minimising both the magnitude of the traction force Ft and the relative time

spent in traction mode reduces the vehicle’s energy consumption for a given distance d. For this

purpose we define the traction ratio TR as the relative time spent in traction mode. Practically,

it is the time spent on the accelerator relative to driving time. We expect that a higher TR

correlates with greater energy consumption and that a lower TR is associated with lower energy

consumption. This hypothesis will be checked in section 4.1.2.

TR =
Time spent in tractionmode

Total driving time
(4.9)

The time spent in traction mode may be calculated by summing up the time steps from the drive

cycle, at which the traction force Ft is greater than zero. Ideally, an exact i.e. analytical solution

of the ODE introduced with equation 4.2 can be found for this purpose. However, two resistive

forces are not explicit functions of time, namely the rolling and climbing resistances. They

depend upon the slope of the road α, which varies with position s. Thus, [142] proposed the use

of position s instead of time t as the independent variable. The disadvantage of this approach

however, is that most sensing devices are time dependent. Therefore, in order for the model to

be validated easily, time needs to remain the independent variable. In order to overcome the

non-linearity of the rolling and climbing resistances, a piecewise (∆t = 1 s) analytical solution

is proposed.
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While the vehicle is coasting, the traction force must be equal to zero. Consequently, for the

limiting case where Ft = 0, equation 4.2 may be rearranged in terms of the coasting velocity vc.

d

dt
vc(t) = −

ρairAfCd (vc(t))
2

2mv
− g[cos(α)Cr + sin(α)]

= −A2 (vc(t))
2 −B2

(4.10)

A and B are constants for the piecewise analytical solution. For vc > 0 and α = 0, equation

4.10 can be integrated in closed form. We extend this solution and also account for a varying

road slope:

vc(t) =
B

A
tan

[
tan−1

(
B

A

)
vc(0)−ABt

]
(4.11)

The main advantage of this solution is that it can be solved analytically and is thus relatively

precise for the respective time step. From this the vehicle is in traction mode if the vehicle speed

v decreases less than the coasting velocity vc(t) would decrease when starting at the same initial

speed vc(0). In contrast, the vehicle is in braking or recuperating mode if the vehicle speed v

decreases more than the coasting velocity vc(t) would decrease when starting at the same initial

speed vc(0).

Figure 4.3 shows how the traction ratio TR can be applied to the NEDC. The black line

shows the speed vs. time trace of the NEDC, whereas the red line highlights when the traction

mode is on (y = 40) or off (y = 0) for a medium-sized car based on the parameters of table 4.2.

The upper and lower bounds for the red line are chosen arbitrarily and are for demonstration

purposes only. Speed and acceleration time traces of the NEDC and other international driving

cycles can be found in appendix D. Figure 4.3 shows that a medium-sized car following the

NEDC is in traction mode for roughly 58% of the time. No time is spent coasting for this

particular example. Thus, the remaining 42% of the time are spent braking. It also means that
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Figure 4.3.: Traction Ratio Applied to NEDC for a Medium Sized Car
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the magnitude of the mean acceleration (0.53 m/s2) is lower than the magnitude of the mean

deceleration (0.82 m/s2).

Steady Speed Conditions

This subsection works out the theoretical driving force requirements under steady speed condi-

tions. On a horizontal road and at steady speed the traction ratio TR is equal to 1 throughout

the drive cycle. This means that the vehicle is not cruising, recuperating or braking at any point

in time. Also, inertial forces are irrelevant under these circumstances. For a mean steady speed

and zero incline the mean traction force Ft, inertial and climbing forces can be ignored. Thus,

under these circumstances only aerodynamic drag forces as well as rolling resistance forces are

applied.

Figure 4.4 shows the forces required to keep different vehicle classes moving. Although the

SI-unit for force is Newtons [N], it can also be expressed in terms of watt-hours per kilometre

[Wh/km]. Watt-hours per kilometre will be used extensively in the forthcoming analysis as the
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Figure 4.4.: Theoretical Vehicle Driving Force at Steady Speed and Zero Incline

normalised energy consumption unit for electric vehicles. It greatly simplifies the analysis of EV

driving force and energy requirements. The equivalent units of Wh/km for ICEVs are miles per

(Imperial) gallon (mpgimp) in the UK, miles per (US) gallon (mpgUS) in the US and litres per

100 kilometres (l/100 km) in most of Europe and China.

The two units of force on the left and right hand-side in figure 4.4 are plotted against vehicle

speed. It can be seen that the force increases quadratically with speed due to aerodynamic

drag. For the frequent urban and suburban speed limits around 30, 50, 80 and 120 km/h the

theoretical vehicle driving force for a medium-sized car ranges between 44-169 Wh/km. While

at low speeds up to 25 km/h the ratio of the driving force between the biggest (SUV) and the

smallest vehicle class (mini car) is about 4.3, this ratio decreases to about 4.0 at very high speeds

around 200 km/h. This means that at low speeds the normalised energy consumption of SUVs

compared with mini cars is proportionally larger than at high speeds. The reason for this is that
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the rolling resistance, which is predominant at low speeds (see figure 4.5), is exactly 4.3̄ times

greater for the SUV than that of the mini car. The ratio of the two aerodynamic drag forces,

which dominate at high speeds, is exactly 4.0. Also, the ratio of the theoretical driving forces

at very high speeds (200 km/h) and at standstill (0 km/h) is about 10 for all vehicle classes.

This implies one order of magnitude difference in distance-specific energy consumption at high

and low speeds. Table 4.4 summarises traction forces for various vehicle sizes at different steady

speeds.

Table 4.4.: Theoretical Driving Forces at Different Steady Speeds

Speed Driving Force [Wh/km]
[km/h] Mini Car Small Car Medium Car Large Car SUV

0 16.35 27.25 35.97 49.05 70.85
30 19.91 34.37 44.27 58.54 85.09
50 26.24 47.02 59.04 75.41 110.39
80 41.66 77.87 95.02 116.54 172.09
120 73.29 141.14 168.84 200.90 298.63
150 105.33 205.20 243.58 286.32 426.75
200 174.53 343.61 405.05 470.86 703.57

Multiplying equation 4.2 with a mean velocity v̄ and accounting for an average auxiliary power

load P̄aux, which is independent of vehicle speed, yields the theoretical steady driving power.

Auxiliary systems in a vehicle are all appliances in a car, which consume energy but are not

related to the propulsion of it. Due to an increasing demand for on-board safety, information,

comfort and entertainment systems, auxiliary systems have become larger and more sophisti-

cated. Typically, these include air conditioning (A/C), heating, power steering, power brakes,

wipers, lights, window lifts, locks, navigation systems, damping systems, adjustable seats, audio

and other entertainment systems. Because of its non-motive nature, auxiliary power is indepen-

dent of vehicle speed. Consequently, mean auxiliary powers are assumed as listed in table 4.5:

Table 4.5.: Assumed Mean Auxiliary Powers

Mean Auxiliary Power [W]
Mini Car Small Car Medium Car Large Car SUV

500 750 1,000 2,000 3,000

For a medium-sized car and assuming no losses and steady speed, the resulting total and

constituent theoretical powers are shown in figure 4.5. There is a striking dependence of the

total driving power on aerodynamic drag, especially at speeds above 60 km/h. At low speeds,

here up to 30 km/h, driving power is controlled by the auxiliary load. At medium speeds, for

this example between 30 and 60 km/h, the rolling resistance dominates. Any change in the
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Figure 4.5.: Total and Constituent Theoretical Vehicle Driving Powers at Steady Speed for
a Medium-Sized Car

vehicle parameters (mv, CdAf , Cr and/or P̄aux) affects the exact speed ranges of the respective

control regime, but not the general trend. For mountainous regions the climbing power is very

significant as well. This means that for nominal driving, which we assume to be at medium

speeds and with relatively low incline angles (<1°), we expect the rolling resistance to dominate

the driving power at steady speed. The resulting driving powers for the different vehicle classes,

which also consider mean auxiliary loads from table 4.5, are listed in table 4.6.

Table 4.6.: Theoretical Driving Powers at Different Steady Speeds

Speed Driving Power [kW]
[km/h] Mini Car Small Car Medium Car Large Car SUV

0 0.50 0.75 1.00 2.00 3.00
30 1.10 1.78 2.33 3.76 5.55
50 1.81 3.10 3.95 5.77 8.52
80 3.83 6.98 8.60 11.32 16.77
120 9.30 17.69 21.26 26.11 38.84
150 16.30 31.53 37.54 44.95 67.01
200 35.41 69.47 82.01 96.17 143.71

In a similar fashion, the energy consumption required to drive a certain distance can be

calculated as a function of steady vehicle speed. Figure 4.6 compares the energy consumption

at different steady speeds for various vehicle sizes introduced with table 4.2. It shows how for

every combination of vehicle parameters there is an optimum steady speed, at which the vehicle

consumes least energy. Interestingly, this speed for all vehicle sizes is around 40 km/h. The

figure also demonstrates that at medium speeds between 20-100 km/h the energy consumption

does not change significantly with speed. In contrast, at very low (<20 km/h) and at high

speeds (>100 km/h) energy consumption is particular speed-sensitive.
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Figure 4.6.: Theoretical Energy Consumption for Driving 1 km at Steady Speed

Due to road speed limits, congestion and the assumption that most car journeys are relatively

short (i.e. <50 km), we expect the nominal driving force for electric vehicles Fd to only have

a relatively small standard deviation between different journeys. The standard deviation σ is a

common metric to determine the variation of some data with respect to its mean. We also expect

auxiliary loads to be dominant at very low steady speeds, rolling resistance to be overriding at

medium steady speeds and aerodynamic drag to have a stronger impact at high steady speeds.

Variable Speed Conditions

The previous subsection ignored inertial forces, varying road gradients and assumed an uninter-

rupted application of the traction force. In contrast, this subsection deals with more realistic

dynamic speed conditions with varying road grades, under which the traction force is applied

only for a portion of the driving schedule. Referring back to equations 4.2, 4.3 and 4.7, dynamic

driving forces can be computed. Figure 4.7 shows the potential impact of a range of accelera-

tions applied at different speeds for the five vehicle classes introduced earlier. The maximum

acceleration (5 m/s2) corresponds to a vehicle accelerating from standstill to 100 km/h within

roughly 5.6 seconds. Sports cars and other high performance may accelerate faster, but we

expect maximum accelerations for the vehicle classes listed in table 4.2 to be less than 5 m/s2.

Moreover, we expect nominal accelerations to not exceed 2 m/s2. For all five vehicle classes, the

maximum theoretical driving powers (244, 347, 415, 513 and 699 kW) occur at the maximum

speed combined with the maximum acceleration. However, we expect an inverse relationship

between the frequency of high speed and high acceleration events for nominal driving; low speed

events combined with high acceleration events or high speed events with low acceleration events

to occur relatively frequently. Therefore, figure 4.7 should be treated with great caution. It only

shows theoretical driving powers, which especially at the high end of the speed and acceleration

ranges are unrealistic as evidenced by the following paragraphs.
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Figure 4.7.: Theoretical Driving Powers at Varying Speeds and Accelerations

Similarly, the theoretical driving powers at varying speeds and road grades can be computed.

For a road grade range up to 35% figure 4.8 shows the resulting theoretical driving power

requirements. Again, maximum values (170, 250, 298, 366 and 504 kW) are extremely high and

occur at maximum speed combined with maximum road grade. Like with theoretical powers at

varying speeds and accelerations, we expect high speed events to happen at low road gradients,

and high road gradient events to happen at low speeds because of a combination of speed limits,

congestion and safety concerns.
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Figure 4.8.: Theoretical Driving Powers at Varying Speeds and Road Grades

More reasonable power requirements are retrieved from a simple gradeability analysis. In this

scenario, the vehicle is accelerated from standstill to 35 km/h with an acceleration of 2 m/s2 at

an inclination of 30%. Table 4.7 lists the respective power requirements for the different vehicle

categories.

In order to assess fuel/energy consumption requirements under dynamic conditions and on

a comparable basis, standard drive cycles first introduced in section 2.2.3 are applied. For the
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Table 4.7.: Theoretical Power Requirements for Gradeability Test

Efficiency Power [kW]
[%] Mini Car Small Car Medium Car Large Car SUV

100 36.36 48.85 58.82 74.37 99.75
90 40.39 54.28 65.36 82.64 110.84
80 45.44 61.07 73.53 92.96 124.69

European NEDC, the American FTP-75 and the Japanese 10-15 mode (see appendix D), table

4.8 lists some reference values. The table demonstrates how on average both mean vehicle

speeds and mean accelerations for international drive cycles are comparatively low with the

assumptions made in the previous paragraph. Only real-world test data (see section 4.1.2) can

help in making a good estimate with regards to nominal speeds and accelerations. Most OEMs

Table 4.8.: International Drive Cycle Parameters [143]

Mean STD Mean Maximum Mean Maximum
Speed Speed Acceleration Acceleration Deceleration Deceleration
[km/h] [km/h] [m/s2] [m/s2] [m/s2] [m/s2]

NEDC 32.26 8.64 0.53 1.04 -0.82 -1.39
10-15 Mode 22.72 6.03 0.56 0.79 -0.65 -0.83
FTP-75 34.08 7.13 0.51 1.72 -0.58 -1.50

� 29.68 7.27 0.53 1.19 -0.68 -1.24

apply their own custom drive cycles in addition to the standard ones [13]. Meanwhile, the mean

distance-specific energy consumption (F̄d [Wh/km]) for different vehicle classes based on the

NEDC as a reference dynamic cycle can be calculated.

Relating back to the traction ratio TR (see figure 4.3), two extreme scenarios may be thought

of. First, the vehicle follows the drive cycle without recuperating inertial energy (no recupera-

tion). Second, the vehicle recuperates all inertial energy (full recuperation, i.e. 100% conversion

efficiency from kinetic into chemical, electrical or mechanical energy). Figure 4.9 shows the

theoretical power distribution for different vehicle classes with parameters based on table 4.2

following the NEDC. Also, mean auxiliary powers based on table 4.5 are assumed. The figure

shows that the theoretical maximum driving power required to follow this speed-time trace (56

kW for a SUV) is more than one magnitude below the maximum theoretical driving power

at maximum speed and maximum acceleration (699 kW) from the previous paragraph. The

resulting mean distance-specific energy consumptions (F̄d in Wh/km) are listed in table 4.9.

The table also considers mean losses in the vehicle’s power train. Losses in the context of ve-

hicle energy consumption refer to all inefficiencies of all power consumers, i.e. these include

propulsion losses as well auxiliary losses. In general, propulsion losses include power conversion
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Figure 4.9.: Theoretical NEDC Driving Powers with Full Recuperation

Table 4.9.: Theoretical Driving Forces (NEDC)

Efficiency Recuperation Mean Driving Force [Wh/km]
[%] Mini Car Small Car Medium Car Large Car SUV

100
None 67.15 107.11 133.23 189.22 274.10
Full 55.63 92.83 116.32 167.30 245.45

90
None 74.61 119.01 148.04 210.24 304.56
Full 61.81 103.15 129.25 185.89 272.72

80
None 83.93 133.89 166.54 236.53 342.63
Full 69.54 116.04 145.40 209.13 306.81
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losses, friction/heat losses, vehicle slip, transverse forces and damping. Electric vehicle power

efficiencies are thus defined as the ratio of the useful power output (propulsion, lighting etc.)

and the required power input (battery power).

From table 4.9 the respective relative recuperation gains Gr may be calculated according to

the following relationship:

Gr = 100

(
1−

F̄d(w. recuperation)

F̄d(w/o recuperation)

)
[%] (4.12)

Therefore, recuperation of inertial energy is most beneficial for a mini car and least beneficial

for a SUV in relative terms as shown in table 4.10. Also, for other vehicle classes and applied

to other driving cycles the trend is clear: The smaller the vehicle, the greater the relative

effect of regenerative braking. The reasoning behind this counter-intuitive phenomenon is not

Table 4.10.: Relative Recuperation Benefits for Different Drive Cycles1

Relative Recuperation Benefit [%]
Mini Car Small Car Medium Car Large Car SUV

NEDC 17.15 13.33 12.69 11.58 10.45
10-15 Mode 30.46 25.34 23.90 20.58 18.74
FTP-75 12.18 5.97 3.69 1.57 0.13

straightforward. The magnitude of the positive traction power is significantly larger than the

negative regenerative power (see figure 4.9) as neither the aerodynamic drag (Pa), nor the rolling

resistance (Pr) or the mean auxiliary power (P̄aux) can be recuperated. Only inertial powers

can be recuperated. Thus, in the absence of Pa, Pr and P̄aux the relative recuperation benefits

are the same for all vehicle categories. But since only inertial powers can be recuperated, the

ratio of the driving force with recuperation and the driving force without recuperation widens

across different vehicle categories.

Sensitivity Analysis

As seen from the previous paragraphs, the vehicle parameters (mv, CdAf and Cr) introduced

with table 4.2 as well as the mean auxiliary power P̄aux significantly affect the mean driving

force F̄d required to keep a vehicle moving. Therefore, the mean driving force F̄d for a particular

drive cycle can be expressed in terms of these vehicle parameters only [57].

F̄d =
1

dtot

(
1

2
ρairCdAf

∑
i∈TR

v3t+mvCrg
∑
i∈TR

vt+mv

∑
i∈TR

avt+ P̄aux
∑

t

)
(4.13)

1based on equation 4.12
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Equation 4.13 treats the drive cycle parameters (dtot,
∑
i∈TR

v3t,
∑
i∈TR

vt,
∑
i∈TR

avt and
∑
t) as

constants.
∑
i∈TR

refers to the partial summation of those instances, when the vehicle is in

traction mode. The constants represent the total distance dtot as well as the partial summations

of time (t), speed (v) and acceleration (a) quantities only for the time intervals, during which

the vehicle is in traction mode. The mean auxiliary power P̄aux is assumed to be on for the

entire duration of the drive cycle irrespective of the vehicle operation mode. Applying equation

4.13 to the NEDC and assuming a vehicle without an energy recuperation device (NR = no

recuperation) leads to the following expression:

F̄d,NEDC,NR ≈ 52.17CdAf + 2.26mvCr + 0.03mv + 0.03P̄aux [Wh/km] (4.14)

The equation simplifies the determination of driving force requirements for the NEDC without

losing accuracy. The maximum relative difference between equation 4.14 and the values from

table 4.9 is 0.05%. Mean efficiencies can be applied in a relatively straightforward manner and

the results are expressed Wh/km.

For a vehicle with an ideal energy recuperation device (η = 1) the result changes slightly. Here,

positive and negative inertial forces are exactly balanced and thus can be neglected. Both, the

weight of the aerodynamic drag and that of the rolling resistance increases with respect to

equation 4.14. Because the mean auxiliary power P̄aux is still applied throughout the entire

drive cycle, its weight does not change.

F̄d,NEDC,FR ≈ 62.14CdAf + 2.73mvCr + 0.03P̄aux [Wh/km] (4.15)

The accuracy of this equation (FR = full recuperation) with regards to the reference values from

table 4.9 is lower. The maximum error is 5.75%.

Based on equations 4.14-4.15, the relative influence of the aforementioned vehicle parameters

can be evaluated on the basis of a sensitivity analysis. Equation 4.16 defines the sensitivity Sp

of the mean driving force for the NEDC F̄d,NEDC with respect to one of the vehicle parameters,

denoted p.

Sp = lim
δp→0

[
F̄d,NEDC(p+ δp)− F̄d,NEDC(p)

]
/F̄d,NEDC(p)

δp/p
(4.16)

Equation 4.16 can be rearranged to:

Sp =
∂F̄d,NEDC

∂p
(p)

p

F̄d,NEDC(p)
(4.17)

Thus, the variation of the mean driving force ∂F̄d,NEDC divided by the variation of any of the

parameter values ∂p (∂mv, ∂(CdAf ), ∂Cr or ∂P̄aux) multiplied by the ratio of the parameter

value p and the mean driving force F̄d,NEDC yields the sensitivity Sp. The partial derivatives

for both recuperation cases are listed in table 4.11. The full recuperation case considers the
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Table 4.11.: Partial Derivatives for the Mean Driving Force Applied to the NEDC

No Recuperation Full Recuperation

∂F̄d,NEDC

∂(mv)
= 2.26Cr + 0.03

∂F̄d,NEDC

∂(mv)
= 2.73Cr

∂F̄d,NEDC

∂(CdAf )
= 52.17

∂F̄d,NEDC

∂(CdAf )
= 62.14

∂F̄d,NEDC

∂(Cr)
= 2.26mv

∂F̄d,NEDC

∂(Cr)
= 2.73mv

∂F̄d,NEDC

∂(P̄aux)
= 0.03

∂F̄d,NEDC

∂(P̄aux)
= 0.03

entire drive cycle (i.e. positive and negative driving forces) while the no recuperation case only

considers those instances, when the vehicle is in traction mode (i.e. when the driving force is

positive).

With this information, equation 4.17 can be solved for the various vehicle sizes. Figure

4.10 shows the resulting four sensitivities for the non-recuperating case as well as for the full-

recuperating case applied to mini cars, small cars, medium-sized cars, large cars and SUVs. For

vehicles without recuperation capacity (4.10a) the sensitivity Smv is by far the most important

for all vehicle classes. Thus, reducing the vehicle’s mass has the single biggest energy saving

potential for those vehicles. The smaller the vehicle the bigger the sensitivity of vehicle mass.

Second, the sensitivity SCdAf
is particularly important for small to medium-sized cars. For large

cars and SUVs the sensitivity SP̄aux
is very significant.
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Figure 4.10.: Sensitivities of the Mean Driving Force with Respect to Vehicle Parameters

The mean driving force for vehicles with an ideal recuperation device is not as sensitive to

vehicle mass changes as for vehicles without that capacity (see figure 4.10b). This is because

inertial forces, which are very mass-dependent, are ignored for this calculation. For mini cars,

small cars and medium-sized cars the sensitivity SCdAf
is dominant. Again, for large cars and
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SUVs the sensitivity SP̄aux
is very significant.

4.1.2. ’Real’ Driving Force

’Real’ driving forces can vary significantly according to a number of parameters. In addition to

the aforementioned traction force requirements, operating modes, steady and dynamic charac-

teristics, auxiliary powers and losses, there are numerous more variables, which affect the total

driving force. These include the local terrain, which may vary from being flat to very mountain-

ous, and individual driving behaviour. The following paragraphs compare mean driving force

F̄d values from the RGE project and the 2010-2012 Future Car Challenges.

Racing Green Endurance

This subsection derives the nominal driving force of the SRZero required at its battery terminals.

Even though the Racing Green Endurance (RGE) SRZero is designed to be a sports car, it can

be best compared with a medium-sized car in terms of its specifications (compare with table

4.2). The SRZero is introduced in section 3.3.1 with its specifications listed in table 3.1. Its

kerb mass (mv = 1,150 kg) compares with an estimated vehicle mass for medium-sized cars of

1,200 kg. Also, its drag coefficient (CdAf = 0.55) is smaller, but not far off from that of a

medium sized car (CdAf = 0.7). The rolling resistance coefficient Cr is 0.011 for both, but only

an estimate as experimental data is unavailable.

Figure 4.11 shows the front wheel speed distribution. This information is retrieved from one

Hall effect sensor placed at the front left wheel. The figure shows that during the RGE trip, the

driving was relatively disciplined. This means that the vehicle was accelerated from standstill
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Figure 4.11.: Speed Distribution for SRZero

up to a cruising speed of ≈80 km/h and held there for most of the time. Speeds above 100

km/h are relatively rare (<0.5%), which is not surprising given the road conditions, speed limits
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and congestion along the Pan-American Highway. The figure also reveals that speeds above 160

km/h are extremely rare in this case and that the initial guesses, which led to the custom-design

of the electric motors, were relatively good. The electric motors have been custom-wound to

achieve their peak efficiency at ≈80 km/h. If anything, this estimate was too high as the mean

speed while driving was 51.49 km/h. Unfortunately, the speeds cannot be related to specific

altitudes as the GPS tracker failed to function after two days of driving. Thus, it is assumed

that the altitude profile for the RGE trip is flat on average.

Similarly, the acceleration distribution shows that much lower acceleration values were typi-

cally required than what was theoretically expected in the previous subsection (4.1.1). Figure

4.12 shows the acceleration distribution ranging from -2 to 2 m/s2. The histogram is symmetric

for positive accelerations and negative accelerations (decelerations). Accelerations above 2 m/s2

only account for less than 0.04% of all occurrences. This may be attributed to the SRZero’s
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Figure 4.12.: Acceleration Distribution for SRZero

relatively heavy weight, but also to gentle driving behaviour. Nevertheless, the SRZero partici-

pated in regular traffic conditions for more than 26,500 km (i.e. almost twice the average annual

mileage in the UK; see table 4.15). This demonstrates that medium speed (vmax = 160 km/h)

and acceleration (amax = 2 m/s2) performance characteristics can be regarded as sufficient for

most driving conditions. For a medium-sized car this means to overcome a minimal translational

inertial force:

Fi,min = mvamax = 1, 200 kg · 2 m/s2 = 2.4 kN (667 Wh/km) (4.18)

Equation 4.18 can be used to express the power train requirements in terms of rotational forces

as well. Therefore, the minimum inertial torque for a medium-sized car with a total wheel radius

of 32 cm can be approximated:

τi,min = Fi,minr = 2, 400 N · 0.32 m = 768 Nm (4.19)
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The required torque τi,min is distributed among the driving wheels, which usually are either

the two front or the two rear wheels. Some vehicles are also equipped with a four-wheel drive

system.

Dynamic torque values are difficult to obtain directly since electromagnetic effects constantly

change the interaction between the rotating drive shaft of the electric motor and the ’static’

vehicle chassis. Consequently, torque values are frequently estimated using constants. The

torque constant KT for electric motors is given by:

KT =
τ

I
[Nm/A] (4.20)

Thus, KT can be experimentally determined from the ratio of the desired torque τ and the

required current I at different temperatures. In the case of the SRZero, the motor input current

I is assumed to be equal to the AC output current from the motor controller (MC) IMCAC
. The

AC output current from the motor controller again is an approximation:

IMCAC
=

√
I2
q + I2

d

2
(4.21)

It is the root mean square (RMS) value of the d- and q- axis (direct-quadrature-zero) component

stator currents, which can be measured directly. By combining equations 4.20-4.21 the output

torque τout may be calculated. The output torque, also referred to as the feedback torque, is

the actual torque delivered at the wheels, which is different from the requested torque by the

driver. The requested torque by the driver is proportional to the pedal position irrespective of

the driving resistances.

Figure 4.13 shows the SRZero output torque range as a function of AC motor controller output

current. While driving forward, the torque constant KT is positive and equal to the slope of

the nearly linear relationship between current and torque. Hence, the nominal torque constant

Figure 4.13.: MC Output Currents vs. Output Torque Values
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value is equal to 5.5 Nm/A. While reversing, the torque constant has the same magnitude, but

is negative. Figure 4.13 shows that the output torque ranges from zero up to 1,300 Nm, which is

the maximum rated torque for the two electric motors combined. This value is almost twice as

large as the minimum inertial torque calculated in equation 4.19. However, as shown in figure

4.14 the nominal output torque is only around 100 Nm. The figure illustrates the total torque

distribution of the SRZero for the duration of the entire journey. Negative torque values indicate
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Figure 4.14.: Torque Distribution for SRZero

regenerative braking, positive ones indicate traction. Three peaks stand out: First, at around

-240 Nm, when most regenerative braking is undertaken. Second, at zero Nm when the vehicle

is in neutral mode (i.e. when the electric motors are electrically disconnected from the wheels)

or the mechanical brakes are applied. And third, at roughly 100 Nm when the vehicle is cruising

at its nominal speed of 80 km/h (compare with figure 4.11). Combined torque values above

500 Nm only occur for about 0.83% of the time. Thus, real nominal torque output values for

medium-sized cars in standard driving conditions are relatively low (≈100 Nm). Despite this,

high output torque values (>400 Nm) were crucial during the test drive across the Americas,

especially when overtaking lorries at steep mountain passes.

Similar to equation 3.2, the ’tank-to-wheel’ electric distance-specific energy consumption or

driving force requirements may be calculated as follows:

Fd =

∑
Vtot(t)IDC(t)∆t

d
(4.22)

The total instantaneous battery power is given by the product of the battery pack voltage Vtot(t)

and the DC battery current IDC(t). Its time integral yields the energy consumption. For discrete

time intervals this can be simplified to a summation. Then, the energy consumed is divided by

the distance d driven within that specific time frame.

Following this equation, figure 4.15 shows the driving force requirements for every single RGE
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Figure 4.15.: Driving Force Requirements vs. Distance for SRZero

battery cycle as a function of distance. One battery cycle in this context refers to every partial

or full charge followed by a partial or full discharge. Conventionally, the notation only refers

to full charges and full discharges. However, under real driving conditions this is impossible to

achieve for a number of reasons: First, due to degradation a ’full’ charge/discharge decreases

with time and number of cycles (see chapter 5). Second, driving distances, altitude profiles, road

conditions and driving behaviour may vary significantly between cycles. And third, charging

conditions (high/low charging power, reliability, current sensing tripping devices etc.) may vary

significantly as well leading to alternating charges.

The obvious observation from figure 4.15 is that the driving force Fd is reduced with an

increasing distance d. Therefore, the longer the distance driven, the lower the distance-specific

energy consumption. Several reasons may explain this: First, the SRZero was designed as a long-

distance EV (see section 3.3.1). Second, long distances are usually driven in rural environments

on highways or other main roads at medium steady speeds (≈60-120 km/h). Third, the driving

behaviour naturally changes a priori in anticipation of a long drive with an EV. Short journeys in

contrast are often associated with urban driving, which involves very energy-intensive stop-and-

go driving. Additionally, there have been several press and promotional events, during which the

SRZero was driven very hard. Ignoring these sprint events (i.e. distances <10 km), the average

driving force for the SRZero across all cycles was 131.43 Wh/km. The theoretical mean driving

force for a medium-sized car with an efficiency of 90% ranges between 129.25-148.04 Wh/km

(compare with table 4.9).

Future Car Challenge

The results of the 2010-2012 Future Car Challenges (FCC) offer the unique opportunity to

compare the ’real-world’ driving forces of 52 EVs ranging from mini cars up to light duty

vehicles (LDVs). First, results from 2010-2011 are presented. Then, the results of the 2012
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FCC, which featured a slightly different route, are introduced.

Both the inaugural 2010 FCC and the 2011 FCC took place along the same route shown in

figure 4.16 on the first Saturday morning in November. Temperatures along the route on an

Figure 4.16.: 2010-2011 FCC Route [144]

early November morning are usually below 10 °C. The route covered city driving in Brighton,

Crawley and London and followed the major A23 road for almost half of its distance. Therefore,

rural and urban drives were included. No traffic restrictions were in place in order to keep the

driving conditions as realistic as possible. Additionally, the 92 km long route included hill climbs
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Figure 4.17.: 2010-2011 FCC Altitude Profile [144]-[145]

of up to 154 m as shown in figure 4.17. It is expected that during descent from the four major

elevations, the regenerative braking potential is greatest. The start of the FCC was at Madeira

Drive in Brighton, which is right by the sea. The finish is at Waterloo Place in London, only

500 m away from the river Thames. Therefore, the total gain in altitude is minimal (5 m).

Figure 4.18 shows the distance-specific energy consumption for the 15 EVs that participated

in the 2010 FCC. The values have been calculated in exactly the same manner as in equation
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Figure 4.18.: 2010 FCC EV Driving Forces

4.22 from the previous subsection. They range between 119-254 Wh/km with a mean of 157.10

Wh/km. All vehicles are prototypes except for one production sports car at the high end of the

driving force scale. LDVs as well as sports cars tend to consume more energy per kilometre than

medium and small cars. However, this trend is not clear. The best performing EV is a sports

car and the only mini car consumes more energy per unit distance than two sports cars and

two medium cars. One explanation for this may be that the mini car was not equipped with a

regenerative braking system while all other vehicles were. Nevertheless, the values still compare

reasonably well with the predictions made in table 4.9. There, the driving force ranges between

103 Wh/km for a 90% efficient fully recuperating small car and 305 Wh/km for a 90% efficient

SUV without regenerative braking.

In 2011 the number of participating electric vehicles rose by 2⁄3 to 25, which also included the

RGE SRZero. Furthermore, 18 EVs (i.e. 72%) were equipped with GPS tracking devices allowing

the driving behaviour to be analysed. Also, individual vehicle specifications are available and

listed in appendix E. Hence, this run gives a more comprehensive picture about comparative

energy consumption than the 2010 run.

The distance-specific energy consumption may be compared on the basis of the full run as

shown in the previous paragraph (figure 4.18). However, more detailed insights can be gained

from the comparative analysis of the energy/power requirements within the run. With a total

number of 62 participants in 2011, starting intervals of >30 s, different driving behaviour and

changing traffic conditions over time, vehicles may be apart from each other by up to two hours.

Consequently, a comparison on the basis of time is not adequate.

In contrast, comparing power and/or energy values with respect to the distance driven allows

for a more valid comparison. Thus, one can linearly interpolate instantaneous power values to

get the power consumption at specific distance markers (100 m) along the route. Figure 4.19

shows the power requirements for all 18 EVs equipped with a GPS tracking device with respect

to the distance driven. It was also checked that the vehicles followed the exact route outlined in
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Figure 4.19.: 2011 FCC Individual and Mean Power Consumption

figure 4.16. Otherwise these vehicles would obscure the results. Individual power consumptions

are stacked and shown in light blue, whereas the two mean values are shown in black. The

oscillating mean value refers to the mean driving power of the 18 EVs at 100 m intervals. The

other black line represents the overall mean power consumption along the route for the 18 EVs,

which were investigated. Several observations can be made:

• The mean power consumption is very low (4.14 kW) compared to the mean rated power

of the vehicles (78.72 kW)

• The maximum power required (43.50 kW) is only about 55% of the mean rated power of

the vehicles (78.72 kW)

• The highest powers are required for ascents (km 7, 11, 24, 31 and 61; also compare with

figure 4.17)

• The regenerative braking potential is greatest during descents (km 12, 27 and 36) and for

stop-and-go city driving (km 64-90)

Overall, the mean absolute regenerative braking gain is 15.04 Wh/km as demonstrated by figure

4.20. This means that on average the relative regenerative braking gain Gr was almost 11%.

Even though the theoretical relative recuperation potential is greatest for mini cars (see table

4.10), four mini cars were not equipped with a regenerative system at all. Medium-sized cars

recuperated most energy in absolute terms. However, no general conclusions can be drawn from

these results alone as the recuperative force also depends upon the efficiency of the system as

well as the individual driving behaviour. Nevertheless, with the important exception of medium-

sized cars, regenerative braking tends to be more beneficial for small cars than for large cars

as illustrated in table 4.12. One reason why the hypothesis made in section 4.1.1 is not fully
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Figure 4.20.: 2011 FCC EV Absolute Regenerative Braking Benefits

validated may have to do with maturity of regenerative braking systems. All medium-sized cars

were production vehicles while all other vehicles were prototypes.

Table 4.12.: Relative Recuperation Benefits for Different Vehicle Classes at the 2011 FCC

Recuperation Benefit [%]1

Mini Car Small Car Medium Car Sports Car LDV

11.17 8.63 18.29 9.34 8.32

Considering all 25 EVs participating in the 2011 FCC reveals that the mean driving force has

been reduced by more than 22% to 122.52 Wh/km compared with the previous year. Figure

4.21 shows how the driving force varies for different vehicle categories during the 2011 FCC.
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Figure 4.21.: 2011 FCC EV Driving Forces

1as defined in equation 4.12
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While the number of LDVs has gone down from three to one, the number of mini cars has

increased by a factor of six compared to the 2010 FCC. The relative share of medium-sized

cars has also increased, while the share of sports cars has slightly decreased. The distance-

specific energy consumption ranges between 68-177 Wh/km. Ironically, the SRZero was the

worst performing EV during the 2011 FCC (177.17 Wh/km). This was mainly due to harsh

driving and a relatively high current limit. Again, there is no clear correlation between vehicle

class and driving force. Especially sports cars with a relatively wide range of vehicle parameters

can be found throughout the driving force range. Fortunately, this time driving behaviour could

be assessed.

The driving behaviour analysis is based on similar vehicles. There were four Nissan Leaf

models with exactly the same specifications, also equipped with GPS, taking part in the 2011

FCC. As all four vehicles covered precisely the same route, any difference in energy consumption

must be down to a difference in driving style. Table 4.13 compares these vehicles according to

different parameters against each other and also against the mean values from those EVs with

GPS. While the vehicle parameters, the number of passengers, the route and the distance covered

are the same, the mean driving force for the four vehicles varies between 130-160 Wh/km. This

Table 4.13.: Driving Behaviour Comparison for 2011 FCC

Start Number 30 56 12 36 � All EVs1

Make Nissan Nissan Nissan Nissan -
Model Leaf Leaf Leaf Leaf -
Euro Car Segment C C C C -
# of Passengers 2 2 2 2 2
Mass [kg] 1,521 1,521 1,521 1,521 1,184
Peak Power [kW] 80 80 80 80 79
Battery Capacity [kWh] 24 24 24 24 23.89
Distance [km] 92 92 92 92 92
Mean Speed [km/h] 23.69 31.13 31.47 26.12 29.13
Maximum Speed [km/h] 77.91 92.05 93.46 67.65 83.79
SD Speed [km/h] 20.73 20.58 21.92 18.13 19.04
Traction Ratio [%] 69.52 72.07 73.04 77.41 71.76
Capacity per km [Ah/km] 0.35 0.36 0.36 0.43 0.44
Recuperative Force [Wh/km] 36.45 41.42 46.17 22.58 14.07

Driving Force [Wh/km] 130.15 132.12 134.12 160.45 118.11

means that in this particular case driving behaviour can result in energy consumption differences

of more than 23%. The mean speed, which is relatively low for all participants, has no distinct

effect on the mean driving force. Despite the highest relative mean speed (31.47 km/h), the

biggest standard deviation of speed (21.92 km/h) and also the highest maximum speed (93.46

km/h), still vehicle 12 consumes about 16% less energy per unit distance compared with vehicle

36. Figure 4.6 from the previous subsection may explain this behaviour. There, we have seen

1, which were equipped with GPS (18)
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that at medium speeds (20-100 km/h) the energy consumption does not change markedly with

speed.

In contrast, the traction ratio values highlighted in table 4.13 correlate almost linearly with

driving force. The traction ratio TR (see section 4.1.1) for vehicles equipped with GPS was

calculated based on the mean auxiliary power P̄aux. The mean power for driving events, when

the vehicle speed was zero, was assumed to be equal to the mean auxiliary power P̄aux. For the

Nissan Leafs P̄aux was found to be 500 W, which is relatively low. However, given the nature

of the event, participants were most probably keeping the use of auxiliaries to a minimum on

purpose. Then, all events during which the instantaneous power consumption exceeded 500 W,

were classified as traction events. Therefore all events during which the instantaneous power

consumption is equal to or below 500 W, must be when the vehicle is either coasting, braking or

recuperating. In other words, we assume that the driver has his/her foot on the accelerator only

when the instantaneous power is greater than 500 W. It was found that none of the vehicles were

coasting along the route. Again, this is logical from an energy-saving perspective as regenerative

braking increases the range while coasting only preserves the range. The traction ratios are

relatively high compared with the NEDC (see figure 4.3). In addition to the relatively low

speeds and accelerations, the relatively low traction ratio can explain why fuel consumption

values based on the NEDC are generally below ’real-world’ fuel consumption figures.

Table 4.13 shows that a higher traction ratio ultimately leads to a higher capacity used per

kilometre, which then leads to a higher driving force. While most vehicle as well as driving

parameters are reasonably close to the mean of all 18 EVs equipped with GPS, the four Nissan

Leafs outperform the remaining vehicles in terms of their recuperative force.

The 2012 FCC saw several major changes compared with the 2010-2011 challenges. First,

the route was altered in order to incorporate motorway-driving, which was expected to lead to

a higher mean speed. Figure 4.22 shows the slightly altered route. The route from the start

in Brighton to the stopover in Crawley remained unchanged. After this, the route was altered

heading towards Reigate Hill, which also marked the new highest point of the route (see figure

Figure 4.22.: 2012 FCC Route [144]
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4.23). Following roughly 10 km on London’s orbital M25 motorway, the route led to the new

finish at Imperial College London in South Kensington. In total, the new route is approximately

102 km long.
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Figure 4.23.: 2012 FCC Altitude Profile [144]-[145]

In 2012, the number of participating EVs dropped by more than half to 10 compared to the

previous year (25). The financial crisis, relatively long product development cycles for EVs,

relatively high entry costs, a drop in public interest in EVs in 2012 and the fact that most

available EVs have already competed in the 2010 and/or 2011 challenges may have led to the

smaller number of EVs. Instead, the presence of PHEVs and HEVs increased significantly both

in absolute and relative terms. Therefore, only brief comments are made about the driving force.

Figure 4.24 shows in rank-order the driving forces of the participating EVs according to

vehicle classes. The data was acquired by Marie-Therese von Srbik [146]. The mean driving
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Figure 4.24.: 2012 FCC EV Driving Forces

force increased by 8% to 132.59 Wh/km compared with the previous year (122.52 Wh/km). The
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winner, a micro car (mv = 300 kg), consumed as little as 53.85 Wh/km. A LDV consumed most

energy per unit distance (200.51 Wh/km). Compared with 2010-2011, the results of the 2012

FCC show a relatively strong correlation between vehicle category and driving force.

4.1.3. Interim Conclusion

The previous subsections have shown that the mean driving force F̄d for EVs, defined as the

total energy consumption normalised by the distance covered, can vary considerably according

to a number of factors.

First, the mean driving force primarily depends upon vehicle parameters such as the vehicle’s

mass mv, the aerodynamic drag coefficient Cd, the vehicle’s frontal area Af , the rolling resistance

coefficient Cr, the mean auxiliary power P̄aux and losses. These parameters may be grouped into

representative vehicle categories: mini cars (e.g. Ford Ka or VW Up), small cars (Ford Fiesta

or VW Polo), medium-sized cars (e.g. Ford Focus or VW Golf), large cars (e.g. Ford Mondeo or

VW Passat) and SUVs like the Range Rover or VW Touareg. Therefore, all vehicle parameter

values increase with vehicle size (see table 4.2). Additionally, environmental parameters like the

ambient air density ρair and the road grade α affect the mean driving force. However, neither

can be modified directly by the car manufacturer or by the driver.

Second, the magnitude of the mean driving force depends on whether the vehicle is in traction

mode or not. Practically, a vehicle can be in four operating modes. During traction, when the

driver puts down his/her foot on the accelerator, the motors apply a propulsion force to the

wheels. During braking, when the driver puts down his/her foot on the brake, the kinetic energy

of the decelerating vehicle is converted into heat. During recuperation, the kinetic energy from

the decelerating vehicle is (partly) recovered and transferred back to an energy storage device.

When coasting, the vehicle’s resistance losses are exactly matched by the decrease of its kinetic

energy. Thus, the mean driving force of a vehicle is reduced to its auxiliary load only, when

the vehicle is not in traction mode. The traction ratio TR as a measure of the time spent in

traction mode relative to driving time is derived for dynamic speed conditions and varying road

grades (equations 4.9-4.11). In practice, traction ratios range between 55-75%. All else being

equal, the mean driving force almost linearly depends upon TR (see table 4.13).

Third, the mean driving force is influenced by the driving parameters speed v(t) and accelera-

tion a(t). For steady speeds, the energy consumption per unit distance is smallest at low medium

speeds (≈40 km/h) and ranges between 35 Wh/km for mini cars and 170 Wh/km for SUVs. At

medium steady speeds (20-100 km/h) the mean driving force does not change markedly with

speed. However, at very low speeds (<20 km/h) the driving force increases exponentially with

decreasing speed due to the mean auxiliary power P̄aux. At high speeds (>100 km/h) the mean

driving force increases quadratically with speed due to aerodynamic drag. Due to road speed

limits, congestion and the assumption that most car journeys are relatively short (i.e. <50 km),

we expect the variation of the mean driving force to be relatively small between different jour-

neys. Dynamic driving involves a constant change of the vehicle’s inertia. Nominal accelerations
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do not exceed 2 m/s2.

Fourth, the mean driving force of an EV heavily depends upon its ability to recuperate kinetic

energy. As kinetic energy is both a function of speed and mass, large and heavy vehicles can

theoretically regain most energy in absolute terms through a regenerative braking system. How-

ever, the smaller (and thus the lighter) the vehicle, the greater the relative effect of regenerative

braking. The relative recuperation gain Gr introduced with equation 4.12 applied to various

drive cycles across different vehicle classes proves this point (see table 4.10). Furthermore, a

sensitivity analysis (equations 4.13-4.17) has shown that for a vehicle with ideal recuperation

the impact of vehicle mass on the mean driving force is greatly reduced compared to that of a

vehicle without a regenerative braking system. Thus, a regenerative braking system is beneficial

in two ways. It reduces the distance-specific energy consumption as well as its dependence on

the vehicle’s mass.

Fifth, the journey distance also affects the mean driving force. There is an empirical correlation

that with longer journey distances, distance-specific energy consumption tends to be smaller (see

figure 4.15). Long journeys are usually driven in rural environments on highways or other main

roads at medium steady speeds (≈60-120 km/h), at which the mean driving force is relatively

low. In contrast, short journeys are often associated with urban driving, which involves very

energy-intensive stop-and-go driving.

Sixth, the individual driving style has profound implications on the mean driving force. As

evidenced by table 4.13 the mean driving force can vary up to 23% between different drivers

who follow exactly the same route at comparable traffic conditions and driving another vehicle

of exactly the same make and model.

There are shortcomings related to the validation techniques of the ’real’ driving forces. First,

the SRZero was designed as an endurance high performance sports car for long-distance driving.

It was not designed for ’everyday’ driving. Without space for more than two passengers, the lack

of a boot and no real auxiliaries it was also never intended for that. However, its parameters

(mv, CdAf and Cr) are very close to that of a medium-sized car. Also, it’s mean driving force

(131.43 Wh/km) is within the theoretical range of that of a medium-sized car with an efficiency

of 90% (129.25-148.04 Wh/km). Second, large EVs and electric SUVs did not compete during

one of the FCCs, against which theoretical driving force values could be compared. Third, the

FCC encourages low-energy driving. Thus, mean driving forces from the FCC tend to be an

underestimation of ’real’ values.

Nevertheless, subsection 4.1.2 about ’real’ driving forces has broadly confirmed the assump-

tions made in the subsection about theoretical driving forces 4.1.1. These are corrobated by

the published literature about the energy consumption of electric vehicles ([147]-[149]). The

resulting reference values of table 4.14 are rounded values based on table 4.9, an overall vehicle

efficiency of 90% and a regenerative braking efficiency of 50%.
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Table 4.14.: Mean Driving Forces for Different Vehicle Categories

Driving Force [Wh/km]
Mini Car Small Car Medium Car Large Car SUV

Analytical1 61.81-74.61 103.15-119.01 129.25-148.04 185.89-210.24 272.72-304.56
RGE SRZero n/a n/a 95.47-310.73 n/a n/a
2010 FCC 146.18 125.19-146.94 124.32-157.66 n/a n/a
2011 FCC 68.63-166.72 105.79-119.51 86.95-134.12 n/a n/a
2012 FCC 53.85-62.33 128.81 140.25-143.01 n/a n/a

Reference Values 70.00 110.00 140.00 200.00 290.00

1ranging from full recuperation to no recuperation with an energy efficiency of 90% (see table 4.9)
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4.2. Range Requirements for Electric Vehicles

While the previous section looked at the first factor of the fundamental energy equation (4.1),

the mean driving force F̄d, this section deals with the second factor, distance. Distance in an

automobile context is also referred to as range. Depending on the fuel consumption, range for

ICEVs can be up to 1,300 km. Typically, diesel cars have a longer range than comparable petrol

cars. Also, HEVs can have longer ranges than comparable ICEVs. For EVs and PHEVs the

all-electric range (AER) is of great importance as it is the measure for the distance between

which the car needs to be charged. The charging time, depending on the battery capacity as

well as the charging power, usually takes several hours. Therefore, a long all-electric range is

desirable. As there is no alternative mode, in which an EV can operate other than the all-electric

mode, range and all-electric range are the same for this analysis.

The following paragraphs establish range requirements for different vehicle classes and multiple

geographies based on travel surveys. First, some general travel trends are derived. Then, car

journeys across the UK, Germany and the US are investigated.

4.2.1. General Travel Trends

Car journeys are by far the most dominant mode of private transport (for journeys >1 km) for all

investigated countries as can be seen from figure 4.25. However, the relative importance varies

significantly. In the US, more than 83% of all journeys are with a car, while in the UK (64%)

and in Germany (58%) this share is significantly lower. One major reason for this discrepancy

is size. While Germany’s total area is about 1.5 times bigger than that of the UK, the US is

about 40 times larger than the UK. Therefore, distances between major cities tend to be larger

within the US than within Europe. This leads to average distances travelled per car of 18,500

km in the US, 14,500 km in Germany and 14,000 km in the UK [150]. As the car most often also

presents the cheapest method in order to cover long distances (>100 km), especially with full
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Figure 4.25.: Modal Share in the UK, Germany and the US [137]-[139]

117



4. Nominal Energy Requirements of Electric Vehicles

occupancy, car journeys remain the preferred mode of transport. In addition, the US also has

one of the highest numbers of motor vehicles per capita in the world (0.797). This compares to

0.519 vehicles per person in the UK and 0.572 in Germany [9]. Consequently, with a population

of more than 315 million, there are around 250 million cars in the US. In the UK, there are more

than 30 million cars, while in Germany this number is above 40 million. The main statistical

parameters for these three countries are summarised in table 4.15, which are expanded in the

following.

Table 4.15.: Transportation Comparison for the UK, Germany and the US [9],[150]

UK Germany US

Population [106] 63.18 81.80 315.60
Size [km2] 243,610 357,021 9,826,675
Vehicle Ownership [Cars/1,000 people] 519 572 797
Annual Mileage [km] 14,000 14,500 18,500
Motorway Density [m/km2] 15.46 34.63 7.79
Road Density [m/km2] 1,733 1,805 668

4.2.2. United Kingdom

At first glance, the often cited ’range anxiety’ (i.e. the fear that the vehicle has insufficient

range to reach its destination [151]) associated with electric vehicles seems unsubstantiated. An

overwhelming majority (91%) of individual car journeys in the UK is shorter than 30 km as

shown in figure 4.26. Thus, only about 9% of individual car journeys are equal to or longer

than 30 km. However, further analysis shows that, if a car is used for private transportation,

it is used for more than three (3.25) individual journeys per day on average. This is very

relevant for EVs, which are typically only charged during night and driven (i.e. discharged)

during day time. Consequently, the aggregated distance travelled per day is of greatest interest

<3 0 km : 9 1%

≥3 0 km : 9%

Figure 4.26.: Individual Trip Distances in the UK
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for electric vehicles. Other authors including Offer et al. [152] also acknowledge the collective

daily distance as the reference range value for electric vehicles. While their work mainly focuses

on the relative share of the number of daily car trips with certain distance bounds compared

with the total number of daily car trips, this work additionally considers the relative share of

the cumulative distance of certain daily distance bounds compared with the total daily distance.

The total distance approach is very important since energy use and emission abatement potential

is roughly proportional to the total distance and not to the number of trips.

The results show that for the UK the mean daily driving distance is 43.35 km with a relatively

high standard deviation of 58.70 km. The mode distance is 6.4 km. The minimum daily distance

is 0.16 km while the maximum is 1,694 km, which is about 20% more than the traversal of the

entire length of the island of Great Britain (Land’s End to John o’ Groats = 1,407 km). Most

car activity, both in terms of the number of trips and the total distance driven, takes place on

Fridays. Figure 4.27 relates car activity to day of week. It shows that car activity is roughly

evenly spread across weekdays from Monday to Friday. There is a slight increase in activity

towards the end of the week. Generally, during weekends there is less car activity and distances

driven on Sundays tend to be longer than average. Family weekend trips most probably account

for this.
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Figure 4.27.: Car Activity According to the Day of Week in the UK

Car activity may also be measured by vehicle category, as introduced in table 4.2 in the

previous section of this chapter. Figure 4.28 demonstrates that more than 60% of all individual

car trips made in the UK are either in a small (B) or a medium-sized car (C). Also, the aggregated

distance covered with these vehicles is close to 60% of the total. Mini cars (A) only present a

relatively small share of the car travel in the UK. As expected, their main activity is primarily

associated with the number of trips rather than with the distance covered. Large cars (D) in

contrast, cover longer distances than their relative trip number would suggest. In recent years,

SUVs (M&J) have become more popular. However, their activity is lowest when compared to
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Figure 4.28.: Car Activity According to Vehicle Category in the UK

mini, small, medium-sized and large cars. Other cars’ activity is negligible (≈0.5%).

Figure 4.29 shows that mini cars only account for about 2% of the current vehicle fleet, while

’other’ vehicles account for about 17%. This maybe attributed to differences in the classification

as well as to a significant share of vehicles, which are registered but not driven frequently. These

typically include convertibles, vintage and veteran cars. Still, the range from mini cars up to

SUVs covers 83% of all registered vehicles.

M ini Ca r : 2%

Sma l l C a r
: 3 2%

M edi um
Ca r : 2 7%

La r g e Ca r
: 1 5%

SUV : 7%

Other : 1 7%

Figure 4.29.: UK Vehicle Registrations According to Vehicle Category [153]

Figure 4.30 confirms the assumption that an aggregate day analysis focussing on both the

number of trips and the total distance results in more comprehensive findings compared with

an individual trip analysis (figure 4.26). First, the light blue bars with the reference axis on the

left hand-side show the frequency distribution of daily trips. The histogram is shown in terms

of relative percentages and refers to bins of 25 km respectively. It demonstrates that almost half

of cumulative daily distances are below 25 km. With an increasing daily driving distance, the
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Figure 4.30.: Daily Driving Distances in the UK

relative share of 25 km bins reduces exponentially. Only about 1.6% percent of daily distances

are longer than 250 km. The vertical dotted line in black indicates that trends below 250 km

cannot linearly be extrapolated beyond 250 km.

Second, the black solid line in figure 4.30 refers to the right-hand ordinate and shows the

cumulative share of daily distances. Consequently, a range of only 50 km covers more than

75% of all daily driving distances. With 100 km range a vehicle can cater for more than 91%

of all daily driving distances in the UK. And a range of 150 km brings any vehicle into the

95th percentile of daily distances, which is very important for engineering design in general.

The numbers for the cumulative share of daily driving distances as well as the numbers of the

corresponding survey respondents (NTS) are listed in table 4.16.

Third, the red dotted line in figure 4.30 also refers to the right-hand y-axis and shows the

cumulative share of total vehicle kilometres. In the UK and in the US total vehicle kilometres

are also known as vehicle miles travelled (VMT). Even though longer car journeys are relatively

few in number, they represent a large share of total distance driven. Thus, the red line is

significantly flatter (i.e. less sensitive) at low distances compared with the cumulative number

of day distances. This also means that associated vehicle metrics such as running costs, emissions

and wearing follow the red line rather than the black line. It also follows that in order to achieve a

high share, more range is required from a total distance perspective than from the trip frequency

perspective.

Table 4.16 lists the absolute and relative numbers corresponding to figure 4.30 up to a range

of 500 km. In addition, mean and total distances for each distance band are tabulated. In

total, 134,430 aggregated weighted daily distances (409,770 individual weighted journeys) have

been included for this analysis. The mean daily distance for journeys longer than 500 km is

606.07 km. This is around fourteen times as long as the mean daily distance driven in the UK.

The mean speed for different distance bands is calculated by dividing the total distance driven

(sixth column) by the total journey time. As part of the UK National Travel Survey (NTS)
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Table 4.16.: Daily Distance Statistics for the UK

Day Weighted Cumulative Mean Mean Total Cumulative Share
Distance Frequency Share of Distance Speed Distance of Total

[km] [-] Trips [%] [km] [km/h] [103 km] Distance [%]

0 < 25 66,063 49.14 12.19 22.54 804 13.97
25 < 50 35,048 75.21 35.70 33.05 1,251 35.68
50 < 75 14,176 85.76 61.10 40.92 866 50.73
75 < 100 7,271 91.17 86.47 47.07 629 61.65
100 < 125 3,647 93.88 111.60 52.32 407 68.72
125 < 150 2,234 95.54 136.27 56.54 304 74.01
150 < 175 1,466 96.63 161.65 59.63 237 78.12
175 < 200 1,107 97.46 186.63 63.71 206 81.70
200 < 225 655 97.94 211.27 64.35 138 84.11
225 < 250 626 98.41 237.06 67.26 148 86.69
250 < 275 430 98.73 261.93 69.43 113 88.65
275 < 300 345 98.99 287.20 70.76 99 90.37
300 < 325 268 99.19 313.32 72.96 84 91.83
325 < 350 209 99.34 336.89 74.14 71 93.05
350 < 375 168 99.47 362.06 74.15 61 94.11
375 < 400 155 99.58 387.10 77.88 60 95.16
400 < 425 135 99.68 412.31 74.88 56 96.12
425 < 450 90 99.75 436.69 78.74 39 96.81
450 < 475 85 99.81 460.48 76.01 39 97.49
475 < 500 53 99.85 485.57 80.70 26 97.94
≥ 500 196 100.00 606.07 82.66 119 100.00

134,430 - 43.35 40.47 5,758 -
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very detailed information is available on exact journey times and durations (see section 3.3.3).

As expected, the mean speed increases with distance. Short distances are assumed to be driven

in urban spaces, whereas long distances tend to occur in rural environments. The overall mean

speed of 40.47 km/h coincides with the speed, at which energy consumption is minimised (see

figure 4.6).

The table also highlights that a range of only 150 km is required in order to cover more than

the 95th percentile of all daily distances. However, a range of 400 km is required in order to

cover 95% of the entire car distance driven (see two circles in table 4.16).

4.2.3. Germany

In Germany, the car travel is similar to that in the UK. If a car is used for private transportation,

it is also used for more than three (3.43) individual journeys on average. As shown in figure 4.31,

both the number of trips and the total distance driven is relatively evenly distributed during the

week. There is also a slight increase of car activity towards the end of the week, while during

0

4

8

1 2

1 6

2 0

Days o f t he Week

R
e
la

t
iv

e
S
h
a
r
e
[%

]

M o n. Tue. Wed. Thu. Fr i . Sa t . Sun.

Tr i ps
Di s t a nce

Figure 4.31.: Car Activity According to the Day of Week in Germany

weekends it is reduced. On Fridays, Saturdays and Sundays the share of the cumulative distance

driven is higher than the share of the total number of trips. This means that during the week,

individual trips are shorter than during weekends.

Similarly, car travel can be assessed by vehicle category. Figure 4.32 shows that almost half

of Germany’s car activity derives from medium-sized cars (C). The vehicle classifications in the

UK and in Germany are not exactly the same, which leads to a shift in the results. However,

for both countries more than 60% of car activity stems from small (B) and medium-sized cars

(C). Again, smaller vehicles are mainly used for frequent short trips while larger cars are used to

cover longer distances. Large cars and multi-purpose vehicles together account for around 12%

of car activity in Germany. In total, the selected vehicle categories (A, B, C, D, M&J) from

table 4.2 account for around 90% of all car activity.
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Figure 4.32.: Car Activity According to Vehicle Category in Germany

Figure 4.33 shows that in addition to car travel, travel behaviour in general in Germany is also

very similar to that in the UK (see figure 4.30). First, almost half of cumulative daily distances
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Figure 4.33.: Daily Driving Distances in Germany

are below 25 km (light blue bars). With an increasing daily driving distance, the relative share

of 25 km bins reduces exponentially. A slightly bigger percentage of daily distances are longer

than 250 km in Germany (2%) compared with the UK (1.6%).

Second, the black solid line in figure 4.30 shows that a range of only 50 km covers almost

75% of all daily driving distances. With 100 km range a vehicle can cater for more than 90% of

all daily driving distances in Germany. And a range of 150 km brings any vehicle into the 95th

percentile of daily distances. The numbers for the cumulative share of day driving distances as

well as the numbers of the corresponding survey respondents are listed in table 4.17.

Third, the red dotted line in figure 4.33 is significantly flatter than that for the UK (figure

4.30). This means that the frequency distribution of daily distances is very similar for Germany
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and the UK. However, from a total distance point of view, daily distances in Germany are longer

than in the UK. This can be explained by Germany’s larger geographical area and its higher

motorway density as shown in table 4.15.

Detailed results, listed in table 4.17, show that the mean daily driving distance for Germany

(44.72 km) is almost identical to that of the UK (43.35 km). However, the standard deviation

in Germany (70.11 km) is almost 1⁄5 bigger than in the UK (58.70 km). This indicates that daily

distances driven with a car in Germany vary significantly more than in the UK. In total, 21,025

aggregated weighted daily distances (72,304 individual weighted journeys) have been included

for this analysis. Like in the UK, a range of only 150 km is required in order to cover more than

95% of all daily distances in Germany (see circle in third column of table 4.17). The overall

mean speed, like that in the UK is around 40 km/h. Again, this is the speed at which the

energy consumption for various vehicle categories is minimised for a given distance (compare

with figure 4.6).

Table 4.17.: Daily Distance Statistics for Germany

Day Weighted Cumulative Mean Mean Total Cumulative Share
Distance Frequency Share of Distance Speed Distance of Total

[km] [-] Trips [%] [km] [km/h] [103 km] Distance [%]

0 < 25 10,443 49.67 11.96 19.25 126 13.15
25 < 50 5,168 74.25 36.46 31.15 188 32.84
50 < 75 2,250 84.95 61.05 39.05 138 47.26
75 < 100 1,235 90.82 85.84 44.38 106 58.36
100 < 125 611 93.73 111.90 49.40 69 65.54
125 < 150 312 95.21 136.25 54.49 42 69.97
150 < 175 238 96.34 160.18 60.97 38 73.99
175 < 200 170 97.15 188.29 61.63 32 77.34
200 < 225 96 97.61 212.65 62.38 20 79.47
225 < 250 91 98.04 234.67 70.56 21 81.70
250 < 275 66 98.35 261.56 68.84 17 83.51
275 < 300 44 98.56 285.91 73.08 13 84.84
300 < 325 40 98.75 313.17 81.37 12 86.14
325 < 350 41 98.95 336.32 76.42 14 87.57
350 < 375 21 99.05 362.42 82.35 8 88.37
375 < 400 30 99.19 385.72 77.13 12 89.58
400 < 425 22 99.29 411.45 75.46 9 90.52
425 < 450 23 99.40 438.50 80.31 10 91.58
450 < 475 6 99.43 461.02 82.41 3 91.85
475 < 500 25 99.55 482.28 86.71 12 93.10
500 < 525 25 99.60 510.90 92.23 6 93.69
525 < 550 25 99.68 535.20 81.02 9 94.60
550 < 575 25 99.76 562.55 91.94 10 95.67
≥ 575 95 100.00 758.29 94.90 41 100.00

21,025 - 44.72 40.18 955 -

Table 4.17 is longer compared with the equivalent one for the UK (table 4.16). This is because
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from a total distance perspective, 95% of the cumulative daily distance driven is only covered

with a range of 575 km compared with 400 km in the UK. Thus, long journeys (>250 km)

in Germany are longer than in the UK. This also means that range requirements for EVs in

Germany are higher than for EVs in the UK.

4.2.4. United States

As already mentioned in the introduction for this section, US car activity is higher compared

with that of the UK and Germany. This is also reflected by the average number of individual

car journeys per day, when the car is used. In the US, more than four (4.12) individual car

journeys are undertaken on average, while in the UK this number is 3.25 and in Germany it is

3.43.

Car activity during the week is very similar to that in the UK and Germany as can be seen

from figure 4.34 when compared with figures 4.27 and 4.31. During the week, car activity is

relatively flat. Like in the UK and Germany, there is also an increasing trend of car activity
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Figure 4.34.: Car Activity According to the Day of Week in the US

towards the end of the week. There is also a significant drop of car activity during weekends. On

Sundays, car drivers tend to be least active, however longer journeys are undertaken compared

with other days.

Unfortunately, travel survey data from the US does not relate travel behaviour with specific

vehicle categories as detailed as in the UK or Germany. Figure 4.35 shows the vehicle activity

in the US split into more generalised vehicle categories. Most road vehicle activity (53%) takes

place by car, but a significant share also takes place by van (10%), SUVs (21%) and pickup

vehicles (14%). Vans are used for shorter journeys compared with pick-ups. Other vehicles

including recreational vehicles (RVs) and motorbikes are negligible (2%) in terms of overall road

vehicle activity.

Figure 4.36 underlines that range requirements for the US are significantly higher than for
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Figure 4.35.: Car Activity According to Vehicle Category in the US

the UK or Germany. First, the light blue bars with the reference y-axis on the left hand-

side demonstrates that only about 1⁄3 of daily distances are shorter than 25 km. In the UK

and Germany, this share is almost 1⁄2. The share of the relative number of trips decreases

exponentially with distance. Almost 2.5% of daily distances are equal to or longer than 250 km.
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Figure 4.36.: Daily Driving Distances in the US

Second, this leads to a much flatter black solid line when compared with the UK (figure

4.30) or Germany (figure 4.33). It means that in the UK and Germany short car journeys are

more frequent than long journeys when compared with the US. Therefore, in the US long daily

distances present a higher share of all daily distances compared with Europe.

Third, also in terms of total distance US car activity is less dependent on short distances than

Europe. The red dotted line, which indicates the share of the cumulative distance, is flatter

when compared to figures 4.30 and 4.33.
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Table 4.18 lists the numbers relating to figure 4.36. Due to a different weighting procedure,

53.9 billion aggregated weighted daily distances (720,903 unweighted individual journeys) have

been included for this analysis.

By looking at the relative number of trips, a range of 200 km is sufficient to cover the 95th

percentile of all daily distances (second column). Both in the UK and Germany a range of

150 km, or a 25% shorter range, satisfies this requirement. Less than one percent of all daily

distances are above 400 km. The mean daily distance in the US is 59.60 km, which is about 1⁄3
more than both in the UK and Germany. The overall mean speed (59.60 km/h) is also higher

than in Europe. In order to satisfy the 95th percentile of the cumulative distance driven, a range

of 700 km is required.

Table 4.18.: Daily Distance Statistics for the US

Day Weighted Cumulative Mean Mean Total Cumulative Share
Distance Frequency Share of Distance Speed Distance of Total

[km] [106] Trips [%] [km] [km/h] [109 km] Distance [%]

0 < 25 17,958 33.12 12.88 25.56 229 6.87
25 < 50 14,583 60.17 36.35 37.05 531 22.81
50 < 75 8,062 75.13 61.59 44.88 498 37.77
75 < 100 4,974 84.36 86.78 51.52 433 50.77
100 < 125 2,666 89.31 111.66 56.09 297 59.70
125 < 150 1,765 92.58 136.29 60.18 241 66.96
150 < 175 1,094 94.61 161.62 63.45 176 72.27
175 < 200 767 96.03 187.03 66.40 144 76.59
200 < 225 417 96.81 211.26 68.99 88 79.23
225 < 250 394 97.54 236.40 69.37 93 82.02
250 < 275 231 97.97 261.95 72.47 60 83.84
275 < 300 155 98.26 287.20 73.29 44 85.18
300 < 325 107 98.46 313.41 77.07 34 86.18
325 < 350 118 98.67 336.53 77.49 40 87.37
350 < 375 120 98.90 363.12 78.46 44 88.68
375 < 400 88 99.06 387.06 80.40 34 89.71
400 < 425 67 99.18 411.06 82.19 27 90.53
425 < 450 40 99.26 437.31 81.57 18 91.06
450 < 475 73 99.39 462.00 82.88 33 92.06
475 < 500 28 99.45 487.48 80.69 14 92.48
500 < 525 28 99.50 512.43 85.81 15 92.91
525 < 550 21 99.54 536.66 87.42 11 93.26
550 < 575 17 99.57 561.98 86.88 10 93.55
575 < 600 23 99.61 586.62 88.51 13 93.94
600 < 625 16 99.64 613.29 89.94 10 94.24
625 < 650 21 99.68 638.55 91.25 13 94.64
650 < 675 15 99.71 661.04 94.30 10 94.94
675 < 700 7 99.72 686.47 87.33 5 95.07
≥ 700 150 100.00 1,087.26 111.16 164 100.00

53,900 - 59.60 51.81 3,329 -
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4.2.5. Interim Conclusion

The previous subsections have demonstrated that the distance which a vehicle can drive without

having to refuel or to recharge, is an important factor. Especially for electric vehicles range is

one of the key performance characteristics as charging them up may take up several hours.

Despite the fact that an overwhelming majority of individual car journeys in the UK (91%) are

relatively short (i.e. <30 km), range requirements for electric vehicles are significantly more

challenging than this.

First, when in use, a car is typically driven three to four times a day for separate individual

journeys. It is assumed that an EV is typically charged at night and discharged (i.e. driven)

during the day. Second, the results have also shown that range requirements can be assessed

both in terms of the number of trips and in terms of the total distance. The first focusses on the

number of times the daily range is within a specific range band (e.g. 0-25 km, 25-50 km, etc.).

This is also referred to as frequency distribution or histogram analysis. Based on the number

of trips, a range of 150 km is required to cover at least 95% of all daily distances with a car

in the UK and Germany. In the US, a range of 200 km satisfies the same requirement. The

second assessment of range focusses on the share of the cumulative distance driven. There may

be a high number of short distances driven during one day, but their cumulative distance may

be shorter than one single long trip. Consequently, range requirements from a total distance

perspective are higher than by just looking at the number of trips. For the UK, a range of 400

km satisfies the 95th percentile of the cumulative distance driven. In Germany, a range of 575

km and in the US a range of 700 km meet the same target.
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4.3. Discussion & Summary

This section brings together the two previous sections about electric vehicle driving forces (sec-

tion 4.1) and range requirements for electric vehicles (section 4.2). Based on these sections, it

establishes nominal energy requirements for electric vehicles by vehicle category.

First, table 4.19 summarises the nominal electric vehicle driving forces, which were derived in

section 4.1. It shows that on average SUVs require more than four times as much energy per

Table 4.19.: Summary of EV Driving Forces

Driving Force [Wh/km]
Mini Car Small Car Medium Car Large Car SUV

70 110 140 200 290

unit distance of distance than mini cars. Medium-sized cars nominally require 140 Wh/km.

Second, based on these driving forces and range requirements for the UK, Germany and the

US (see section 4.2), initial battery capacity requirements may be established. Figures 4.37-4.39

display the results.

Each of the six figures is a plot of the cumulative share on the x-axis versus the theoretical

EV battery capacity on the y-axis. Each row displays the information for a different country;

UK, Germany or the US. Figures on the left hand-side (a) refer to the cumulative share of daily

distances driven, while figures on the right hand-side (b) refer to the cumulative share of the

total distance driven. Battery capacity requirements are higher from a total distance perspective

than from a number of trips perspective. Obviously, the greater the battery capacity (i.e. those

satisfying the 95% of the total distance requirement), the longer the range.

However, from an emission abatement perspective smaller battery capacities (i.e. those sat-

isfying the 95% of all trips requirement) can be very effective as well. Because short trips (<30

km) involve more frequent stops and a smaller percentage of operation at high efficiency, the

fuel efficiency for short trips is usually lower than for long trips. Figure 4.15 also gives empirical

evidence for this correlation. Then, due to the linear relationship between fuel consumption

and CO2 emissions (see equation 1.1), emissions per unit of distance tend to be higher for short

trips. Therefore, the CO2 abatement potential for EVs with a relatively small battery capacity

is already relatively high.

Table 4.20 concludes this chapter by listing the battery capacity requirements for EVs by

driving force and range requirements in different countries. Battery capacity requirements range

from 11 kWh for a mini car in the UK or Germany satisfying a 150 km range up to 203 kWh

for a SUV in the US satisfying a 700 km range. As a reference, the energy content of a full

fuel tank for a medium-sized ICEV (50 litres of petrol) is about 480 kWh. Individual capacities

vary from the range of 95% of all trips to 95% of the total distance. The difference between

these two is significant for all observed countries. Thus, some vehicle manufacturers offer their
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Figure 4.37.: Battery Capacity for Range Requirements in the UK
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Figure 4.38.: Battery Capacity for Range Requirements in Germany
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Figure 4.39.: Battery Capacity for Range Requirements in the US
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electric vehicles with a range of battery capacities like e.g. the Tesla Model S.

Table 4.20.: EV Battery Capacity Requirements According to Driving Force and Range

Country 95% Range [km] Battery Capacity [kWh]
Trips Dist. Mini Car Small Car Medium Car Large Car SUV

UK 150 400 11-28 17-44 21-56 30-80 44-116
Germany 150 575 11-40 17-63 21-81 30-115 44-167

US 200 700 14-49 22-77 28-98 40-140 58-203
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Characteristics of EV Traction Batteries

This chapter extends the analysis of the optimum battery capacity for electric vehicles by con-

sidering battery performance and degradation behaviour. The previous chapter has come up

with optimum energy requirements for various electric vehicle categories in three different coun-

tries. These energy requirements are based on nominal driving forces and daily travel distances

associated with passenger vehicles. However, these nominal energy requirements cannot be con-

verted 1:1 into optimum battery capacities. The reason for this is battery degradation, which

alongside other consequences (see section 2.3.3) leads to capacity fade. This means that the op-

timum battery capacity for EVs needs to be larger than the optimum energy requirement. While

the optimum energy requirement remains relatively constant (assuming no significant efficiency

losses of the EV power train and steady travel patterns), battery capacity is reduced with time

and use. Figure 5.1 illustrates this relationship. The optimum energy requirement from the

previous chapter is shown in blue. It is constant with time and use. The spare capacity, which is

shown in red, is diminished with time and use. Ideally, the battery capacity available at the end

of the EV’s lifetime is exactly equal to the optimum energy requirement. While chapter 4 has

determined the magnitudes of the blue bar for various EV categories, this chapter is concerned

with the characterisation of the red area. Note that the linear capacity fade shown in figure 5.1
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Figure 5.1.: Capacity Fade Schematic
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is for demonstration purposes only.

In order to determine the long-term behaviour of an EV battery pack, an understanding of

the short-term battery behaviour at cell level is essential. Therefore, this section is divided into

three sections. Section 5.1 is devoted to EV battery performance parameters, while section 5.2

deals with battery degradation. Section 5.3 concludes this chapter.

5.1. Performance Characteristics of EV Traction Batteries

This section analyses performance characteristics of EV traction batteries. It is primarily con-

cerned with the battery’s power output given a particular power request. The first subsection

deals with steady battery behaviour while the second subsection is devoted to dynamic battery

performance characteristics. The third subsection provides an interim conclusion.

5.1.1. Steady Battery Behaviour

EV traction batteries are usually made up of a number of individual cells. Depending on the

power and energy requirements, safety and cost considerations as well as design limitations,

individual cells are often connected in series (S), in parallel (P) or a combination of both. For

the SRZero (see section 3.3.1) for example, 164 LiFePO4 cells with a nominal voltage of 3.3 V

and a rated capacity of 100 Ah are connected in series. This 164S0P configuration results in a

nominal battery pack voltage of 541.2 V and a rated capacity of 100 Ah (compare with section

2.3.2).

Published Discharge Behaviour

On the individual cell level, figure 5.2 shows the published discharge curves of the LiFePO4

battery cells of the SRZero at steady discharge currents. The cell voltage is plotted against the
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Figure 5.2.: Published Discharge Curves of SRZero Battery Cells (see appendix B)
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discharge capacity for four different discharge rates at ambient temperatures. The light blue line

shows the discharge characteristics at a constant discharge current of 50 A (i.e. 0.5 C for cells

rated at 100 Ah), while the red line shows the discharge characteristics at a constant discharge

current of 500 A (i.e. 5 C). Due to the capacity rate effect (see figure 2.23) high discharge

rates result in a lower capacity compared with low discharge rates. Thus, the nominal discharge

capacities at 0.5, 1, 3 and 5 C and a lower voltage limit of 2.5 V are 105, 101, 94 and 88 Ah

respectively. Additionally, a higher load current (i.e. a higher C rating) leads to a lower cell

voltage as well. This is because higher currents lead to higher diffusion resistances within the

cell. Therefore, at 0.5 C the nominal cell voltage (i.e. the voltage, which occurs most frequently)

is 3.29 V while at 5 C it is only 3.11 V. This means that at a discharge rate of 0.5 C, roughly

345 Wh should be available during discharge. At 5 C only about 80% of this energy is available

according to the manufacturer.

Measured Charge and Discharge Behaviour

Figure 5.3 displays the results of initial charge and discharge tests of a single cell from the

SRZero undertaken in early 2010, i.e. before the long test drive. Figure 5.3a on the left hand-

side shows a galvanostatic charge at 20 A (0.2 C), while figure 5.3b on the right hand-side shows

a galvanostatic discharge at 100 A (1 C). The nominal voltage during the charging process is

around 3.4 V, while during discharge it is 3.1 V. Due to resistance losses during charging, the

charging voltage is higher than the no-load open-circuit voltage (OCV ). Thanks to resistance

losses during discharge, the discharge voltage is lower than the OCV. It is also lower when

compared with the green line in figure 5.2. Additionally, the shape of the discharge curve in

figure 5.3b is less flat. It also features voltages of up to 3.8 V at very low discharge capacities,

which figure 5.2 does not. The measured galvanostatic discharge characteristics (figure 5.3b)

rather than the published discharge characteristics (figure 5.2) are taken as reference in order to
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(b) Discharge at 1 C

Figure 5.3.: Initial Charge and Discharge Curves of a Single SRZero Battery Cell
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validate dynamic equivalent models first introduced in subsection 2.3.4. Differences between the

two discharge curves may arise from varying environmental conditions (temperature, humidity,

etc.), the experimental setup (contact resistances, measuring devices, etc.) as well as battery

degradation.

Figures 5.2-5.3 show key characteristics of LiFePO4 cells. First, the nominal cell discharge

voltage is relatively high, 3.1-3.3 V. Second, the discharge profile is relatively flat. This is

advantageous in terms of energy consumption as it results in relatively high discharge capacities

at relatively high voltages. In other words, more energy can be withdrawn from a cell with a flat

discharge voltage profile than from a cell with a sloped discharge voltage profile given the same

nominal voltage. However, a flat discharge profile complicates the determination of the state

of charge (SOC ). A relatively high discharge capacity only corresponds to a minimal change in

cell voltage. This also means that the available battery power is relatively stable with its state

of charge. The available power can simply be calculated as the product of the (steady) current

and the cell voltage at a particular SOC.

Derivation of OCV vs. SOC Relationship

Discharge curves vary with the discharge rate as illustrated in figure 5.2. However, only open-

circuit voltage (OCV ) values remain constant with different discharge currents. Therefore, the

OCV value at a particular state of charge (SOC ) is the only voltage reference value, which is

not affected by the discharge rate. Following this, one would need to intermittently discharge

a previously fully charged cell with a constant discharge rate. The interruptions, when no

current is applied, would need to be long enough for the cell to reach its equilibrium (OCV )

state. Figure 5.4 shows the cycling history for one of the SRZero battery cells as part of an

galvanostatic electrochemical impedance spectroscopy (GEIS) measurement procedure. The

detailed procedure for this is listed in table 3.6. As can be seen by the vertical blue bars, the

discharge procedure is interrupted six times for each of the nine discharges. The interruptions

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
2 . 4

2 . 7

3

3 . 3

3 . 6

3 . 9

4 . 2

4 . 5

−6

−4

−2

0

2

4

6

8

T ime [ h]

V
o
lt
a
g
e
[V

]

C
u
r
r
e
n
t
[A

]

Vo l t a g e
Cur r ent

Figure 5.4.: GEIS Voltage and Current History
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occur at 20 Ah intervals and last for 30 min each. Electric potential levels after 30 min rest are

assumed to be in equilibrium state. Therefore, the peaks along the red voltage profiles represent

OCV values at 100, 80, 60, 40, 20 and 0% SOC respectively.

Measured discharge data points from figure 5.3b and measured OCV values from figure 5.4

may then be taken as reference values in order to establish a generic OCV vs. SOC relationship

for the SRZero cells. The rated discharge capacity (100 Ah) is equal to 100% depth of discharge

(DOD) or 0% state of charge (SOC ). Figure 5.3b is based upon 23 data points, while there

are only seven OCV values per discharge from figure 5.4. Consequently, initial fitting was done

with the the data from figure 5.3b and then the results were applied and modified for the data

points in figure 5.4.

Furthermore, the first data point at zero discharge capacity was ignored for this analysis. The

initial high voltage of 3.8 V measured during discharge is considered to be insignificant for the

determination of the OCV vs. SOC relationship. This is because the capacity used from the

beginning of the discharge until the voltage drops close to its nominal value is only 1.85 Ah at

a discharge rate of 1C. In other words, for simplification purposes the initial high cell voltage is

ignored without significant increase in error. Strictly speaking it is an OCV value. This also

explains why the published discharge curves (figure 5.2) do not feature the initial high voltages.

Also, for the charging process it is not essential to charge up to voltages way above the nominal

charging voltage. Figure 5.3a shows that only about 4 Ah can be ’fed’ into the cell above 3.8 V.

Various fitting models have been applied to these data points. These models and their good-

ness of fit parameters are listed in table 5.1. With the exception of the 1D exponential model

Table 5.1.: Goodness of Fit for Various Models to Represent OCV vs. SOC Relationship

Fitting Model

Linear Quadratic Cubic
1D 2D

Custom
Goodness of Fit Parameter Exp. Exp.

Sum of squares due to error (SSE) 0.215 0.068 0.025 0.224 0.003 0.003
Coefficient of determination (R2) 0.706 0.907 0.966 0.694 0.996 0.996
Root mean squared error (RMSE) 0.104 0.060 0.037 0.106 0.013 0.013

the goodness of fit increases from left to right. Fitting a linear curve to the discharge data points

yields a relatively high sum of squares due to error (SSE = 0.215) and a relatively low R2 value

(0.706). In contrast, a 2D exponential fit results in a very low SSE (0.003) and a very high R2

value (0.996) and thus exhibits the best fit. However, this function can be simplified and still

retain its goodness of fit:

OCV (SOC) = a+ b(100− SOC) + ced(100−SOC) (5.1)

The custom fitting model from table 5.1 relates to equation 5.1. It combines a linear model with

a 1D exponential model. The coefficients are listed in table 5.2. The effect of these coefficients
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is illustrated in figure 5.5. Coefficient a determines the cell voltage at full SOC, while coefficient

b determines the slope of the linear voltage drop with diminishing SOC down to about 20%

SOC or 80% DOD. Coefficient c determines the starting point of the exponential decay, while

coefficient d determines the slope of the exponential decay of the OCV at a SOC below 20%.

Therefore, the cell voltage vs. SOC function can be divided into a linear function for SOC

Table 5.2.: Coefficients for Custom Model of OCV vs. SOC Relationship

Model
Coefficient

a b c d

Vterm vs. SOC 3.113 -8.66E-4 -3.49E-6 0.105
OCV vs. SOC 3.350 -8.66E-4 -2.00E-9 0.170

values above 20% and an exponential function for SOC values below 20%. Figure 5.5 shows

that the cell voltage during discharge (1 C) shown in blue is shifted downwards by about 0.2

V from the OCV shown in green. Only at SOC values below 20%, i.e. when the exponential

function is dominant, does the shape of the two functions differ.
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Figure 5.5.: Measured and Modelled Values for the OCV vs. SOC Relationship

Furthermore, the rated cell capacity (here 100 Ah) provides a good approximation of the ’true’

electrical energy content, but does not provide an exact measure for mainly two reasons [101].

First, cell capacity ratings usually assume a lower discharge limit of 2.5-3 V for lithium-ion

cells rather than 0 V. However, there is still electrical energy stored between 0 V and the lower

discharge limit. Second, nominal capacity ratings are often based on expected ageing behaviour.

Thus, initial cell capacity may exceed the nominal capacity rating, while end of life capacity is

likely to fall below the nominal capacity rating. The spare capacity (see also figure 5.1) is shown

on the right of the dotted line in figure 5.5.
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5.1.2. Dynamic Battery Behaviour

The previous subsection looked at steady discharge behaviour. Many applications of lithium-

ion cells including mobile phones, laptops and other portable electronic devices draw relatively

steady currents from their cells. Therefore, power outputs are relatively predictable and SOC

estimation may simply be based on galvanostatic discharge curves like those in figures 5.2 and

5.3b. In contrast, hybrid electric and pure electric vehicles present one of the most dynamic

loads for lithium-ion batteries. This means that the standard deviation of a typical HEV or

an EV traction battery load is significantly larger than that of a standard electronic portable

device. The variation of the battery load for an EV is primarily due to EV driving forces (see

section 4.1.1). To a lesser extent temperature and degradation effects also affect battery dynamic

behaviour.

In the following, a representative battery load for the SRZero is derived from a sample drive

cycle and a first principle analysis introduced in section 4.1.1. The following procedure follows

the backward-forward-facing approach (see section 2.2.3) and is simplified here for the conditions

of the SRZero as illustrated in figure 5.6. Two electric motors are mounted at the rear to propel

Motor 
Controller 1 

Motor 
Controller 2 

Electric 
Motor 2 

Electric 
Motor 1 Drive 

Cycle 
Battery 
Pack 

Figure 5.6.: Simplified Power Flow for EV Power Train

the vehicle. While in traction mode, power is requested by each of the motor controllers from

the battery pack. In this case the power flow is from right to left on the figure. During

recuperation kinetic energy of the spinning rear wheels is converted back into electrical energy

as the two electric motors act as generators. In this case the power flow is from left to right.

The procedure mainly follows the backward-facing approach (i.e. from drive cycle to battery

voltage), but also includes forward-facing component limits. It derives battery output voltages

given current requests.

Sample Drive Cycle

Figure 5.7 shows a dynamic speed-time trace (drive cycle) of the SRZero. The vehicle speed is

the arithmetic mean of the wheel speeds at the front left and front right. The drive cycle is taken

from Anchorage in Alaska when the car was first picked up from the airport. Due to air cargo

safety regulations [156], the state of charge of the battery pack was relatively low. Anchorage

lies directly at the Gulf of Alaska of the Pacific Ocean and at the end of June 2010 ambient

temperatures for this drive were around 20 °C. Consequently, neither cold nor hot temperature

extremes affected the battery performance for this sample drive cycle. Also, ageing effects as

well as road gradients are assumed to be negligible for this sample drive cycle.
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Figure 5.7.: Sample SRZero Drive Cycle

In this sample, the drive cycle is around 41 minutes long and begins with a low-speed drive

within the airport premises. Then, the SRZero is accelerated up to around 73 km/h and subse-

quently decelerated to standstill. After this, the vehicle is not being driven for about 15 minutes

before being driven in road traffic including several start and stop sequences for another 20 min-

utes. The rest period should give good indications about the battery’s capacitative behaviour.

In total, 13.64 km are covered for this drive cycle.

Taking the time derivative of speed yields acceleration. Figure 5.8 displays the corresponding

acceleration profile with respect to figure 5.7. It shows that on average, the magnitudes of

negative accelerations (decelerations) are larger than those of positive accelerations. Thus, more

time is spent accelerating than decelerating. Peak accelerations as well as decelerations are

relatively low.
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Figure 5.8.: Sample SRZero Acceleration Profile
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Derivation of Torque Values

Based on the drive cycle in figure 5.7, a first principle analysis (see section 4.1.1) following a

quasi-steady approach (∆t = 1 s) and the specifications of the SRZero (table 3.1), theoretical

torque values for the left and right rear wheel are derived. The results are shown in figure 5.9,

which also shows the measured torque values (via the torque constant KT ). Torque values for the
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Figure 5.9.: Theoretical and Measured Torque Values

left rear wheel are almost identical to those of the right rear wheel. Only in sharp bends when

the outer wheel needs to travel a longer distance than the inner wheel, i.e. at a higher speed

and when the grip between the two sides differs significantly, does the requested torque vary

between left and right wheel. The mean measured torque is 27.72 Nm for the left hand-side and

27.70 Nm for the right hand-side. Figure 5.9 also shows that first principle considerations can

yield relatively accurate results, because the coefficient of determination (R2) for the modelled

and measured values is 0.70 for the left hand-side and 0.73 for the right hand-side.

Long-term measured requested torque values of the SRZero during the test drive from Alaska

to Argentina are shown in figure 5.10. They put into perspective the derived torque values from

figure 5.9. Figure 5.10a shows the combined requested torque values (i.e. left and right) against

operation time. During the test drive, the SRZero was being driven for around 644 hours, i.e. for

more than seven hours on average per drive cycle. The first observation from this figure is that

the measured requested torque is highly dynamic. With a mean value of 55 Nm, its standard

deviation of 137 Nm is very high. Due to control design the maximum requested torque cannot

exceed the maximum possible output torque of 1.3 kNm. For safety purposes this was reduced

to 95% of that value, i.e. 1.235 kNm. This means that at maximum each of the two motors

can deliver 617.5 Nm. Therefore, maximum requested torque values appear to be flat at this

value. The results of applying a low-pass filter (LPF shown in red) with a time constant of 1

hour however show that the moving average is relatively low.

In addition, figure 5.10b illustrates that combined torque values above 500 Nm are relatively
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Figure 5.10.: Total Requested Torque Values of SRZero During Test Drive

rare. Less than 1% of all measured requested torque values are above 500 Nm. Leaving apart

the peak at zero Nm (i.e. when the vehicle is on, but not requesting any torque), the nominal

requested torque value is 102 Nm. A fast Fourier Transform (FFT) analysis did not reveal

dominant frequencies for requested torque values.

Derivation of AC Motor Currents

The resulting requested AC current values from the motor controllers can be estimated via

the torque constant (|KT | = 5.5 Nm/A; see also equation 4.20) and the motor efficiency map

(see figure 3.5). This means that during traction the torque constant is positive and during

recuperation it is negative. Therefore, all AC currents are positive. The measured and modelled

AC current values for the motor controllers are shown in figure 5.11. The mean measured

current for this drive cycle at the left rear motor controller is 8.6 A with a relatively high
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Figure 5.11.: Theoretical and Measured AC Motor Controller Current Values
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standard deviation of 12.1 A. The values for the rear right motor controller are 8.3 A and 12.6

A respectively. During the test drive along the Pan-American Highway the mean combined AC

motor controller currents were 15.79 A, i.e. slightly less than the ones from the left and right side

combined from the sample drive cycle. The maximum AC current for the motor controllers are

106.1 and 116.5 A. Here, the coefficient of determination (R2) for the modelled and measured

AC current values is 0.69 on the left hand-side and 0.73 on the right hand-side. This means that

R2 has only been reduced by 0.01 for the left side, while on the right side it remained constant.

Derivation of DC Motor Controller Characteristics

The DC motor controller input currents are the next element upstream along the EV power

train. Analytically working out the DC input current from the motor controllers given the AC

output current is not trivial. Figure 5.12 displays the empirical relationship between the DC

motor controller input currents and the AC motor controller output currents. The input current

Figure 5.12.: SRZero Inverter AC Output Currents vs. DC Inverter Input Currents

and the direction of power flow determine the output current. At its linear edges on the far right

hand-side and on the far left hand-side figure 5.12 shows the ideal inverting process. However,

efficiency losses in both directions mean that input power is greater than output power. While

the power is reduced along the direction of power flow, output currents may be greater than

input currents provided the corresponding voltage is reduced. Figure 5.12 also shows that the

inverter output current is limited to 223.5 A. This means that regardless of the DC input current,

the AC output current will not exceed 223.5 A, which in combination with the torque constant

(|KT | = 5.5 Nm/A) leads to a maximum torque value of 1,230 Nm. Thus, the two inverters not

only control the two AC motors, but also prevent overloading.

Figure 5.13 shows the resulting DC motor controller currents as a function of time for the

sample drive cycle. The mean DC motor controller current is 5.74 A with a relatively high

standard deviation of 16.55 A. The minimum current is -36.8 A. The goodness of fit between

the modelled and measured DC currents however is relatively low (R2 = 0.52). Most probably

this is due to inaccurate inverter efficiency mapping.
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Figure 5.13.: Theoretical and Measured Requested MC DC Currents

During the test drive along the Pan-American Highway the mean DC motor controller currents

were higher. On average, 7.1 A were drawn from the two motor controllers combined during

the 644 operational hours of the SRZero as shown by the moving average in red in figure 5.14a.

The maximum requested DC motor controller current was 287.7 A (i.e. 2.88 C). However, in

accordance with the frequency distribution of torque values, high current values (i.e. >60 A)

are very rare as shown in figure 5.14b. They constitute less than 1% of all MC DC current

values. Neglecting the no-current condition, the nominal current drawn was 14.0 A. Again, a

FFT analysis did not reveal dominant frequencies.
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Figure 5.14.: Combined SRZero DC Motor Controller Current Values
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Derivation of Traction Battery Characteristics

The two motor controllers, which are connected in a parallel configuration, are directly linked

to the battery terminals (see figure 2.8). Therefore, considering ohmic losses in the wires and at

the connectors, the DC battery power is assumed to be proportional to the combined DC motor

controller powers. A linear fit analysis between measured DC battery powers and measured DC

motor controller powers reveals a linear coefficient of 0.87. The goodness of fit with R2 = 0.89

is relatively high. Thus, DC battery powers on average are reduced by as much as 13% between

the battery terminals and the motor controllers.

Figure 5.15 shows the measured DC traction battery currents of the SRZero as a function of

time and frequency. The mean measured current is 7.21 A (0.07 C) with a standard deviation

of 14.69 A (0.15 C). The maximum current measured was 264.73 A (2.64 C) and the minimum

current was -88.56 A (-0.88 C). Figure 5.15b shows that the nominal current is 14.4 A (0.14

C) when ignoring the no-current condition. Thus, despite being highly dynamic, discharge

rates were relatively low (i.e. < 3 C). 3 C is also the maximum recommended constant current

discharge rate, while it is 20 C for impulse currents (see appendix B). This means that maximum

impulse currents during the SRZero test drive were even lower than maximum recommended

constant current discharge rates.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0
−1 0 0

−5 0

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

T ime [ h]

C
u
r
r
e
n
t
[A

]

1 Hz
LP F ( 1h)

(a) Time Trend

−6 0 −4 0 −2 0 0 2 0 4 0 6 0 8 0 1 0 0
0

1

2

3

4

5

Cur r ent [A ]

F
r
e
q
u
e
n
c
y
[*

1
0
0
0
]

1 4 . 4 A

(b) Histogram

Figure 5.15.: SRZero Traction Battery Current

Derivation of Dynamic State of Charge (SOC) and Open-Circuit Voltage (OCV)

The battery current values present one important input parameter for a reliable and dynamic

state of charge (SOC ) estimation. As illustrated by figures 5.3b and 5.5 and supported by

equations 2.5 and 2.7, the SOC is a function of current and time only for steady discharge

procedures:

SOCconst,I(t) = 100
Qnom − I

∑
∆t

Qnom
(5.2)
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In this case, it is the ratio of the instantaneous capacity divided by the rated or nominal capacity

Qnom multiplied by 100. Here, the instantaneous capacity left in the battery can be conveniently

estimated by the difference of the rated capacity and the product of the constant current I and

the total discharge time
∑

∆t. Therefore, Coulomb counting is applied. The OCV at specific

SOC values can then be estimated via equation 5.1.

For dynamic discharge rates however, the determination of the SOC is more complex. Here,

the discharge current I(t) is no longer constant, but highly dynamic as illustrated by figure 5.13.

Thus, in theory the SOC for dynamic discharges is determined by the following equation:

SOCdyn,I(t) = 100
Qnom −

∫
Idt

Qnom
(5.3)

It is the same as equation 5.2, but the capacity is no longer a product of the constant current and

the total discharge time, but a time integral of the discharge current. The practical problem

associated with this equation is that the current needs to be measured continuously, i.e. at

infinitesimal short time steps. Typical current sensors however feature relatively low sampling

frequencies (1-100 Hz). Certainly for the SRZero, the sampling frequency of 1 Hz is low. The

main motivations for using current sensors with low sampling frequencies include low cost and a

manageable data log size. Low sampling frequencies lead to the misleading assumption that the

measured current is applied throughout the measured time step. Thus, the lower the sampling

frequency, the lower the accuracy for SOC estimations.

Hence, an adaptive algorithm may be introduced. One way is to use the OCV as a means of

regular correction. According to figure 5.5 and equation 5.1 the OCV reliably relates to specific

SOC values. Because of intermittent charge periods through regenerative braking, resistance

losses and the battery’s capacitative behaviour, the traction voltage Vtrac is not equal to the

OCV for most of the time during a discharge process. However, at the very beginning of a new

discharge cycle (i.e. when the EV is switched on) and after a rest period of 30 min (i.e. when

the EV is parked for a stop) the traction voltage may be assumed to be in equilibrium (Vtrac

= OCV ). This means that the SOC reading can be initialised by the initial traction voltage

reading, which is taken as the OCV reading. The corresponding SOC is retrieved by solving

equation 5.1 for SOC. Equation 5.4 shows that this solution is not explicit and therefore needs

to be solved iteratively. For the 164 LiFePO4 cells of the SRZero the solution is as follows:

SOCdyn,I,1(OCV ) = 164

[
100− ln(OCV − 3.350 + 8.66E-4(100− SOC)) + ln(−2E-9)

0.170

]
(5.4)

Then, after initialising the SOC and at any time, when no OCV value is available, the SOC

may be estimated using equation 5.5:

SOCdyn,I,2(t) = SOCdyn,I,1 −
∑

I∆t (5.5)

Therefore, the determination of SOC values for dynamic discharge processes using this particular
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approach involves both OCV referencing and Coulomb counting. Figure 5.16 shows the results

of OCV and SOC estimations for the sample SRZero drive cycle. The initial measured traction

voltage is 537.95 V. From the previous paragraph (figure 5.13) we know that Imc,dc(0) is also

equal to zero. In addition, the vehicle was switched off before for at least one week. Therefore,
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Figure 5.16.: OCV & SOC vs. Time for Sample Drive Cycle

the initial traction voltage must be the open-circuit voltage. The resulting SOC is 20.96%, i.e.

relatively low. The measured capacity draw for the entire drive cycle is 3.79 Ah, i.e. 0.278

Ah/km. The rest period is only about 15 minutes, thus not long enough to take OCV readings.

Therefore, the SOC at the end of the drive cycle is (20.96-3.79)% = 17.17%, which corresponds

to a ’mileage’ of 3.60 km/%SOC. The OCV values after the initial value are calculated using

equation 5.1. Figure 5.16 also shows that SOC vs OCV relationship is still within its linear

regime as the two move in parallel. If the drive cycle was longer, the OCV is expected to

drop faster than the SOC as the exponential regime begins to dominate (compare with figure

5.5). After about 1,700 s OCV and SOC rise for a short period of time thanks to regenerative

braking.

Derivation of Traction Voltage

Simulating and modelling the voltage response of a battery given a current request is probably

the most important, yet also the most complicated aspect of battery modelling. It is crucial

for the calculation of the output power, which is the product of the traction voltage Vtrac and

the battery current I. Given a current request from the motor controllers of an EV, an accurate

battery model will determine whether battery operating limits are exceeded or are undercut.

The two most significant battery operating limits are the minimum and maximum traction

voltage (Vtrac,min & Vtrac,max) respectively. These lead to several other battery operating limits

including the maximum and minimum currents (Imin & Imax) at various levels of SOC. The

battery model is usually an integral component of the battery management system (BMS).

A simple example illustrates the effectiveness of an accurate battery model. If, for instance,
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the state of charge of the EV traction battery is relatively low, than its open-circuit voltage is

also relatively low. This means that at high states of charge higher maximum currents may be

drawn compared with low states of charge assuming a minimum voltage limit and a voltage drop

from the open-circuit voltage to the traction voltage. However, because of the non-linear I-V

relationship, the traction voltage is difficult to accurately predict with mathematically simple

battery models.

For the derivation of the traction voltage Vtrac, five equivalent circuit models introduced in

section 2.3.4 are applied and compared against each other. These include the internal resistance

model, the Thévenin model, the PNGV model, the resistor capacitor (RC) model and the

MATLAB/Simulink battery model.

The Internal Resistance Model is probably the least complex battery model. As equation

5.6 demonstrates, the traction voltage linearly depends upon the current request I(t) and requires

two input parameters:

Vtrac(t) = OCV −RintI(t) (5.6)

While the internal resistance Rint is assumed to be constant, the open-circuit voltage (OCV )

is a function of the state of charge (SOC ) as illustrated in figure 5.5. Therefore, the accuracy

of the internal resistance model highly depends on the accuracy of the SOC (OCV ) function as

well. The optimum value for Rint can be found by regression.

The Thévenin Model is described by equations 2.14-2.15. Their solution can be written as:

Vtrac(t) = OCV −RintI(t)−Rth

[(
1−

(
1− e−∆t/τ

)
∆t/τ

)
I(t)

+

((
1− e−∆t/τ

)
∆t/τ

− e−∆t/τ

)
I(t− 1) + e−∆t/τI(t− 1)

]
(5.7)

Equation 5.7 shows that the Thévenin model is equal to the internal resistance model minus

the Thévenin voltage Vth. Vth is the product of the constant Thévenin resistance Rth and the

dynamic Thévenin current Ith. Ith itself is a function of the previous input current I(t− 1), the

time step ∆t (here 1 s) and the time constant τ . The time constant (τ = RthCth) presents the

time required to charge or discharge the battery through the resistance Rth by approximately

63% (= 1-e−1) of the difference between the initial and final capacity value ∆Cth.

The PNGV Model is characterised by equations 2.16-2.18. Their solution can be written

as shown in equation 5.8. It is the same as the solution for the Thévenin model (equation 5.7)

minus a third voltage. This voltage is the product of the reciprocal of the bulk capacitance

OCV’ and its capacity.
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Vtrac(t) = OCV −RintI(t)−Rth

[(
1−

(
1− e−∆t/τ

)
∆t/τ

)
I(t)

+

((
1− e−∆t/τ

)
∆t/τ

− e−∆t/τ

)
I(t− 1) + e−∆t/τI(t− 1)

]
(5.8)

−OCV ′
[(∑

I(t− 1)∆t
)

+
[I(t− 1) + I(t)] ∆t

2

]
The RC Model is characterised by equations 2.19-2.20. Equation 5.9 is the solution for these

equations.

Vtrac(t) =
VBRC + VCRE
RE +RC

+

(
−RT −

RCRE
RE +RC

)
I(t) (5.9)

The standard battery model of the MATLAB/Simulink Library is characterised by equa-

tions 2.21-2.22. Equation 5.10 recalls the solution for the discharge process:

Vtrac(t) = OCV −RintI(t)−K Q

Q−
∫ t

0 Idt

(∫ t

0
Idt+ I∗

)
+AeB

∫ t
0 Idt (5.10)

It is similar, but uses a different methodology than most equivalent circuit models. Like all

equivalent circuit models the MATLAB/Simulink battery model begins by calculating the ohmic

voltage drop, which is simply the difference between the OCV and the product of the constant

internal resistance Rint and the dynamic current I(t). The third voltage term, which is deducted,

presents the voltage drop caused by polarisation. Therefore, it is the product of the polarisation

constant K [V/Ah], the reciprocal of the DOD and the sum of the integral of the input current

I(t) and the filtered current I∗. I∗ is the result of applying a first-order low-pass filter with an

assumed time constant of 30 s to I(t). In other words, it is the time average of I(t) for a duration

of 30 s.

Figure 5.17 shows the results of each equivalent circuit model applied to the SRZero battery

currents. The modelled traction voltages are shown as well as the measured traction voltages

for the sample drive cycle. The model with the highest accuracy compared with the measured

traction voltage values is the PNGV model with a coefficient of determination of 0.705. The

goodness of fit parameters as well as the individual cell parameters for each model are listed in

table 5.3.

The second most accurate model is the MATLAB model followed by the Thévenin model.

The simple internal resistance model is the least accurate model for this application.

During the test drive, the SRZero showed similar voltage values as in figure 5.17. The filtered

voltage alternated around 540 V as can be seen in figure 5.18a. Also, the mode traction voltage

value was 541 V. The mean voltage was 533.60 V with a relatively low standard deviation of

12.03 V. The minimum voltage was 405.88 V, i.e. 2.47 V per cell. This is just below the

recommended minimum cell voltage of 2.5 V (see appendix B). However, low traction voltages
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Figure 5.17.: Comparison of Various Battery Models Applied to SRZero Drive Cycle

Table 5.3.: Comparison of Various Battery Models Applied to SRZero Drive Cycle

Battery Model
Goodness of Fit Parameter Internal

Thévenin PNGV RC MATLAB
(Battery Pack) Resistance

Sum of squares due to error (SSE) 7.68E4 7.68E4 3.06E4 n/a 6.54E4
Coefficient of determination (R2) 0.261 0.260 0.705 n/a 0.370
Root mean squared error (RMSE) 5.57 5.57 3.52 n/a 5.14

Battery Parameter (Single Cell)
Rint [mΩ] 3 3 3 n/a 3
Rth [mΩ] n/a 1.3 1.3 n/a 2.8
Cth [F] n/a 54.35 n/a n/a n/a
τ [ms] n/a 70.7 n/a n/a n/a
OCV’ [1/F] n/a n/a 0.1 n/a n/a
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(i.e. <500 V; <3.05 V per cell) occured very rarely. They only accounted for less than 1% for

all measured traction voltage values. The maximum measured voltage was 637.25 V (3.89 V per

cell), just after the SRZero has been charged.
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Figure 5.18.: SRZero Traction Voltage

Without any information on the corresponding current, no assumption is made about the

corresponding state of charge. Therefore, figure 5.19 shows the combinations of current and

voltage, which occurred most frequently. Colours range from dark blue (least frequent combi-

nation) to red (most frequent combination). The pair 1 A - 541 V occurs most frequently. The

figure also shows that with increasing current, traction voltage nearly drops linearly.
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Figure 5.19.: SRZero Traction Voltage vs. Current
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Derivation of Battery Power

The available battery power is the product of the battery current I(t) and the traction voltage

Vtrac(t). Depending on the functionality of the BMS, current and voltage limits are implemented.

The mean DC battery power is 3.75 kW with a relatively high standard deviation of 7.60 kW

and a mode of 8.5 kW as can be see from figures 5.20a-5.20b.
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Figure 5.20.: SRZero Battery Power Output

5.1.3. Interim Conclusion

This section has demonstrated the most important short-term battery performance characteris-

tics. Depending on the power and energy requirements, safety and cost considerations as well as

design limitations, individual cells can be connected in series (S), in parallel (P) or a combina-

tion of both. Accordingly, the total voltage, capacity, and power levels can be adjusted. More

detailed battery characteristics can be observed by looking at steady and dynamic discharge

behaviour separately.

Steady discharge behaviour (V -Q curve) is usually published by the manufacturer for various

discharge (C) rates. The capacity (C) rate is a measure of the constant current, at which the cell

is discharged within one hour. Thus, for a cell rated at 100 Ah, 0.2 C is equivalent to a constant

discharge current of 20 A, while 1 C is equivalent to 100 A. Due to the capacity rate effect

high discharge rates result in a lower discharge capacity than lower discharge rates. Published

and measured discharge curves are not necessarily the same as shown by figures 5.2 and 5.3b.

Therefore, it is highly recommended to take own measurements before continuous use of the

cells. LiFePO4 cells feature a relatively high nominal voltage (3.1-3.3 V) and the voltage profile

is relatively flat with its discharge capacity Q.

While cell voltage levels vary according to its steady discharge current, open-circuit voltage

(OCV ) levels remain constant irrespective of its C-rate. Therefore, exactly one depth of dis-

charge (DOD) value can be allocated to exactly one OCV value. The state of charge is equal
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to 100 - DOD. It follows that the OCV can be described as an explicit function of SOC and

vice versa. As figure 5.5 illustrates, this function can be divided into a linear regime (100-20%

SOC ) and an exponential regime (20% SOC -end of discharge).

Dynamic battery behaviour is also dominated by the voltage response given a current request.

However, the output voltage function is not as simple as for steady discharge processes. First,

battery current requests are derived. Following a backward-forward facing quasi-steady (∆t = 1

s) modelling approach, battery currents are derived from a sample drive cycle of the SRZero. The

sample drive cycle (figure 5.7), SRZero specifications (table 3.1) and first principle assumptions

(see section 4.1) lead to torque requests at the rear left and rear right wheel respectively. The

accuracy for these values (R2 = 0.70-0.73) is relatively high given the simplicity of the model.

It turns out that torque requests are dominated by the acceleration profile (figure 5.8). There-

fore, most electric motors for EV applications are torque controlled, which in turn is a function

of pedal position. Thus, AC motor currents may be estimated using the torque constant KT .

Considering efficiency losses in both directions of power flow (i.e. during discharge from the

battery to the wheel and during recuperation from the wheel to the battery) the battery current

may be estimated. Results show that the mean measured battery current is relatively low (7.21

A = 0.07 C), but very dynamic with a standard deviation of 14.69 A. Ignoring the no-load

condition, the nominal current is 14.4 A, which is still relatively low. Maximum currents did

not exceed 3 C.

After initialising, current requests were used to determine the OCV and SOC values for the

sample drive cycle following the generic relationship established in equation 5.4. The resulting

traction voltage primarily depends upon the current request, the internal resistance and the

state of charge. Various equivalent circuit models have been applied and parametrised for this

application. The PNGV model results in the highest accuracy with a relatively high coefficient

of determination (R2 = 0.7). This may be attributed to the additional capacitative element (see

figure 2.33), which adjusts the open-circuit voltage VOC according to the current drawn. Given

the strong correlation between the terminal voltage and the open-circuit voltage and evidence

that the dynamic OCV is strongly affected by capacitative effects, it is suggested to expand

upon this. Specifically, this could involve a more sophisticated parametrisation and/or adding

more capacitative elements.
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5.2. Battery Degradation

The previous section looked at short-term battery behaviour, while this section is devoted to the

long-term effects of battery behaviour, in particular battery degradation. This section is divided

into three subsections. The first subsection analyses experimental long-term cycling data, while

the second subsection builds an analytical model based on the experimental results. The third

subsection summarises the main findings from this section.

5.2.1. Empirical Evidence of Battery Degradation

This subsection analyses empirical evidence of battery degradation on the basis of four different

examples.

Long-Term Battery Cycling of Sample SRZero Cell

Figure 5.21 shows the results of long-term battery cycling applied to one of the SRZero battery

cells. For each cycle the cell was first fully charged and then fully discharged. The exact

experimental procedure is listed in table 3.5. The figure shows a clear trend, that of diminishing

capacity with an increasing number of cycles. Capacity fade seems to be proportional to the

number of cycles, however two linear regimes can be observed. For the first 64 cycles capacity
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Figure 5.21.: Discharge Capacity as a Function of Battery Cycles for Sample SRZero Cell

fade is higher than for the remaining cycles. Applying a linear fit model to the data results in a

capacity loss of 0.05 Ah (0.05%) per cycle for the first 62 cycles and a capacity loss of 0.03 Ah

(0.03%) per cycle for the remaining 14 cycles. The total capacity fade for the 73 cycles is 3.32

Ah (3.32%).

The information from the previous figure (5.21) may also be displayed differently. Figure 5.22

shows typical voltage-capacity (V -Q) curves for the charge and discharge processes of the cycling

procedure associated with figure 5.21. Figure 5.22a on the left hand-side shows the cell voltage
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as a function of capacity for the 73 charging processes, while figure 5.22b shows the the cell

voltage as a function of capacity for the 73 discharging processes. The light blue lines indicate

the data for all 73 cycles, while the dark blue line shows the respective process during the first

cycle. The orange line shows the respective process during the 36th cycle, i.e. about halfway

during the testing procedure. The red line indicates the charging or discharging process for

the last cycle. Figure 5.22a shows a typical constant-current constant-voltage (CCCV) charging
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Figure 5.22.: Cell Voltage as a Function of Capacity During Long-Term Cycling

process. Up to 3.9 V the charging process is dominated by a constant current charge. Once that

upper limit is reached, the voltage is kept constant and a current with a continuously decreasing

magnitude is applied. This voltage plateau can be seen at the top right corner. The figure also

shows that with an increasing number of cycles the charging capacity is reduced. Up to a charge

capacity of 80 Ah, the profiles of the V -Q curves are almost identical. At charge capacities

above 80 Ah, the profiles diverge. With an increasing number of cycles higher cell voltage values

tend to be reached earlier, i.e. at lower charge capacities already.

Similar observations can be made about the discharge process in figure 5.22b. With an in-

creasing number of cycles the discharge capacity is reduced. Also, after about 80 Ah discharge

capacity cell voltages tend to drop faster with an increasing number of cycles. This hypothesis

is backed by the parametrisation of the custom model for the generic OCV vs SOC relation-

ship (equation 5.1). Figure 5.23 shows the coefficients for the generic relationship derived in

the previous section. Coefficient a, which determines the voltage at full charge (100% SOC ),

increases with the number of cycles by about 0.3%. Thus, this increase is small. Next, the

magnitude of coefficient b, which governs the linear voltage drop from 100% down to about

80% SOC, increases with the number of cycles by about 15%. It follows that the voltage drop

above 20% SOC is significantly accelerated with an increasing number of cycles. Coefficient c,

which regulates the vertical shift of the exponential voltage drop at low SOC values, remains

relatively level with the number of cycles. However, coefficient d, which controls the slope of the
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Figure 5.23.: Coefficients for Custom Model of OCV vs. SOC Relationship

156



5. Performance & Degradation Characteristics of EV Traction Batteries

exponential decay, increases by about 5% with the number of cycles. Therefore, both voltage

drops during the linear and exponential discharge regime accelerate with the number of cycles.

Consequently, battery degradation affects both charge and discharge processes. For both

processes, capacity is reduced with an increasing number of cycles. For the charging process

above about 80% SOC the voltage increase is accelerated with an increasing number of cycles,

while during the discharge process below about 20% SOC the voltage drop is accelerated with

an increasing number of cycles. This means that the resistance of the cell is increased with

an increasing number of cycles. Because capacity fade results in the diversion of voltage levels

for a SOC range of 20%, we recommend a depth of discharge of 80%. This means that the

optimum working capacity for these cells is 1.25 (=1/0.8) times the optimum nominal capacity.

Considering a mean capacity fade of 0.045% and an expected lifetime of roughly 150-1,700 cycles

(see section 5.2.2), the required spare capacity ranges between 7-125%.

Galvanostatic Electrochemical Impedance Spectroscopy Testing

The second empirical example of battery degradation is related to galvanostatic electrochemical

impedance spectroscopy testing. The exact testing procedure is listed in table 3.6. Also, the

cycling history is shown in figure 5.4. Here, for a relatively low number of cycles (9), impedance

measurements are taken at different levels of state of charge. Figure 5.24 shows the characteristic

V -Q curves for the charge and discharge processes. Like in in figure 5.22, the voltage increase
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Figure 5.24.: Cell Voltage as a Function of Capacity During Short-Term Cycling

during the charging process (figure 5.24a) is accelerated with an increasing number of cycles.

Also, during the discharge process the voltage drop for the last cycle is fastest compared with

earlier cycles and relative to the discharge capacity. The peaks along the discharge curve present

rest periods of 30 min, during which the cell voltage is assumed to reach its equilibrium (OCV ).

The impedance spectroscopy test results shown in figure 5.25 are taken at these 20 Ah intervals.

Figure 2.32 has demonstrated the significance and also gave an interpretation of electrochem-
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Figure 5.25.: Galvanostatic Electrochemical Impedance Spectroscopy Test Results
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ical impedance spectroscopy (EIS) for batteries. Therefore, the internal resistance of the cell at

100% SOC in figure 5.25a is about 3.1 mΩ while the polarisation resistance is about 1.0 mΩ. As

explained in section 2.3.2, internal resistance refers to the series of ohmic resistance in the elec-

trolyte, in the electrodes, and in the interconnections and battery terminals. The polarisation

resistance refers to the depletion of reactants (electrons and ions) leading to a voltage drop.

Figure 5.26 shows both resistances as a function of battery cycles and SOC for the sample

SRZero cell based on the results from figure 5.25. As expected, the internal resistance increases

with the number of cycles, but not significantly (1.08% for all nine cycles; 0.13% per cycle). On

average, the internal resistance increases by 4.76 µΩ per cycle. Thus, for the SRZero battery

pack with 164 cells in series this would mean an increase of 0.78 mΩ per cycle. Also, internal

resistance values remain relatively constant with different levels of state of charge as can be seen

from figure 5.26a.
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Figure 5.26.: Resistance Values as a Function of Battery Cycles for Sample SRZero Cell

Polarisation resistance (figure 5.26b) in contrast increases significantly with the number of

cycles (20.5% for all nine cycles; 2.44% per cycle). This compares to an average capacity fade of

0.06% per cycle, i.e. slightly higher than in the previous example. On average, the polarisation

resistance increases by 14.74 mΩ per cycle. This means that for the SRZero battery pack the

polarisation resistance would increase by as much as 2.42 Ω per cycle if cycled under the same

conditions. The polarisation resistance also shows a second trend. As expected, the polarisation

resistance increases with a decreasing state of charge. Thus, polarisation resistance is highest,

when the cell is almost ’empty’. Internal resistance values on average are more than three times

as large as polarisation resistances.

Long-Term Battery Cycling of Low-Capacity Cell at Low DOD (20%)

A third example of capacity fade is illustrated in figure 5.27. Here, the cell is a low-capacity

(2.3 Ah) A123 26650 cylindrical (i.e. 26 mm diameter× 65 mm length) cell. The data was
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Figure 5.27.: Discharge Capacity as a Function of Battery Cycles for Low-Capacity Cell

kindly provided by Dr. Vladmir Yufit, research associate at Imperial College’s Earth Science

& Engineering Department. Again, the figure clearly shows the effect of capacity fade. The

number of tested cycles (1,793) is significantly larger than in the previous examples, however

the cell has not been discharged completely like in the previous examples. For this particular

test, a depth of discharge of 20% was applied. The maximum discharge capacity was determined

by applying a full discharge followed by a full charge for every 11th cycle.

Four regions with distinct linear capacity fade can be identified. The first region, from the

beginning up to around 900 cycles, has a decay coefficient of 6.9E-5 Ah per cycle. The second

regime, from around 900 cycles up to 1,300 cycles, the factor is reduced to 5.7E-5 Ah per cycle.

During the third region, from 1,300 cycles up to 1,500 cycles, the decay coefficient is further

reduced to 1.1E-5 Ah per cycle. During the last regime, from 1,500 cycles to the end the decay

coefficient rises again to 2.2E-5 Ah per cycle when modelled linearly. Thus, for this example the

capacity fades between 0.05-0.3‱ per cycle, which is 1-2 orders of magnitude lower compared

with the capacity fade observed at the previous two examples.

Long-Term Battery Cycling with Dynamic Discharge Currents

The last empirical example of capacity fade refers to the long-term battery cycling of the SRZero

cells during the test drive along the Pan-American Highway. In this example, discharge currents

are no longer steady like in the previous examples, but highly dynamic (see figure 5.15a). In

addition, charge capacities as well discharge capacities varied markedly as figure 5.28 points

out. The figure shows the SOC range calculated on the basis of equation 5.4 for each of the

87 cycles. The first discharge (analysed in detail in subsection 5.1.2) is very short compared

to other discharges. The mean ∆SOC is 53.37% with a relatively high standard deviation of

32.07%.

Figure 5.29 shows the characteristic V -Q curves for the 87 cycles of the Racing Green En-
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Figure 5.28.: Initial and Final SOC Values Individual Cycles along SRZero Trip

durance trip. Light blue lines highlight all cycles. Dark blue lines show an early cycle, orange

lines show a cycle approximately half way between all all cycles and red lines show a cycle to-

wards the end. The total battery statistics from the Racing Green Endurance Trip are listed

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
5 0 0

5 2 5

5 5 0

5 7 5

6 0 0

Capa ci ty [Ah]

V
o
lt
a
g
e
[V

]

C yc l es 1 -8 7
Cycl e 1 3
Cycl e 3 6
Cycl e 8 7

(a) Charge

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
4 0 0

4 5 0

5 0 0

5 5 0

6 0 0

Capa ci ty [Ah]

V
o
lt
a
g
e
[V

]

C y cl es 1 -8 7
Cycl e 5
Cycl e 3 4
Cycl e 8 4

(b) Discharge

Figure 5.29.: Traction Voltage as a Function of Capacity for SRZero Battery Pack

in appendix F. When analysing all cycles in detail no clear trend with an increasing number of

cycles can be observed. This means that both the dynamic character of the discharge current

as well as the varying discharge capacities result in a much more complex environment in order

to determine capacity fade compared with the previous examples, where the discharge current

was steady.
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5.2.2. Empirical Modelling of Battery Degradation

The previous subsections have led to the conclusion that steady battery behaviour (I -V charac-

teristics) is relatively easy to model and simulate, while dynamic battery behaviour is markedly

more complicated to model. The same applies to the modelling of capacity fade for varying

charge/discharge magnitudes. This subsection proposes the use of the rainflow-counting algo-

rithm in order to model capacity fade for varying charge/discharge magnitudes.

Boundary Conditions

Here, the main motivation for studying the effects of battery degradation and in particular those

of capacity fade is to be able to predict the required spare capacity necessary at the beginning

of an EV’s lifetime. Figure 5.1 illustrates how the spare capacity diminishes with time and use

due to capacity fade.

First, the terms ’time’ and ’use’ need to be defined. The life time of a passenger vehicle in

general is a function of its design, its mileage, its periodic maintenance, its handling and its

natural environment. Therefore, life times of passenger vehicles can vary considerably, even

those of the same make and model. However, there are relatively stable indicators for the

minimum lifetime requirements of passenger vehicles such as warranties and annual mileages.

In the European Union (EU), car manufacturers are legally bound to offer warranties for at

least two years for their new cars. Typical warranties, which cover wear and tear for passenger

cars, range between three to eight years. Some warranties are also defined in terms of mileage,

ranging between 100,000-150,000 km. Obviously, these numbers are only minimum reference

values. Figure 5.30 shows annual mileage ranges and the corresponding relative share of all

annual mileages in Germany and the UK. The data was retrieved from the travel surveys intro-

duced in chapter 3. For the UK, the data was only available in terms of miles, which leads to

a different scale compared with Germany. Figure 5.30a shows that 98% of annual mileages are
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Figure 5.30.: Annual Mileages in Germany and the UK
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below 50,000 km and 88% of annual mileages are below 25,000 km in Germany. Most drivers

(63%) cover less than 15,000 km per year. The mean annual mileage in Germany is 14,500 km.

In the UK (see figure 5.30b), more than 96% of annual mileages are below 34,000 km, while

almost 89% of annual mileages are below 25,000 km. The mean annual mileage in the UK is

14,000 km. Annual mileages in Germany and the UK are therefore very similar.

Assuming an annual mileage of 15,000-25,000 km and a lifespan of 7-10 years, the total vehicle

mileage ranges between 105,000-250,000 km. This figure is in line with industry figures [13].

Based on these total vehicle mileages and the daily ranges from the previous chapter, table 5.4

lists the total battery cycle requirements. The third and fourth column also distinguish between

full and half discharges. This accounts for drivers who choose to recharge their EV although the

SOC is still around 50%.

Table 5.4.: Battery Cycle Requirements1

Country Range [km] Number of Cycles [-]
Full Discharge Half Discharge

UK 150-400 250-1,667 500-3,333
Germany 150-575 174-1,667 348-3,333

US 200-700 142-1,250 284-2,500

Consequently, the total number of consecutive charge/discharge cycles for EVs can vary be-

tween around 150-1,700 full cycles, where the numbers have been rounded.

Rainflow-Counting Algorithm

This subsection introduces the rainflow-counting algorithm and applies it to the highly dynamic

and non-uniform battery cycling data of the SRZero.

The rainflow-counting algorithm is mainly used in the context of material science in order to

reduce a spectrum of varying stress into a set of simple stress reversals. The problem is that for

most of the time, (tensile) peaks have a different magnitude of stress than the corresponding

(compressive) troughs (see figure 5.31). Thus, consecutive peaks and troughs of a complex stress

history do not constitute a full cycle. In 1968 Matsuishi & Endo [157] developed an algorithm,

which ’allows the application of Miner’s rule in order to assess the fatigue life of a structure

subject to complex loading ’ [158]. Miner’s rule, also called the Palmgren-Miner linear damage

hypothesis, predicts the number of cycles to failure given k different stress magnitudes in a

spectrum Si(1 ≤ i ≤ k) each contributing ni(Si) cycles.

k∑
i=1

ni
Ni

= C (5.11)

1based on a total mileage of 100,000-250,000 km
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Ni(Si) is the number of cycles to failure of a constant stress reversal Si and C is a constant,

usually assumed to be 1. Figure 5.31 shows a random stress fluctuation with time. It is important

to note that only (tensile) peaks and (compressive) troughs are shown. Intermediate values are

not relevant for the rainflow-counting algorithm. Then, the time history of stress may be rotated

clockwise by 90 degrees. The results are shown in figure 5.32. Now, each tensile peak (numbered

Time 

St
re

ss
  

Figure 5.31.: Random Stress Fluctuation with Time

numerically) may be thought of as a water source, from which water drops down the pagoda

(numbered alphanumerically). A pagoda is a tiered tower, most frequently found in the Far

East. There are three possibilities for each single rainflow to reach the the end of a half-cycle:

• It flows opposite a tensile peak of greater magnitude (1, 2)

• It merges with a flow that started at an earlier tensile peak (7)

• It directly reaches the end of the time history (4)

The magnitude of each half cycle is the difference along the horizontal axis between the initial

value and the final value from figure 5.32. The same procedure is applied to compressive troughs

in order to find the corresponding other half cycles. The resulting full and half cycles are shown

in figure 5.33. The figure shows how consecutive and non-consecutive peaks and troughs are

connected in order to build equivalent full cycles. Both amplitude and period of these equivalent

cycles may vary significantly.

The idea of reducing a spectrum of varying stress into a set of simple stress reversals may also

be applied to varying charge/discharge magnitudes of batteries. Like for a complex time history

of stress, consecutive charge and discharge magnitudes are not equal in magnitude for most of

the time. Therefore, consecutive charge and discharge magnitudes of a typical ’real-life cycling’

history do not constitute full cycles according to the strictest interpretation of ’full cycle’. Figure
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5.34 shows the magnitudes of both capacity and energy extreme values from the SRZero test

drive. Positive values refer to discharge and negative values refer to charge values. Blue stars

refer to energy values, while red stars refer to capacity values.
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Figure 5.34.: SRZero Energy and Capacity Extreme Values

Applying the rainflow-counting algorithm to the capacity values from figure 5.34 gives the

results in table 5.5. The rainflow-counting algorithm used for this work is based on the work

by [160]. The algorithm can be thought of assessing what proportion of capacity fade is caused

by charging/discharging at each magnitude and then forming a linear combination of their

aggregate. Thus, the rainflow-counting algorithm creates equivalent cycles for non-uniform

charge/discharge magnitudes. Equivalent cycles may be equal to or longer than one measured

cycle. Also, residual half cycles are possible if no corresponding equivalent half cycle is found.

Corresponding half cycles need to have the same amplitude, but opposite directions.

The table counts 91 individual half or full cycles, which together account for 30 equivalent

uniform cycles at full capacity. The mean amplitude of the equivalent cycles is 54.78 Ah (i.e.

54.78% SOC ) with a relatively high standard deviation of 28.64 Ah. The maximum equivalent

cycle amplitude is 101.95 Ah and the minimum is 2.40 Ah. The mean of the equivalent cycles,

which is expected to be around zero, is -0.4616 Ah. This means that on average charge capacities

are higher than discharge capacities. The reason for this is the Coulombic efficiency of the

battery. The mean of the equivalent cycles has a standard deviation of 10.66 Ah. More than

90% of the counted equivalent cycles are full cycles (1.0) as shown in the fourth column. There

are only nine half cycles (0.5) out of the 91 total cycles. The start times of each equivalent cycle

are listed in the fifth column. The last column shows the cycle period. Most equivalent cycles

(70%) have a period of one, i.e. they are made up of exactly one charge and one discharge per

real cycle. The longest equivalent cycle has a period of 119 real cycles, which means that each

of the real charge/discharge cycles contributes exactly 1⁄119 to this equivalent cycle.

The information from table 5.5 may also displayed graphically. Figure 5.35 shows the am-
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Table 5.5.: Rainflow-Counting Equivalent Cycles of SRZero Charge/Discharge History

Counter
Amplitude Mean Full or Half Start Time Cycle

[Ah] [Ah] Cycle [-] [-] Period [-]

1 6.22 -2.44 0.5 0.0 1
2 16.30 7.64 0.5 0.5 1
3 4.33 3.26 1.0 2.0 1
4 45.17 -21.23 0.5 1.0 1
5 68.75 2.36 0.5 1.5 3
6 85.36 -14.26 0.5 3.0 1
7 27.46 19.77 1.0 4.5 1
8 30.14 10.16 1.0 6.0 1
9 60.81 17.44 1.0 5.5 3
10 36.19 -36.16 1.0 7.5 1
11 7.18 5.07 1.0 9.0 1
12 39.67 -0.33 1.0 10.0 1
13 7.06 -0.54 1.0 12.0 1
14 33.74 20.92 1.0 11.5 3
15 66.39 -5.95 1.0 8.5 5
16 97.69 -0.14 1.0 4.0 19
17 12.12 -11.45 1.0 15.0 1
18 51.26 5.54 1.0 16.5 1
19 66.71 -7.60 1.0 18.0 1
20 83.69 4.86 1.0 16.0 3
21 87.96 8.18 1.0 14.5 9
22 2.52 -1.82 1.0 22.0 1
23 41.13 -11.61 1.0 21.5 3
24 56.39 -2.41 1.0 21.0 5
25 4.45 -3.93 1.0 25.0 1
26 65.20 5.60 1.0 24.0 1
27 79.86 5.27 1.0 20.0 1
28 33.89 32.65 1.0 26.5 1
29 73.92 6.69 1.0 27.5 1
30 17.72 -0.39 1.0 30.5 1
31 43.21 8.44 1.0 29.5 1
32 24.35 -16.96 1.0 32.0 1
33 76.47 7.87 1.0 29.0 5
34 83.41 5.61 1.0 26.0 5
35 12.14 -11.28 1.0 33.5 1
36 55.98 7.94 1.0 34.5 1
37 8.47 -6.61 1.0 39.0 1
38 39.31 5.25 1.0 38.0 1
39 55.10 -1.43 1.0 40.0 1
40 41.18 6.80 1.0 41.5 1
41 60.30 -2.59 1.0 41.0 3
42 18.08 -7.63 1.0 44.0 1
43 63.85 3.54 1.0 43.5 3
44 67.86 -0.39 1.0 43.0 5
45 74.40 0.08 1.0 37.0 1
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Counter
Amplitude Mean Full or Half Start Time Cycle

[Ah] [Ah] Cycle [-] [-] Period [-]

46 78.89 0.13 1.0 36.0 1
47 14.62 -9.93 1.0 46.5 1
48 38.45 -4.73 1.0 48.0 1
49 50.33 -1.81 1.0 49.0 1
50 78.16 8.99 1.0 46.0 3
51 83.99 5.15 1.0 33.0 5
52 3.85 -3.24 1.0 50.5 1
53 94.65 4.09 1.0 19.5 61
54 17.35 -3.72 1.0 53.0 1
55 64.46 -2.33 1.0 55.0 1
56 69.10 -0.32 1.0 54.0 1
57 90.74 1.82 1.0 52.0 1
58 58.81 -9.33 1.0 56.5 1
59 27.25 7.65 1.0 59.0 1
60 58.18 -1.66 1.0 58.0 1
61 61.11 1.56 1.0 60.0 1
62 80.99 6.75 1.0 57.5 7
63 86.09 5.07 1.0 61.5 1
64 26.87 -13.30 1.0 63.5 1
65 70.53 -5.03 1.0 64.5 1
66 20.65 4.24 1.0 66.5 1
67 37.99 -34.30 1.0 68.0 1
68 59.98 -22.29 1.0 66.0 3
69 72.44 4.19 1.0 69.0 1
70 83.04 -2.96 1.0 63.0 5
71 80.97 1.69 1.0 71.5 1
72 82.78 0.98 1.0 71.0 3
73 85.33 -1.54 1.0 70.0 1
74 91.06 1.42 1.0 62.5 21
75 92.57 0.40 1.0 51.5 9
76 53.35 0.62 1.0 74.0 1
77 61.48 1.02 1.0 75.0 1
78 64.33 2.44 1.0 77.0 1
79 56.64 11.52 1.0 78.0 1
80 25.95 0.42 1.0 80.0 1
81 73.16 0.47 1.0 81.0 1
82 78.10 0.36 1.0 79.0 1
83 78.69 0.62 1.0 82.0 1
84 86.60 3.01 1.0 76.0 1
85 2.40 -0.08 1.0 84.5 1
86 82.95 -2.06 1.0 83.5 1
87 43.81 -42.30 1.0 85.5 1
88 101.95 2.33 0.5 3.5 21
89 99.05 5.23 0.5 14.0 119
90 93.35 -0.46 0.5 73.5 19
91 89.50 3.39 0.5 83.0 7
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Figure 5.35.: Rainflow-Counting Histogram of SRZero Charge/Discharge History

plitudes as well as mean values for the equivalent cycles calculated with the rainflow-counting

algorithm.

The results of the rainflow-counting algorithm may then be taken as input for a simple and

generic empirical capacity fade function similar to equation 5.11. The previous subsection (figure

5.21) has demonstrated that 73 reference full charge/discharge cycles led to a total capacity fade

of 3.11%. The cumulative capacity for these 73 cycles is 8,094 Ah. It follows that the cell has

experienced 8,094 reference ’Amp-Hour-Cycles’, which led to a capacity fade of 3.11%. The

proportion of equivalent ’Amp-Hour-Cycles’ can be calculated by the following equation:∑
(iCAmp) /T

NCAmp
= C (5.12)

One equivalent ’Amp-Hour-Cycle’ is equal to the product of its magnitude (2nd column of table

5.5) with the identifier i (4th column) divided by its period T. The sum of all equivalent cycles

is then divided by the reference ’Amp-Hour-Cycles’. The result shows that despite more charges

and discharges during the SRZero test drive (87) compared with the number charges/discharges

during lab testing (73), the number of equivalent ’Amp-Hour-Cycles’ for the test drive (3,187)

is actually only about 39% of the reference ’Amp-Hour-Cycles’ (8,094). Thus, assuming linear

capacity fade, the capacity fade for the SRZero battery cells during the test drive was about

0.39*3.11 = 1.21%.

5.2.3. Interim Conclusion

This section has analysed battery degradation, both empirically and analytically.

Subsection 5.2.1 brought together empirical evidence of battery degradation from four dif-

ferent examples. First, the lab based testing of a sample SRZero cell undergoing 73 full

charge/discharge cycles has shown a linear capacity fade of 0.03-0.05% per cycle. The ca-

pacity fade is most visible by showing the available discharge capacity as a function of time

169



5. Performance & Degradation Characteristics of EV Traction Batteries

or by plotting the characteristic V -Q curves. Voltage drops during the linear and exponential

discharge regime accelerate with the number of cycles.

Second, impedance spectroscopy testing of a sample SRZero cell in a lab environment cycling

at full capacity has shown that internal resistance as well as polarisation resistance increase with

the number of cycles. Polarisation resistance refers to the increasing resistance with decreasing

SOC, while internal resistance refers to the series of ohmic resistance in the electrolyte, in the

electrode, and in the interconnections and battery terminals. Polarisation resistance (≈1.0 mΩ

per cell), which is about three times smaller than internal resistance, increases markedly with

the number of cycles (2.44% per cycle). In contrast, the larger internal resistance (≈3.1 mΩ per

cell) only increases by about 0.13% per cycle.

Third, long term cycling of a low-capacity cylindrical cell at 20% depth of discharge has

shown a capacity fade of 0.05-0.3‱ per cycle, i.e. 1-2 orders of magnitude lower compared

with SRZero cells cycled at full capacity.

Fourth, long-term cycling of SRZero battery cells at highly dynamic discharge currents and

non-uniform charge/discharge magnitudes has shown that capacity fade is very complex to

evaluate without further assumptions.

The second subsection (5.2.2) looked at battery degradation from an analytical perspec-

tive. First, boundary conditions were established. Depending on the design, periodic main-

tenance, its handling, annual mileage and the natural environment typical total vehicle mileages

range between 100,000-250,000 km. Subject to range, this translates into approximately 150-

1,700 full capacity cycles for an EV. Assuming half capacity cycles, the number of consecutive

charge/discharge processes is doubled.

Second, the rainflow-counting algorithm is introduced as a means of working out equivalent

cycles. In contrast to a lab environment, charge/discharge capacities of ’real’ EVs vary signifi-

cantly between ’cycles’. The problem is that these consecutive and non-uniform charge/discharge

capacities cannot be considered equal cycles. The rainflow-counting algorithm, which is most

often used in stress analysis, offers one way of assessing what proportion of capacity fade is

caused by charging/discharging at each capacity level and then forming a linear combination of

their aggregate.

Applying the algorithm to the capacity history of the SRZero reveals that 87 consecutive non-

uniform charge/discharge processes only correspond to about 30 equivalent uniform cycles at full

capacity. This means that the number of equivalent cycles is markedly lower than the number

of cumulative charge/discharge processes during ’real operation’. As figure 5.34 points out,

some charge/discharge processes have an extremely low magnitude compared with the nominal

capacity of the cell. Therefore, simply counting battery cycles as the cumulative number of

charge/discharge processes is misleading. Following this logic, intermittent charging processes

from regenerative braking and the subsequent discharge process should theoretically also be

counted as a cycle, but it is not. In contrast, the rainflow-counting algorithm, which only

depends upon local maximum and minimum capacity values, proportionately takes into account
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these very low amplitude cycles. Therefore, battery cycle requirements should be calculated

according to the equivalent cycle number rather than the cumulative number of charge/discharge

processes.

Assuming a linear capacity fade of 0.03-0.05% per cycle for the SRZero cells, the capacity

would be reduced to 80% after 1,100-650 cycles already. An EV traction is considered dead once

its remaining capacity drops below 80% of its nominal capacity. This means a spare capacity of

5-134% is required in order satisfy range requirements after 150-1,700 full capacity cycles.
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5.3. Discussion & Summary

This chapter has analysed battery performance and degradation characteristics of EV traction

batteries. The first section (5.1) looked at battery performance characteristics.

Depending on the power and energy requirements, safety and cost considerations as well as

design limitations, individual cells can be connected in series (S), in parallel (P) or a combination

of both. Accordingly, the total voltage, capacity, and power levels can be adjusted. More detailed

battery characteristics can be observed by looking at steady and dynamic discharge behaviour

separately.

Steady discharge behaviour can be best described by V -Q curves. Due to the capacity rate

effect (figure 5.2) high discharge rates result in a lower discharge capacity than lower discharge

rates. Published and measured discharge curves are not necessarily the same as shown by figure

5.2 and 5.3b. Therefore, it is highly recommended to take measurements before the continuous

use of the cells.

The open-circuit voltage (OCV ) presents an independent indicator of state of charge (SOC ).

Therefore, SOC values may be determined given reliable OCV values and vice versa. Equations

5.1-5.5 illustrate the corresponding dependencies. Figure 5.5 shows that the OCV vs SOC

function can be divided into a linear regime (100-20% SOC ) and an exponential regime (20%

SOC - end of discharge).

Dynamic battery behaviour is also controlled by the voltage response given a current re-

quest. However, it is a more complex function compared with that of steady currents. Following

a backward-forward facing quasi-steady (∆t = 1 s) modelling approach, battery currents are

derived given a sample drive cycle of the SRZero. The sample drive (figure 5.7), SRZero spec-

ifications (table 3.1) and first principle assumptions (see section 4.1.1) lead to torque requests

at the rear wheels. Torque requests are dominated by the acceleration profile. Therefore, most

electric motors for EV applications are torque controlled, which in turn is a function of pedal

position. It turns out that the mean requested battery current is relatively low (7.21 A = 0.07

C). However, the battery current is highly dynamic. The resulting traction voltage primarily

depends upon the current request, the internal resistance and the state of charge. Various equiv-

alent circuit models have been applied and parametrised for this application. The PNGV model

results in the highest accuracy with a relatively high coefficient of determination.

The second section (5.2) has analysed battery degradation, both empirically and analytically.

It has gathered empirical evidence of battery degradation from four different examples. The first

example refers to lab based testing of a sample SRZero cell undergoing 73 full charge/discharge

cycles. This experiment has shown a linear capacity fade of 0.03-0.05% per cycle. Plotting

the available discharge capacity as a function of time and/or charting the characteristic V -Q

curves allows for the best visual interpretation. Voltage drops during the linear and exponential

discharge regime accelerate with the number of cycles.

The second experiment relates to impedance spectroscopy testing of a sample SRZero cell in a
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lab environment cycling at full capacity. The results have shown that internal resistance as well

as polarisation resistance increase with the number of cycles. Polarisation resistance refers to

the increasing resistance with a decreasing amount of reactants, i.e. a decreasing SOC. Internal

resistance in contrast refers to the series of ohmic resistance in the electrolyte, in the electrode,

and in the interconnections and battery terminals. Polarisation resistance (≈1.0 mΩ per cell),

which is about three times smaller than internal resistance, increases markedly with the number

of cycles (2.44% per cycle). In contrast, the larger internal resistance (≈3.1 mΩ per cell) only

increases by about 0.13% per cycle.

The third experiment is concerned with the long term cycling of a low-capacity cylindrical

cell at 20% depth of discharge. The results have shown a capacity fade of 0.05-0.3‱ per cycle,

i.e. 1-2 orders of magnitude lower compared with SRZero cells cycled at full capacity.

The last experiment is about the long-term cycling of SRZero battery cells at highly dynamic

discharge currents and non-uniform charge/discharge magnitudes. It has shown that capacity

fade is very complex to evaluate without further assumptions.

The second subsection (5.2.2) looked at battery degradation from an analytical perspective.

First, boundary conditions were established. Depending on the design, periodic maintenance,

its handling, annual mileage and the natural environment typical total vehicle mileages range

between 100,000-250,000 km. Subject to range, this translates into approximately 150-1,700 full

capacity cycles for an EV. For half capacity cycles, the number of consecutive charge/discharge

processes is doubled.

Second, the rainflow-counting algorithm is introduced as a means of working out equivalent

cycles. In contrast to a lab environment, charge/discharge capacities of ’real’ EVs vary signifi-

cantly between ’cycles’. The problem is that these consecutive and non-uniform charge/discharge

capacities cannot be considered equal cycles. The rainflow-counting algorithm, which is most

often used in stress analysis, offers one way of assessing what proportion of capacity fade is

caused by charging/discharging at each capacity level and then forming a linear combination of

their aggregate.

Applying the rainflow-counting algorithm to the capacity history of the SRZero reveals that

87 consecutive non-uniform charge/discharge processes only correspond to about 30 equivalent

uniform cycles at full capacity. This means that the number of equivalent cycles is markedly

lower than the number of cumulative charge/discharge processes during ’real operation’. As

figure 5.34 points out, some charge/discharge processes have an extremely low magnitude com-

pared with the nominal capacity of the cell. Therefore, simply counting battery cycles as the

cumulative number of charge/discharge processes is misleading. Following this logic, intermit-

tent charging processes from regenerative braking and the subsequent discharge process should

theoretically also be counted as a cycle, but they are not. In contrast, the rainflow-counting

algorithm, which only depends upon local maximum and minimum capacity values, proportion-

ately takes into account these very low amplitude cycles. Therefore, battery cycle requirements

should be calculated using the equivalent cycle number rather than the cumulative number of
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charge/discharge processes.

Assuming a linear capacity fade of 0.03-0.05% per cycle for the SRZero cells, the capacity

would be reduced to 80% after 1,100-650 cycles already. An EV traction battery is considered

’dead’ once its remaining capacity drops below 80% of its nominal capacity. This means an

initial spare capacity of 5-134% is required in order satisfy range requirements after 150-1,700

full capacity cycles.
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This work has shown that the optimum battery capacity for electric vehicles taking into account

battery degradation is about 1.25-1.75 times the optimum nominal battery capacity. Chapter

4 has derived optimum nominal battery capacities for different electric vehicle classes, while

chapter 5 has derived the additional capacity required in order to account for battery degrada-

tion. The connection between the two chapters is best explained by figure 5.1. The findings of

both chapters are summarised, connected and discussed in the following two sections (6.1-6.2).

Section 6.3 deals with the limitations of this work.

6.1. Optimum Nominal Battery Capacity

The optimum nominal battery capacity mainly depends upon two factors: mean driving force

F̄d and range d. These are discussed in turn in the following two subsections.

6.1.1. Mean Driving Force

The mean driving force, which is the total energy consumption normalised by the distance

covered, can vary significantly due to a number of factors.

Vehicle Parameters and Representative Vehicle Classes

First, the mean driving force primarily depends upon vehicle parameters such as the vehicle’s

mass mv, the aerodynamic drag coefficient Cd, the vehicle’s frontal area Af , the rolling resistance

coefficient Cr, the mean auxiliary power P̄aux and losses. Table 6.1 summarises the main vehicle

parameters for five representative vehicle classes.

Table 6.1.: Vehicle Classes and Representative Parameter Values

Mini Car Small Car Medium Car Large Car SUV

Euro Car Segment A B C D J
mv [kg] 750 1,000 1,200 1,500 2,000
CdAf [m2] 0.3 0.6 0.7 0.8 1.2
Cr [-] 0.008 0.01 0.011 0.012 0.013
P̄aux [W] 500 750 1,000 2,000 3,000
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Operating Modes

Second, the magnitude of the mean driving force depends on whether the vehicle is in traction

mode or not. During traction, when the driver puts down his/her foot on the accelerator, the

motors apply a propulsion force to the wheels. Thus, the mean driving force of a vehicle is

reduced to its auxiliary load only, when the vehicle is not in traction mode. The traction ratio

TR as a measure of the time spent in traction mode relative to driving time is derived for dynamic

speed conditions and varying road grades (equations 4.9-4.11). In practice, traction ratios range

between 55-75%. All else being equal, the mean driving force almost linearly depends upon TR

(see table 4.13).

Speed and Acceleration

Third, the mean driving force is influenced by the driving parameters speed v(t) and acceleration

a(t). For steady speeds, the energy consumption per unit of distance is smallest at low medium

speeds (≈40 km/h) and ranges between 35 Wh/km for mini cars and 170 Wh/km for SUVs. At

medium steady speeds (20-100 km/h) the mean driving force does not change markedly with

speed, which can be observed in figure 4.6.

However, at very low speeds (<20 km/h) driving force increases exponentially with decreasing

speed due to the mean auxiliary power P̄aux. At high speeds (>100 km/h) the mean driving

force increases quadratically with speed due to aerodynamic drag. Owing to road speed limits,

congestion and the assumption that most car journeys are relatively short (i.e. <50 km), we

expect the variation of the mean driving force to be relatively small between different journeys.

Dynamic driving involves a constant change of the vehicle’s inertia. Nominal accelerations don’t

exceed 2 m/s2.

Regenerative Braking

Fourth, the mean driving force of an EV heavily depends upon its ability to recuperate kinetic

energy. The lighter the vehicle, the greater the relative effect of regenerative braking. The

relative recuperation gain Gr introduced with equation 4.12 applied to various drive cycles

across different vehicle classes proves this point (see table 4.10). Furthermore, a sensitivity

analysis (equations 4.13-4.17) has shown that for a vehicle with ideal recuperation the impact

of vehicle mass on the mean driving force is greatly reduced compared to that of a vehicle

without a regenerative braking system. Thus, a regenerative braking system reduces both the

distance-specific energy consumption as well as its dependence on the vehicle’s mass.

Journey Distance

Fifth, the journey distance also affects the mean driving force. There is an empirical correlation

that with longer journey distances, distance-specific energy consumption tends be smaller (see

figure 4.15).
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Driving Behaviour

Sixth, the individual driving style has profound implications on the mean driving force. As

evidenced by table 4.13 the mean driving force can vary up to 23% between different drivers

who follow exactly the same route at comparable traffic conditions and driving another vehicle

of exactly the same make and model.

Interim Conclusion

Subsection 4.1.2 about ’real’ driving forces has broadly confirmed the assumptions made in

the subsection about theoretical driving forces 4.1.1. These are corrobated by the published

literature about the energy consumption of electric vehicles ([147]-[149]). The resulting reference

values of table 6.2 are rounded values based on table 4.9, an overall vehicle efficiency of 90%

and a regenerative braking efficiency of 50%.

Table 6.2.: Mean Driving Forces for Different Vehicle Categories

Driving Force [Wh/km]
Mini Car Small Car Medium Car Large Car SUV

Analytical1 61.81-74.61 103.15-119.01 129.25-148.04 185.89-210.24 272.72-304.56
RGE SRZero n/a n/a 95.47-310.73 n/a n/a
2010 FCC 146.18 125.19-146.94 124.32-157.66 n/a n/a
2011 FCC 68.63-166.72 105.79-119.51 86.95-134.12 n/a n/a
2012 FCC 53.85-62.33 128.81 140.25-143.01 n/a n/a

Reference Values 70.00 110.00 140.00 200.00 290.00

6.1.2. Range

The subsections on range requirements for electric vehicles (4.2.1-4.2.4) have demonstrated that

the distance, which a vehicle can drive without having to refuel or to recharge, is an important

factor. Especially for electric vehicles range is one of the key performance characteristics as

charging it up may take several hours. Despite the fact that an overwhelming majority of

individual car journeys in the UK (91%) are relatively short (i.e. <30 km), range requirements

for electric vehicles are significantly more challenging than this.

First, when in use, a car is typically driven three to four times a day for separate individual

journeys. It is assumed that an EV is typically charged at night and discharged (i.e. driven)

during the day. Second, the results have also shown that range requirements can be assessed

both in terms of the number of trips and in terms of the total distance. The first focusses on the

number of times the daily range is within a specific range band (e.g. 0-25 km, 25-50 km, etc.).

This is also referred to as frequency distribution or histogram analysis. Based on the number of

1ranging from full recuperation to no recuperation with an energy efficiency of 90% (see table 4.9)
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trips, a range of 150 km is required to cover more than 95% of all daily distances with a car in

the UK and Germany. In the US, a range of 200 km satisfies the same requirement. The second

assessment of range focusses on the share of the cumulative distance driven. There may be a

high number of short distances driven in one day, but their cumulative distance may be shorter

than one single long trip. Consequently, range requirements from a total distance perspective

are higher than by just looking at the number of trips. For the UK, a range of 400 km satisfies

the 95th percentile of the cumulative distance driven. In Germany, a range of 575 km and in the

US a range of 700 km meet the same target.

6.1.3. Conclusion

Based on the mean driving forces (see table 6.2) and range requirements for the UK, Germany

and the US, initial battery capacity requirements may be established. Battery capacity require-

ments are higher from a total distance perspective than from a number of trips perspective.

Obviously, the bigger the battery capacity (i.e. those satisfying the 95% of the total distance

requirement), the longer the range.

However, from an emission abatement perspective smaller battery capacities (i.e. those sat-

isfying the 95% of all trips requirement) can be very effective as well. Because short trips (<30

km) involve more frequent stops and a higher percentage of operation at low efficiency, fuel

efficiency for short trips is usually lower than for long trips. Figure 4.15 also gives empirical

evidence for this correlation. Then, due to the linear relationship between fuel consumption

and CO2 emissions (see equation 1.1), emissions per unit of distance tend to be higher for short

trips. Therefore, the CO2 abatement potential for EVs with a relatively small battery capacity

is already relatively high.

Table 6.3 concludes this section by listing the optimum nominal battery capacity requirements

for EVs according to driving force and range requirements in different countries. Battery capacity

requirements range from 11 kWh for a mini car in the UK or Germany satisfying a 150 km range

up to 203 kWh for a SUV in the US satisfying a 700 km range. As a reference, the energy content

of a full fuel tank for a medium-sized ICEV (50 litres of petrol) is about 480 kWh.

Table 6.3.: EV Battery Capacity Requirements According to Driving Force and Range

Country 95% Range [km] Battery Capacity [kWh]
Trips Dist. Mini Car Small Car Medium Car Large Car SUV

UK 150 400 11-28 17-44 21-56 30-80 44-116
Germany 150 575 11-40 17-63 21-81 30-115 44-167

US 200 700 14-49 22-77 28-98 40-140 58-203
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6.2. Battery Performance & Degradation

This section summarises the fifth chapter on battery performance and degradation, which aims

at characterising the red area in figure 5.1. In order to determine the long-term behaviour

of an EV battery pack, an understanding of the short-term battery behaviour at cell level is

essential. Thus, this section is divided into three subsections. The first subsection is devoted to

EV battery performance, while the consecutive subsection deals with battery degradation. The

last subsection summarises this section.

6.2.1. Battery Performance

Steady discharge behaviour (V -Q curve) is usually published by the manufacturer for various

discharge (C) rates. Due to the capacity rate effect high discharge rates result in a lower

discharge capacity than lower discharge rates. Published and measured discharge curves are not

necessarily the same as shown by figures 5.2 and 5.3b. Therefore, it is highly recommended to

take measurements before continuous use of the cells.

While cell voltage levels vary according to its steady discharge current, open-circuit voltage

(OCV ) levels remain constant irrespective of its C-rate. Therefore, exactly one depth of dis-

charge (DOD) value can be allocated to exactly one OCV value. It follows that the OCV can be

described as a function of SOC and vice versa. As figure 5.5 shows, this function can be divided

into a linear regime (100-20% SOC ) and an exponential regime (20% SOC -end of discharge).

Following a backward-forward facing quasi-steady (∆t = 1 s) modelling approach, battery

dynamic currents are derived given a sample drive cycle of the SRZero. The sample drive cycle

(figure 5.7), SRZero specifications (table 3.1) and first principle assumptions (see section 4.1)

lead to torque requests at the rear left and rear right wheel respectively.

It turns out that torque requests are dominated by the acceleration profile (figure 5.8). There-

fore, most electric motors for EV applications are torque controlled, which in turn is a function of

pedal position. Thus, AC motor currents may be estimated using the torque constant KT . Con-

sidering efficiency losses in both directions of power flow the battery current may be estimated.

Results show that the mean measured battery current is relatively low (7.21 A).

After initialising, current requests were used to determine the OCV and SOC values for the

sample drive cycle following the generic relationship established in equation 5.4. The resulting

traction voltage primarily depends upon the current request, the internal resistance and the

state of charge. Various equivalent circuit models have been applied and parametrised for this

application. The PNGV model results in the highest accuracy.

6.2.2. Battery Degradation

This subsection summarises both empirical as well as analytical results of battery degradation

considerations.

179



6. Discussion

Empirical Evidence for Battery Degradation

Subsection 5.2.1 has gathered empirical evidence of battery degradation from four different ex-

amples. First, the lab based testing of a sample SRZero cell undergoing 73 full charge/discharge

cycles has shown a linear capacity fade of 0.03-0.05% per cycle. The capacity fade is most visible

by showing the available discharge capacity as a function of time or by plotting the characteristic

V -Q curves. Voltage drops during the linear and exponential discharge regime accelerate with

the number of cycles. Second, impedance spectroscopy testing of a sample SRZero cell in a lab

environment cycling at full capacity has shown that internal resistance as well as polarisation

resistance increase with the number of cycles. Polarisation resistance (≈1.0 mΩ per cell), which

is about three times smaller than internal resistance, increases markedly with the number of

cycles (2.44% per cycle). In contrast, internal resistance (≈3.1 mΩ per cell) only increases by

about 0.13% per cycle. Third, long term cycling of a low-capacity cylindrical cell at 20% depth of

discharge has shown a capacity fade of 0.05-0.3‱ per cycle, i.e. 1-2 orders of magnitude lower

compared with SRZero cells cycled at full capacity. Fourth, long-term cycling of SRZero battery

cells at highly dynamic discharge currents and non-uniform charge/discharge magnitudes has

shown that capacity fade is very complex to evaluate without further assumptions.

Battery Degradation Modelling

First, boundary conditions were established. Depending on the design, periodic maintenance,

its handling, annual mileage and the natural environment typical total vehicle mileages range

between 100,000-250,000 km. Subject to range, this translates into approximately 150-1,700 full

capacity cycles for an EV. Second, the rainflow-counting algorithm is introduced as a means of

working out equivalent cycles. In contrast to a lab environment, charge/discharge capacities of

’real’ EVs vary significantly between ’cycles’. The problem is that these consecutive and non-

uniform charge/discharge capacities cannot be considered equal cycles. The rainflow-counting

algorithm, which is most often used in stress analysis, offers one way of assessing what proportion

of capacity fade is caused by charging/discharging at each capacity level and then forming a

linear combination of their aggregate. Applying the algorithm to the capacity history of the

SRZero reveals that 87 consecutive non-uniform charge/discharge processes only correspond to

about 30 equivalent uniform cycles at full capacity. This means that the number of equivalent

cycles is markedly lower than the number of cumulative charge/discharge processes during ’real

operation’. As figure 5.34 illustrates, some charge/discharge processes have an extremely low

magnitude compared with the nominal capacity of the cell. Therefore, simply counting battery

cycles as the cumulative number of charge/discharge processes is misleading. Following this logic,

intermittent charging processes from regenerative braking and the subsequent discharge process

should theoretically also be counted as a cycle, but they are not. In contrast, the rainflow-

counting algorithm, which only depends upon local maximum and minimum capacity values,

proportionately takes into account these very low amplitude cycles. Therefore, battery cycle
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requirements should be calculated using the equivalent cycle number rather than the cumulative

number of charge/discharge processes.

Assuming a linear capacity fade of 0.03-0.05% per cycle for the SRZero cells, the capacity

would be reduced to 80% after 1,100-650 cycles already. This means a spare capacity of 5-

134% is required in order satisfy range requirements after 150-1,700 full capacity cycles. For

a battery pack discharged at a recommended depth of discharge of 80% the required spare

capacity is assumed to be up to 40% of the ratio of the optimum nominal battery capacity

and the recommended depth of discharge. Therefore, the optimum battery capacity for electric

vehicles with particular focus on battery degradation is about 1.25-1.75 times the optimum

nominal battery capacity.

6.3. Limitations

This section briefly discusses the limitations of this work. First, potential problems with some of

the assumptions made are highlighted. Second, the shortcomings associated with the validation

methods are summarised. Third, physical limitations regarding the optimum battery capacity,

namely weight and volume, are outlined. Finally, financial limitations are briefly discussed.

6.3.1. Assumptions

Section 3.1 has introduced some of the major assumptions made in this work. First, vehicle

dynamics are only assessed along the longitudinal axis, i.e. transverse vehicle dynamics such

as sideslip are ignored for this analysis. Consequently, vehicle dynamics are simplified for the

purpose of quickly assessing the mean driving force of a particular vehicle class. Still, mean

theoretical driving forces are relatively accurate when compared with empirical driving forces.

Second, vehicle as well as battery dynamics are assumed to be steady for the duration of one

second. Therefore, for simplicity reasons the so-called quasi-steady approach ignores medium

to high frequency (f >1 Hz) events. This means that highly dynamic processes, especially

electrochemical ones, are much simplified in order to develop long-term trends. The third major

assumption is linked to the previous one. This work takes a mechanical engineering viewpoint

of the battery sizing problem. Thus, electrochemical details certainly affecting the functionality

of batteries are mostly ignored or greatly simplified. Again, this work aims to describe the

long-term effects rather than the short-term ones of battery behaviour. Fourth, the terminal

voltage is assumed to be equal to the open-circuit voltage after a minimum of 30 minutes under

the no-load condition. Realistically, depending upon the discharge rate and temperature effects,

this settling time will vary.
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6.3.2. Validation Methods

There are shortcomings related to the validation techniques of this work. First, the SRZero

was designed as an endurance high performance sports car for long-distance driving. It was

not designed for ’everyday’ driving. Without space for more than two passengers, the lack of

a boot and no real auxiliaries it was also never intended for that. However, its parameters

(mv, CdAf and Cr) are very close to that of a medium-sized car. Also, its mean driving force

(131.43 Wh/km) is within the theoretical range of that of a medium-sized car with an efficiency

of 90% (129.25-148.04 Wh/km). Second, no large EV and no electric SUV competed in any

of the FCCs, against which theoretical driving force values could be compared. Third, the

FCC encourages low-energy driving. Thus, mean driving forces from the FCC tend to be an

underestimation of ’real’ values. Fourth, there is no direct empirical evidence of the accuracy of

the rainflow-counting algorithm.

6.3.3. Physical Limitations

This subsection briefly discusses physical limitations regarding the optimum battery capacity.

Considerations about weight and volume restrictions are briefly discussed.

Weight

For ICEVs the heaviest single component is usually either the motor or the gearbox. Downsizing

and the use of alternative materials aims to reduce this. In contrast, for EVs the traction battery

pack tends to be the heaviest single component. The ratio of battery pack weight to total vehicle

kerb weight for the SRZero for instance is just below 50% (see table 3.1), while for the Nissan

Leaf and the Tesla Roadster these values are 20% and 36% respectively. The mass of the battery

pack mbat is the product of the battery’s specific energy density ρbat and the battery’s capacity

Qbat in kWh as shown equation 6.1:

mbat = ρbatQbat (6.1)

Thus, maximising the specific energy density and minimising the capacity results in a lower

battery pack weight and thus in a lower kerb weight of the vehicle.

First, specific energies for commercial lithium-ion batteries range between 100-250 Wh/kg [12]

(see also figure 2.26). Following this and the battery capacity range from table 4.20, table 6.4

lists the battery pack mass as function of specific energy and capacity. Thus, the mass of battery

packs can vary significantly depending on the specific energy density and battery capacity. The

factor between the heaviest and the lightest battery pack is 50. Considering that typical total

vehicle mass range between 750-2,000 kg (see table 4.2), battery packs with capacities above

100 kWh exceed 1⁄3 of a medium-sized vehicle’s kerb mass (1,200 kg) with the current state of

technology. Based on specific energy densities for traction batteries of 100-250 Wh/kg and a
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Table 6.4.: Battery Pack Mass According to Specific Energy and Capacity

Battery Capacity [kWh]
10 20 40 60 80 100 200

Mass [kg] 40-100 80-200 160-400 240-600 320-800 400-1,000 800-2,000

maximum battery mass to kerb mass ratio of 1⁄3, table 6.5 lists the maximum battery capacities

for each vehicle class. It follows that there is a trade-off between a small battery capacity,

Table 6.5.: Upper Battery Capacity Limits According to Weight1

Mini Car Small Car Medium Car Large Car SUV

Qbat [kWh] 25-62.5 33-83 40-100 50-125 67-167

which minimises weight and thus reduces the EV’s driving force (see section 4.1), and a large

battery capacity, which can give a longer range (see section 4.2).

Unfortunately, battery mass to total kerb mass ratios are unavailable for most commercially

available EVs. Most commercial EV manufacturers do not reveal the chemistry and the associ-

ated specific energy density of their battery pack. However, information about battery capacities

for most commercially available EVs is public and listed in table 2.1 and appendix E. The ca-

pacity ratio CR relates the battery capacity Qbat to the vehicle’s kerb mass mv (see equation

6.2).

CR =
Qbat
mv

(6.2)

Effectively this is a measure of the electrical energy that can be stored on board with respect

to the total mass of the vehicle. Applying this equation to table 2.1 and appendix E gives the

results in figure 6.1. The figure shows that currently battery capacity ratios range between

10.5-47.0 Wh/kg for currently available EVs. The mean capacity ratio is around 21.7 Wh/kg

with a relatively low standard deviation of 9.5 Wh/kg. This means that the variability between

capacity ratios is relatively small. Sports cars tend to have a larger CR than other vehicle

classes. This may be attributed to their design focus on performance rather than on safety or

entertainment.

Volumetric Limitations

Volumetric energy densities for lithium-ion battery cells range between 330-630 Wh/L (see

table 2.3). Thus, battery packs with battery capacities ranging between 10-100 kWh can take

up around 15-300 litres (0.015-0.3 m3) of space. Typical passenger car volumes range between

2,400 and 3,400 litres. Thus, the volume of a battery pack can take up a considerable amount

1based on a maximum battery mass to kerb mass ratio of 1⁄3
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Figure 6.1.: Battery Capacity Ratio for Various EVs2

of space in absolute terms, but relative to the vehicle’s total volume the share is relatively small

(<15%). It follows that the total weight of battery packs for EVs presents a more significant

limitation to optimum battery capacities introduced earlier than the total volume.

6.3.4. Financial Limitations

Battery cost is a contentious subject, driven by differing views on material costs, rate of technical

improvement, permissible depth of discharge (DOD), range, and so on. Therefore, only general

remarks are made. Rechargeable traction batteries are usually the most expensive components

of electric vehicles, comprising about half of the retail cost of the car [165]. Due to relatively

high raw material costs (including copper and lithium) current electric vehicle battery prices

range between 400-800 $/kWh [166]. Thus, currently the price range for EV traction packs is

$4,000-$80,000.

2based on table 2.1, appendix E and equation 6.2
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This chapter concludes this work. In the first section (7.1), the main research questions posed

in section 1.3 are addressed. The final section 7.2 suggests potential further work, which could

be built upon this work.

7.1. Conclusions

The problem statement of this work (section 1.3) concluded with five main research questions.

Thanks to the research, analysis, deduction, abduction and discussion done in the preceding

chapters, these questions can be answered in a relatively concise way:

• What does ’optimum battery capacity’ mean in the electric vehicle context?

Optimum battery capacity in the electric vehicle context refers to the capacity of the trac-

tion battery (measured in amp-hours (Ah) or kilowatt-hours (kWh)) optimised according

to nominal energy requirements and battery degradation.

• Which are the main factors that affect the optimum battery size and how?

From a mechanical engineering point of view these include the mean driving force F̄d,

range d, and battery degradation. The product of the mean driving force and range yields

the optimum nominal battery capacity, which is assumed to be static. In contrast, battery

degradation is assumed to affect the optimum battery capacity linearly with time.

• What is the expected lifetime of an EV and therefore of its battery pack?

Assuming an annual mileage of 15,000-25,000 km and a lifespan of 7-10 years, the total

vehicle mileage ranges between 105,000-250,000 km. For all-electric ranges between 150-

700 km this translates into 150-1,700 full battery cycles.

• What does battery degradation mean?

Battery degradation and ageing describe electrochemical phenomena, which modify a cell’s

inherent properties with time and use. The three most problematic symptoms of a de-

graded cell are capacity loss, power loss and loss of integrity (i.e. cell damage or leakage).

These are mainly caused by the effects of increased internal resistance, polarisation, cor-

rosion and passivation.

• How does battery degradation affect the sizing of a traction battery for EVs?

Amongst other consequences battery degradation leads to capacity fade. Empirical evi-
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dence has shown that capacity fade is mostly linear and ranges between 0.05-0.3‱ per

cycle for low-capacity cells discharged at 20% depth of discharge (DOD) up to 0.03-0.05%

per cycle for high-capacity cells discharged at full capacity. Therefore, first it is recom-

mended to reduce the depth of discharge (DOD) to 80% at minimum when the battery is

in use. Second, a spare capacity at the beginning of life of around 20-40% is recommended

in order to satisfy range and power requirements also towards the end of the EVs lifetime.

It follows that the optimum actual battery capacity is around 1.25-1.75 times the optimum

nominal battery capacity for an EV.

7.2. Further Work

This work has presented a novel software model for the determination of the optimum battery

capacity for electric vehicles with particular focus on battery degradation. It contributes towards

the goal of reducing cost, weight and complexity of EVs. In order to have an even better

understanding of the effects of battery degradation on the optimum battery capacity, long-term

dynamic cycling (e.g. with a NEDC load) using similar Li-ion cells and applying different levels

of depth of discharge is proposed. In particular, it is recommended to compare the long-term

battery behaviour (V -Q characteristics) of identical dynamic loads from ’real-world’ driving and

from a lab environment. This way the long-term effects of ’real’ loads on battery behaviour can

be monitored and analysed comprehensively.

On top of analysing the effect of dynamic charge/discharge cycles it is suggested to moni-

tor the effect of varying charge/discharge capacities (see figure 5.28). By this means, battery

degradation for consecutive, dynamic and varying charge/discharge capacities can be quantified

and compared against the results of the rainflow-counting algorithm. This process could re-

sult in the validation of the rainflow-counting algorithm or the opposite. The rainflow-counting

algorithm may be validated not only for batteries, but also for other electrochemical energy

storage/conversion systems such as supercapacitors or fuel cells.

Furthermore, for a more comprehensive view on the battery sizing problem, more detailed

analysis about the physical and financial limitations is desirable.

186



Bibliography

[1] Wards Auto. (2011) World Vehicle Population Tops 1 Billion Units. [Online]. Available

from: http://wardsauto.com/ar/world vehicle population 110815 [Accessed 7th July

2012]

[2] BP. (2012) Statistical Review of World Energy. [Online]. Available from:

http://www.bp.com/content/dam/bp/excel/Statistical-Review/

statistical review of world energy 2013 workbook.xlsx [Accessed 19th July 2013]

[3] Shafiee, S. & Topal, E. (2010) A long-term view of worldwide fossil fuel prices. Applied

Energy. [Online]. 87 (3), 988-1000. Available from:

http://dx.doi.org/10.1016/j.apenergy.2009.09.012 [Accessed 7th July 2012]

[4] Uherek, E. et al. (2010) Transport impacts on atmosphere and climate: Land transport.

Atmospheric Environment. [Online]. 44 (37), 4772-4816. Available from:

http://dx.doi.org/10.1016/j.atmosenv.2010.01.002 [Accessed 7th July 2012]

[5] Yim, S. & Barrett, S. (2012) Public Health Impacts of Combustion Emissions in the

United Kingdom. Environmental Science & Technology. [Online]. 46 (8), 4291-4296.

Available from: http://dx.doi.org/10.1021/es2040416 [Accessed 7th July 2012]

[6] Odgen, J. & Anderson, L. (2011) Sustainable Transportation Energy Pathways. [Online].

304. Available from: http://steps.ucdavis.edu/STEPS.Book [Accessed 7th July 2012]

[7] International Energy Agency (iea). (2011) CO2 Emissions from Fuel Combustion -

Highlights. [Online]. 9-10, 67. Available from:

http://www.iea.org/co2highlights/co2highlights.pdf [Accessed 12th July 2012]

[8] International Council on Clean Transportation (ICCT). (2011) Car CO2 Standard Data.

[Online]. Available from: http://www.theicct.org/sites/default/files/

GlobalPVStd Aug2011 datasheet web.xls [Accessed 13th July 2012]

[9] World Bank. (2011) Motor Vehicles (per 1,000 people). [Online]. Available from:

http://data.worldbank.org/indicator/IS.VEH.NVEH.P3 [Accessed 7th August 2012]

[10] United Nations (UN). (2012) World Urbanization Prospects. [Online]. Available from:

http://esa.un.org/unup/ [Accessed 2nd August 2012]

187

http://wardsauto.com/ar/world_vehicle_population_110815
http://www.bp.com/content/dam/bp/excel/Statistical-Review/statistical_review_of_world_energy_2013_workbook.xlsx
http://www.bp.com/content/dam/bp/excel/Statistical-Review/statistical_review_of_world_energy_2013_workbook.xlsx
http://dx.doi.org/10.1016/j.apenergy.2009.09.012
http://dx.doi.org/10.1016/j.atmosenv.2010.01.002
http://dx.doi.org/10.1021/es2040416
http://steps.ucdavis.edu/STEPS.Book
http://www.iea.org/co2highlights/co2highlights.pdf
http://www.theicct.org/sites/default/files/GlobalPVStd_Aug2011_datasheet_web.xls
http://www.theicct.org/sites/default/files/GlobalPVStd_Aug2011_datasheet_web.xls
http://data.worldbank.org/indicator/IS.VEH.NVEH.P3
http://esa.un.org/unup/


Bibliography

[11] Gao, D., Mi, C. & Emadi A. (2007) Modeling and Simulation of Electric and Hybrid

Vehicles. Proceedings of the IEEE 95 (4), 729-745 [Online]. Available from:

http://dx.doi.org/10.1109/JPROC.2006.890127 [Accessed 13th August 2012]

[12] Scrosati, B. & Garche, J. (2010) Lithium Batteries - Status, Prospects and Future.

Journal of Power Sources [Online]. Available from:

http://dx.doi.org/10.1016/j.jpowsour.2009.11.048 [Accessed 2nd August 2012]

[13] Dreves, F. (2011) Audi AG, Personal Conversation, 23rd September.

[14] Fritzson, P. (2004) Principles of Object Oriented Modelling and Simulation with Modelica

2.1. Piscataway (US), IEEE Press.

[15] Gartner, Inc. (2009) Gartner’s Hype Cycle Special Report for 2009. [Online]. Available

from: http://www.gartner.com/id=1108412 [Accessed 30th July 2012]

[16] Wikipedia (2012) Jedlik’s Electric Car. [Online]. Available from:

http://en.wikipedia.org/wiki/File:Jedlik%27s electric-car.PNG [Accessed 31st July 2012]

[17] Wakefield, E. (1993) History of the Electric Automobile - Battery-Only Powered Cars.

Warrendale (US), Society of Automotive Engineers.

[18] General Motors (GM). (2012) History of the Automobile. [Online]. Available from:

http://www.gm.ca/inm/gmcanada/english/about/OverviewHist/hist auto.html

[Accessed 30th July 2012]

[19] Kirsch, D. (2000) The Electric Vehicle and the Burden of History. New Brunswick (US),

Rutgers University Press.

[20] Gatsby Passions (2012) Nikolas Tesla, un poète fou de science.... [Online]. Available
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C. Racing Green Endurance Itinerary

Leg Date Route Country Distance
(2010) [km]

1 July 1st Anchorage to Chena Hotsprings US 673
2 July 3rd Chena Hotsprings to Tok US 402
3 July 4th Tok to Beaver Creek US & Canada 176
4 July 5th Beaver Creek to Whitehorse Canada 451
5 July 7th Whitehorse to Watson Lake Canada 415
6 July 8th Watson Lake to Iskut Canada 315
7 July 9th Iskut to Smithers Canada 518
8 July 10th Smithers to Prince George Canada 371
9 July 11th Prince George to Clinton Canada 404
10 July 12th Clinton to Vancouver Canada 357
11 July 17th Vancouver to Seattle Canada & US 237
12 July 18th Seattle to Wilsonville US 307
13 July 19th Wilsonville to Yreka US 493
14 July 20th Yreka to Santa Rosa US 467
15 July 21st Santa Rosa to San Francisco US 184
16 July 24th San Francisco to San Luis Obispo US 441
17 July 25th San Luis Obispo to Helendale US 421
18 July 27th Helendale to Las Vegas US 282
19 July 28th Las Vegas to Flagstaff US 408
20 July 30th Flagstaff to Santa Rosa US 708
21 July 31st Santa Rosa to Snyder US 467
22 August 1st Snyder to Austin US 467
23 August 8th Austin to Eagle Pass US 356
24 August 10th Eagle Pass to Saltillo US & Mexico 450
25 August 11th Saltillo to San Luis Potosi Mexico 464
26 August 12th San Luis Potośı to Mexico City Mexico 410
27 August 17th Mexico City to Oaxaca Mexico 470
28 August 18th Oaxaca to La Ventosa Mexico 305
29 August 19th La Ventosa to Tapachula Mexico 423
30 August 20th Tapachula to Guatemala City Mexico & Guatemala 300
31 August 22nd Guatemala City to San Salvador Guatemala & El Salvador 263
32 August 25th San Salvador to Lufassa El Salvador & Honduras 308
33 August 26th Lufassa to Managua Honduras & Nicaragua 292
34 August 27th Managua to Liberia Nicaragua & Costa Rica 244
35 August 28th Liberia to San José Costa Rica 202
36 August 31st San José to David Costa Rica & Panama 392
37 September 1st David to Panama City Panama 466
38 September 4th Panama City to Colon Panama 90
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C. Racing Green Endurance Itinerary

Leg Date Route Country Distance
(2010) [km]

39 September 25th Cartagena to Monteŕıa Colombia 253
40 September 26th Monteŕıa to Medelĺın Colombia 393
41 September 28th Medelĺın to Bogotá Colombia 414
42 October 3rd Bogotá to Armenia Colombia 290
43 October 4th Armenia to Cali Colombia 200
44 October 5th Cali to Pasto Colombia 385
45 October 6th Pasto to Ibarra Colombia & Ecuador 105
46 October 7th Ibarra to Quito Ecuador 115
47 October 14th Quito to Machala Ecuador 518
48 October 15th Machala to Piura Ecuador & Peru 393
49 October 16th Piura to Chiclayo Peru 214
50 October 17th Chiclayo to Chimbote Peru 350
51 October 18th Chimbote to Lima Peru 424
52 October 21st Lima to Ica Peru 300
53 October 22nd Ica to Nazca Peru 150
54 October 23rd Nazca to Camaná Peru 388
55 October 24th Camaná to Tacna Peru 463
56 October 25th Tacna to Iquique Peru & Chile 360
57 October 26th Iquique to Mejillones Chile 356
58 October 27th Mejillones to ESO Chile 330
59 October 28th ESO to Copiapó Chile 363
60 October 29th Copiapó to Tongoy Chile 400
61 October 31st Tongoy to Santiago Chile 438
62 November 4th Santiago to Taica Chile 269
63 November 5th Taica to Los Angelos Chile 269
64 November 6th Los Angelos to Osorno Chile 409
65 November 7th Osorno to Bariloche Chile & Argentina 250
66 November 8th Bariloche to Esquel Argentina 310
67 November 10th Esquel to Sarmiento Argentina 441
68 November 11th Sarmiento to Puerto San Julián Argentina 581
69 November 12th Puerto San Julián to Ŕıo Gallegos Argentina 359
70 November 15th Ŕıo Gallegos to Ŕıo Grande Argentina 220
71 November 16th Ŕıo Grande to Ushuaia Argentina 258
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D. International Driving Cycles
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Figure D.1.: New European Driving Cycle (NEDC) [143]
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Figure D.2.: US Federal Testing Procedure (FTP-75) [143]
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Figure D.3.: Japanese 10-15 Mode [143]
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E. 2011 FCC - EV Specifications

Make Model Start Veh. Peak Driving Range1 Battery
Number Mass Power Force1 [km] Capacity

[kg] [kW] [Wh/km] [kWh]

VW Golf Blue e-motion 1 1,545 85 150 145 26.5
Smart fortwo coupé E 2 870 30 120 135 16.5
Nissan Leaf 3 1,521 80 220 160 24.0
Delta E4 4 975 160 n/a 225 32.0
Lotus Elise S1 EV 8 1,000 30 125 96 16.0
Radical SRZero 9 1,150 300 110 500 54.0
Nissan Leaf 12 1,521 80 220 160 24.0
MG F-EV 16 1,230 54 n/a 128 18.0
Tesla Roadster 18 1,235 225 135 356 56.0
G. Murray T27 27 680 25 80 160 12.0
Nissan Leaf 30 1,521 80 220 160 24.0
Nissan Leaf 36 1,521 80 220 160 24.0
Lightning GT 38 1,850 300 n/a 240 44.0
VW Lupo EV 40 1,060 50 130 200 27.0
VW Golf Blue e-motion 43 1,545 85 150 145 26.5
Delta E4 44 975 160 n/a 225 32.0
Proton Saga 51 1,148 52 n/a 120 13.6
Jaguar E-Type EV 54 1,230 150 n/a 215 32.0
Nissan Leaf 56 1,521 80 220 160 24.0
Smart fortwo coupé E 57 870 30 120 135 16.5
BMW Mini E 60 1,465 150 125 160 35.0
Citroën Nemo Van Electric 62 1,176 26 100 90 16.0
Smart fortwo coupé E 63 870 30 120 135 16.5
Smart fortwo coupé E 66 870 30 120 135 16.5
Smart fortwo coupé E 70 870 30 120 135 16.5

� 1,209 96 147.63 179.20 25.72

1based on NEDC & US EPA
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F. Battery Statistics from the RGE Trip

Battery Īcharge P̄charge Ccharge Echarge Īdischarge P̄discharge Cdischarge Edischarge

Cycle [A] [kW] [Ah] [kWh] [A] [kW] [Ah] [kWh]

1 n/a n/a n/a n/a 5.50 2.83 3.82 1.99
2 3.71 2.05 74.31 47.36 16.20 8.59 23.97 12.78
3 6.85 3.73 77.80 43.65 11.51 6.01 7.74 4.11
4 3.65 1.99 34.06 18.65 11.38 5.97 71.01 37.13
5 2.65 1.46 43.18 24.48 10.69 5.57 97.75 51.07
6 3.97 2.19 59.84 33.98 9.58 5.00 47.28 25.07
7 7.02 3.86 72.29 41.05 9.46 4.93 40.41 21.56
8 3.57 1.96 43.13 24.93 12.21 6.35 78.18 40.81
9 4.65 2.56 86.11 48.90 0.81 0.43 1.54 0.82
10 4.67 2.54 8.66 4.72 6.75 3.50 12.26 6.62
11 3.56 1.98 2.11 1.27 4.03 2.11 39.18 21.16
12 3.80 2.09 40.00 25.49 4.31 2.27 60.42 32.34
13 2.25 1.22 12.82 6.97 5.20 2.68 6.48 3.49
14 3.12 1.69 7.61 4.13 12.02 6.15 54.52 28.51
15 5.05 2.76 97.83 58.47 10.33 5.35 104.32 54.15
16 5.86 3.17 79.78 43.67 5.00 2.66 0.69 0.37
17 6.65 3.67 23.57 13.57 12.62 6.59 88.79 46.56
18 7.45 4.04 45.72 24.98 6.27 3.21 56.60 29.63
19 7.25 3.95 78.83 43.76 8.08 4.15 58.84 31.46
20 6.14 3.33 66.40 36.57 7.12 3.69 96.31 50.79
21 5.88 3.21 90.56 52.74 9.99 5.23 85.03 44.81
22 4.50 2.44 74.59 40.81 9.14 4.79 54.45 28.88
23 2.62 1.42 52.74 28.80 4.18 2.21 0.79 0.37
24 2.73 1.49 4.34 2.37 7.29 3.86 29.50 15.80
25 3.86 2.09 58.79 32.25 11.41 6.00 70.71 37.68
26 7.74 4.21 59.60 32.75 1.45 0.72 0.49 0.27
27 6.36 3.40 8.38 4.51 8.44 4.44 89.35 47.03
28 2.10 1.11 1.24 0.66 9.60 5.08 66.59 35.53
29 5.49 2.99 67.23 38.56 8.08 4.26 80.52 42.89
30 3.77 2.05 1.08 0.59 9.73 5.11 84.35 44.37
31 2.41 1.30 34.77 18.87 9.55 4.91 51.86 26.59
32 3.51 1.88 18.11 9.79 8.33 4.25 17.21 9.01
33 3.69 2.00 68.60 37.55 7.92 4.14 7.43 3.98
34 1.90 1.05 41.31 26.33 7.03 3.65 89.12 47.03
35 1.76 0.95 23.42 12.65 0.82 0.44 0.96 0.46
36 7.88 4.31 48.04 26.43 6.78 3.51 63.88 34.01
37 7.13 3.90 78.84 45.37 10.73 5.63 79.10 41.91
38 7.74 4.23 78.76 45.63 6.39 3.33 74.66 39.57
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F. Battery Statistics from the RGE Trip

Battery Īcharge P̄charge Ccharge Echarge Īdischarge P̄discharge Cdischarge Edischarge

Cycle [A] [kW] [Ah] [kWh] [A] [kW] [Ah] [kWh]

39 4.27 2.34 74.32 43.13 4.65 2.44 44.79 23.84
40 6.19 3.40 99.62 54.88 0.83 0.44 1.92 1.00
41 0.99 0.55 15.08 9.61 5.68 2.97 54.08 28.75
42 4.36 2.38 56.53 32.68 4.18 2.20 57.58 30.88
43 5.48 2.99 34.37 18.85 3.79 1.98 48.28 25.63
44 5.93 3.23 62.89 34.62 10.15 5.26 67.15 36.21
45 3.96 2.16 60.31 33.08 0.99 0.53 10.40 5.65
46 6.77 3.74 25.71 14.69 4.31 2.25 67.39 35.99
47 7.09 3.88 68.25 39.02 9.17 4.76 87.49 45.87
48 1.76 0.95 24.55 13.33 1.27 0.67 4.79 2.50
49 5.95 3.25 69.17 39.08 1.80 0.94 33.67 18.20
50 3.53 1.88 7.69 4.13 4.40 2.34 48.30 26.05
51 5.58 3.07 52.14 29.61 8.34 4.30 98.67 51.41
52 0.50 0.27 7.09 3.82 0.16 0.09 0.62 0.32
53 7.26 4.00 92.17 53.20 6.46 3.33 92.24 48.54
54 5.98 3.27 88.92 50.41 2.17 1.13 13.68 7.37
55 1.46 0.81 21.07 12.09 7.47 3.85 69.06 37.20
56 6.39 3.51 69.43 39.69 13.98 7.07 62.08 33.32
57 3.40 1.86 66.78 38.24 7.01 3.60 93.31 48.90
58 5.59 3.05 68.14 37.64 5.57 2.84 49.38 26.56
59 6.71 3.70 74.25 42.52 5.86 2.99 56.52 30.78
60 16.88 9.48 43.37 25.33 9.55 4.95 34.85 18.88
61 7.80 4.29 19.60 10.83 6.62 3.40 62.22 33.29
62 8.04 4.39 59.55 32.84 6.59 3.44 87.77 46.27
63 5.80 3.19 101.22 57.75 7.05 3.67 91.18 48.13
64 6.32 3.47 89.65 51.16 7.35 3.80 79.92 42.67
65 3.89 2.12 40.17 21.96 8.31 4.34 13.60 7.35
66 6.71 3.70 75.55 43.05 8.69 4.55 65.51 35.38
67 7.62 4.18 86.00 48.83 13.47 7.09 37.67 20.53
68 7.92 4.29 16.41 8.91 10.80 5.56 24.76 12.76
69 7.32 4.02 82.27 46.72 2.04 1.08 3.75 2.00
70 3.52 1.90 19.98 10.81 8.38 4.40 76.56 40.78
71 4.85 2.65 68.25 37.97 10.42 5.36 83.75 44.21
72 5.32 2.92 86.88 48.91 9.58 4.96 83.58 44.33
73 6.85 3.76 79.28 44.79 9.46 4.92 82.69 43.90
74 3.23 1.77 81.80 46.56 12.28 6.34 92.45 48.78
75 6.53 3.58 93.81 53.18 5.77 3.03 53.81 28.93
76 3.82 2.09 52.74 29.89 13.36 7.04 62.47 33.50
77 4.48 2.46 60.46 34.35 11.36 5.88 89.48 47.34
78 5.43 3.00 83.58 47.54 8.43 4.36 66.76 35.79
79 4.33 2.39 61.88 35.20 10.92 5.61 68.26 36.47
80 7.62 4.19 72.34 39.75 8.16 4.25 78.49 41.68
81 7.54 4.14 77.75 44.15 6.98 3.72 26.25 14.44
82 8.00 4.41 25.53 14.41 9.37 4.91 73.60 39.50
83 6.45 3.55 72.69 41.35 11.31 5.92 79.41 42.13
84 4.61 2.53 78.07 44.48 5.93 3.07 92.95 48.83
85 2.13 1.17 85.00 48.51 3.81 1.96 81.23 43.02
86 0.18 0.10 2.47 1.31 1.19 0.62 2.33 1.22
87 4.65 2.56 86.11 48.90 1.22 0.65 3.57 1.94

� 5.12 2.80 56.13 31.83 7.39 3.84 53.53 28.39
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