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Abstract

Hybrid electric vehicles are commonly known as a promising solution to

reduce the fuel consumption with existing technology for the near future.

Due to the presence of at least two power converters in the powertrain,

there is a new degree of freedom compared to conventional vehicles. An

appropriate control of this degree of freedom is required to achieve lowest

possible fuel consumption.

The objective of this thesis is to develop novel control algorithms for the

before mentioned degree of freedom in order to minimize fuel consumption.

These algorithms are evaluated in simulations, but finally, they have to be

applicable to real vehicles. Therefore, the algorithms must be causal, which

means that they can only exploit information available in the present and

the past. Further, they have to be computationally very efficient, since the

computational power and the memory capacity in the engine control unit

are limited.

This objective is approached by first evaluating the global optimum

with dynamic programming as a benchmark for any real-time capable con-

trol strategies. Such globally optimal solutions are acausal and can only

be evaluated in simulation. In this thesis, a new method is presented that

allows to enhance the accuracy and the computational efficiency of dy-

namic programming for single-state optimal control problems with final

state constraints.

Causal control strategies are derived and investigated in a second step.

A simplified model for the hybrid powertrain is introduced in addition to

the original model. This simplified model allows to derive explicit solu-

tions for the optimal control, resulting in a strategy that is computationally

very attractive and allows to gain insight into its structure. An investiga-

tion of these causal control strategies with the original and the simplified

model has shown, that they achieve very good performance in terms of

fuel consumption as long as there are no severe recuperation phases. For

driving cycles with elevation profiles, the fuel consumption achieved by
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these strategies differ significantly from the theoretical optimum.

In order to extend these strategies such that they show good perfor-

mance even in environments with elevation profiles, some knowledge on

the future driving conditions is taken into account. A novel algorithm

has been developed in this thesis that evaluates a reference trajectory

for the future state-of-charge of the battery such that low fuel consump-

tion can be achieved in conjunction with the previously proposed strategy

even in driving conditions with elevation changes. This algorithm ex-

ploits data from the navigation system on the trip that is planned such

as the topographic profile and the average traveling speeds on each road

segment. This predictive algorithm is computationally very efficient and

the resulting fuel consumption is improved considerably compared to the

non-predictive strategy.

In a last step, the optimal starting and stopping decision for the en-

gine has been investigated. For the case of a full electric hybrid, it is

optimal to shut the engine off for some time intervals and to drive electri-

cally. However, if there is no cost in terms of fuel consumption assigned

to an engine start, the solutions resulting from optimal control can show

frequent starting and stopping of the engine. In order to approach this

problem systematically, modeling of the energetic cost assigned to each

engine start is required. An investigation of the optimal solution of the

energy management problem including starting cost has shown, that this

energetic starting cost cannot be neglected for an appropriate control. A

model predictive control scheme is introduced for the decision on the en-

gine operation. The performance in terms of fuel consumption of this

model predictive control is evaluated as a function of the prediction hori-

zon. These results revealed that a very short prediction horizon is sufficient

to achieve close to optimum performance.
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Zusammenfassung

Elektrische Hybridfahrzeuge stellen eine vielversprechende Lösung dar, um

den Treibstoffverbrauch mit bestehender Technologie für die nahe Zukunft

zu reduzieren. Die Verfügbarkeit von mindestens zwei Leistungsquellen im

Antriebsstrang ergibt einen zusätzlichen Freiheitsgrad im Vergleich zu kon-

ventionellen Fahrzeugen. Eine geeignete Steuerung dieses Freiheitsgrades

ist notwendig um einen tiefst möglichen Treibstoffverbrauch zu erzielen.

Das Ziel dieser Arbeit ist die Entwicklung neuer Regelalgorithmen für

den erwähnten Freiheitsgrad, so dass der Treibstoffverbrauch minimiert

wird. Diese Algorithmen werden zwar in Simulationen untersucht, letztlich

müssen sie jedoch im echten Fahrzeug eingesetzt werden können. Folglich

müssen diese Algorithmen kausal sein. Dies bedeutet, dass sie nur Informa-

tionen aus der Gegenwart und der Vergangenheit ausnützen dürfen. Des

Weiteren müssen sie recheneffizient sein, da die Rechenleistung und die

Speicherkapazität im Motorsteuergerät begrenzt sind.

Um dieses Ziel zu erreichen, wird zuerst das globale Optimum mittels

Dynamischer Programmierung als Referenz für echtzeitfähige Regelstra-

tegien ausgewertet. Solche global optimalen Lösungen sind akausal und

können nur in Simulationen gefunden werden. In dieser Arbeit wird eine

neue Methode gezeigt, welche es erlaubt, die Präzision und die rechne-

rische Effizienz der Dynamischen Programmierung für skalare, optimale

Regelungsprobleme mit beschränktem Endzustand signifikant zu verbes-

sern.

Kausale Regelstrategien werden in einem zweiten Schritt hergeleitet

und untersucht. Zusätzlich zum ursprünglichen Modell des hybriden An-

triebstranges wird ein vereinfachtes Modell eingeführt. Dieses vereinfachte

Modell erlaubt die Herleitung expliziter Lösungen für die optimale Rege-

lung, was zu einer Strategie führt, welche rechnerisch attraktiv ist und

eine klare Struktur aufweist. Die Untersuchung dieser kausalen Strategi-

en, welche auf dem ursprünglichen und dem vereinfachten Modell basie-

ren, hat aufgezeigt, dass diese sehr gute Resultate bezüglich Treibstoffver-
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brauchs erzielen, solange keine drastischen Rekuperationsphasen vorliegen.

Für Fahrmuster mit Höhenprofil hingegen, weicht der Treibstoffverbrauch,

welcher mit solchen Strategien erzielt wird, deutlich vom theoretischen

Optimum ab.

Die bisher entwickelten Strategien wurden so erweitert, dass sie Infor-

mationen über das zukünftige Fahrmuster berücksichtigen, damit auch in

hügeligen Umgebungen gute Treibstoffverbräuche erzielt werden. In dieser

Arbeit wurde ein neuer Algorithmus entwickelt, welcher eine Referenz-

trajektorie für den zukünftigen Ladestand der Batterie vorgibt, so dass,

in Kombination mit der bestehenden kausalen Strategie, tiefst mögliche

Treibstoffverbräuche auch in Fahrmustern mit Höhenprofil erzielt werden

können. Dieser Algorithmus nutzt Daten über die geplante Fahrstrecke aus

dem Navigationssystem. Diese Daten bestehen aus dem Höhenprofil und

den durchschnittlichen Reisegeschwindigkeiten der jeweiligen Streckenab-

schnitte. Dieser prädiktive Algorithmus ist rechnerisch sehr effizient und

der erzielte Treibstoffverbrauch ist gegenüber der nicht-prädiktiven Stra-

tegie deutlich verbessert.

Als letzter Schritt wurde die optimale Start/Stopp-Entscheidung für

den Verbrennungsmotor untersucht. Im Falle eines Vollhybridfahrzeuges ist

es in gewissen Zeiträumen optimal den Verbrennungsmotor abzuschalten

und rein elektrisch zu fahren. Wenn allerdings für einen Start des Verbren-

nungsmotors keine Kosten betreffend Treibstoffverbrauch berücksichtigt

sind, resultiert in Lösungen aus der optimalen Regelung häufiges Star-

ten und Stoppen des Motors. Um dieses Problem systematisch anzuge-

hen, müssen diese energetischen Startkosten modelliert werden. Die Un-

tersuchung der optimalen Lösung des Energiemanagementproblems mit

Startkosten hat gezeigt, dass diese Kosten in der Regelstrategie nicht ver-

nachlässigt werden sollten. Eine modellbasierte prädiktive Regelung für

den Betrieb des Verbrennungsmotors wurde eingeführt und der erzielte

Treibstoffverbrauch dieser modellbasierten prädiktiven Regelung wurde

als Funktion des Prädiktionshorizontes untersucht. Die Resultate haben

gezeigt, dass ein sehr kurzer Prädiktionshorizont ausreicht, um Treibstoff-

verbräuche zu erzielen, welche nahe beim theoretischen Optimum liegen.
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Wenn man sich überlegt, dass die Mona Lisa mit lauter einzel-

nen Pinselstrichen entstanden ist . . .

Mani Matter, 1936–1972, in Tagebuch I (1958–1961)
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Chapter 1

Introduction

Ecological awareness and economical reasons call for a substantial reduc-

tion of the fuel consumption of all future automobiles. Conventional ve-

hicles propelled by internal combustion engines (ICEs) profit from the

very high energy density of gasoline or diesel fuel, but suffer from a low

part-load efficiency. Hybrid electric vehicles (HEVs) represent a promis-

ing approach to reduce the fuel consumption considerably using existing

powertrain components. HEVs improve the overall efficiency by:

1. downsizing of the engine to reduce friction losses and compensating

for the lacking power by the electric motor,

2. recuperating kinetic and potential energy during braking phases by

using the electric path instead of the conventional brakes,

3. shutting off the engine during standstill to avoid idling losses, and

4. avoiding part-load operation of the engine by shifting these operating

points to higher torques or shutting off the engine and driving in the

electric-only mode.

1.1 Motivation

The new degree of freedom available in HEVs, namely the power distri-

bution between the engine and the electric motor, must be judiciously

exploited to achieve the best possible fuel economy. In literature, strate-

gies that control this power distribution within the hybrid powertrain are

often referred to as energy management strategies [1]. Such strategies are

typically divided into two groups, namely heuristic strategies and optimal

strategies.
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Heuristic approaches are often applied in real-time implementations.

Low fuel consumption can be achieved, but the performance is very sensi-

tive to the tuning of the rules. This sensitivity becomes important, when

the tuning is carried out for a standard driving cycle and the driving pat-

terns that occur in reality differ considerably from the cycle used for the

tuning. This results in an increased fuel consumption compared to what

would be possible to achieve. A typical rule-based method is fuzzy logic

as it was used by the authors of [2, 3]. Such heuristic control strategies

are in general not scalable, since these rules are often not model-based.

A different approach is presented in [4], where the results obtained from

dynamic programming are deployed to extract rules.

Optimal strategies on the other hand, are typically derived with meth-

ods from optimal control theory and are using an appropriate physically

based model. Such strategies are often minimizing a local cost function

at every time-step to find the control signal. This proved to achieve low

fuel consumption. Such a local cost function is typically an equivalent fuel

consumption that consists of the actual fuel consumption and a weighted

electric consumption. These approaches were introduced by the authors of

[5, 6, 7] and further improved in [8, 9]. These local minimization strategies

require a model of the powertrain and are easily scalable as a consequence.

However, such strategies typically require more computational power than

rule-based methods, since an online optimization has to be carried out in

real-time operation. In [10, 11], Pontryagin’s minimum principle was used

to derive similar strategies that minimize a local cost function.

The performance of any energy management strategy strongly depends

on the information available [12]. Truly optimal fuel consumption can be

achieved only if the entire driving cycle is perfectly known a priori. The

resulting strategy is not causal, but defines a benchmark to which any

causal strategy can be compared to. Dynamic programming (DP) [13, 14]

is well suited to find such an optimal solution for the problem at hand.

Notice that in some situations acausal solutions might be useful even in

practical situations. The authors of [15], for example, present an acausal

supervisory control that optimizes the fuel consumption of a hybrid electric

bus for repeatedly driven routes.
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1.2 Goals of the Project

The goal of this project was to develop control strategies that decide on the

power distribution between electric motor and engine in order to minimize

the fuel consumption over some driving cycle. The main focus was on

full parallel hybrid electric vehicles. Since the aim of these strategies is

to be applicable in real-time on the engine control unit, they must be

computationally efficient and they have to be causal. Furthermore, the

strategies have to be applicable to various dimensions of the components

without the need for extensive re-tuning. Therefore, the strategies have to

rely on physical models. Such model-based strategies are not only easier

to transfer to other component dimensions, they are also well suited for

diagnosis during vehicle operation to detect changes or defects in some

components.

1.3 Contributions

The research carried out within the framework of this dissertation lead to

the following scientific publications:

• D. Ambühl, A. Sciarretta, C. H. Onder, L. Guzzella, S. Sterzing,

K. Mann, D. Kraft, M. Küsell, “A Causal Operation Strategy for

Hybrid Electric Vehicles based on Optimal Control Theory”, In Pro-

ceedings of the 4th Symposium on Hybrid Vehicles and Energy Man-

agement, Braunschweig, Germany, 2007.

• Olle Sundström, Daniel Ambühl, Lino Guzzella, “On Implementa-

tion of Dynamic Programming for Optimal Control Problems with

Final State Constraints”, In Proceedings of Les Rencontres Scien-

tifiques de l’IFP: Advances in Hybrid Powertrains, Rueil-Malmaison,

France, 2008.

• Olle Sundström, Daniel Ambühl, Lino Guzzella, “On Implementa-

tion of Dynamic Programming for Optimal Control Problems with

Final State Constraints”, Oil & Gas Science and Technology — Rev.

IFP, 2009, accepted for publication.
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• Daniel Ambühl, Lino Guzzella, “Predictive Reference Signal Gener-

ator for Hybrid Electric Vehicles”, IEEE Transactions on Vehicular

Technology, accepted for publication.

• Daniel Ambühl, Olle Sundström, Antonio Sciarretta, Lino Guzzella,

“Explicit Optimal Control Policy and its Practical Application for

Hybrid Electric Powertrains”, Control Engineering Practice, submit-

ted for publication.

The first publication is a conference paper. The novelty presented

in this paper is the acausal evaluation of the optimal equivalence factor

by means of Hamilton-Jacobi-Bellman-theory together with dynamic pro-

gramming. Finally, this optimal equivalence factor is approximated to

derive a causal strategy.

The second publication has been published on a conference and it is

accepted to be reprinted in a journal being the third publication. In these

publications, a novel method is presented that allows to improve the ac-

curacy and the computational efficiency of dynamic programming signifi-

cantly. This method is referred to as boundary line method and applies to

single-state optimal control problems with final state constraints.

The fourth publication has been submitted to the journal in July 2008

and is accepted for publication. A novel algorithm is presented that allows

to reduce fuel consumption significantly in driving cycles with elevation

profile. This algorithm is called predictive reference signal generator. It

only requires data on the topography of the future trip and the average

traveling speeds on these future road segments. Real-time capability of

this algorithm is achieved by formulation as a quadratic programm.

The fifth publication has been submitted in April 2009 and is also

in the journal’s reviewing process. A simplified model for a parallel hy-

brid powertrain is presented and validated. This model allows to derive

a novel explicit optimal control law for the energy management problem.

This control law can be represented as simple analytical rules that rely on

powertrain parameters only. This explicit control law requires very little

computational effort and further allowed to derive an analytic expression

of a saturation for the equivalence factor. This can be used to introduce

an anti-windup scheme, which to the author’s knowledge is novel in the

field of equivalent consumption minimization strategies.
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1.4 Structure of the Thesis

This thesis is organized as follows. The model of the full parallel electric

hybrid vehicle is introduced in Chapter 2. In Chapter 3, the optimal

control problem is formulated and dynamic programming is introduced

briefly. The main part of this chapter introduces a new method to improve

the accuracy and the computational efficiency of dynamic programming

for single-state problems with final state constraints. The step from an

optimal, but acausal strategy toward a suboptimal, but causal strategy is

shown in Chapter 4. In Chapter 5, a method is introduced that allows to

extend the previously developed causal strategy such that information on

the future driving conditions can be taken into account. This information

consists of the topographic profile and the average traveling speed expected

for the future road segments. Chapter 6 extends the model with costs

for each engine start. An investigation on the energetic impact of these

starting cost is carried out and a predictive control is introduced. The

required prediction horizon is investigated. Finally, the the main findings

of this research are summarized in Chapter 7.
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Chapter 2

Model of the Parallel HEV

The vehicle studied in this thesis is a full parallel HEV. Parallel means that

the engine and the electric motor act on the same shaft. The connection

is often realized by mounting the electric motor directly on the shaft, but

it can also be coupled to the shaft by means of a belt or some gears. A

full HEV is characterized by the capability for pure electric driving. In a

parallel configuration, this typically requires a controllable clutch between

the engine and the electric motor, such that the engine can be decoupled

from the rest of the powertrain. If this clutch is missing, the vehicle is

typically referred to as ‘mild’ parallel HEV. Theoretically, pure electric

driving would still be possible. However, this would require the motor to

drag the engine during electric propulsion. As it has been shown in [16],

pure electric driving is energetically not favorable for ‘mild’ parallel HEVs.

The topology of this full parallel HEV is illustrated in Fig. 2.1. The

parameters of the vehicle are those of a midsize passenger car with a mass

of 1580 kg, a maximum power of the spark-ignition (SI) engine of 80 kW, a

maximum power of the electric motor of 25 kW, and a NiMH-battery with

a capacity of 6.2 Ah at a nominal voltage of 230 V. The energy content

of this battery is comparable with the traction battery used in the Toyota

Prius, Generation III.

As discussed in [17, 18], a quasi-static ’backward’ approach is used to

model the vehicle. The ’backward’ approach is well suited for the actual

problem statement: The speed profile v(t) and the corresponding road

grade γ(t) are prescribed externally, i.e., they are considered to be distur-

bances. The ’quasi-static’ approach assumes that the speeds, accelerations,

and loads of powertrain components can be considered to be constant over

one sample time. This allows for considerable reduction of the simulation

time. The assumption of quasi-static signals can be justified by compar-
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Figure 2.1: Topology of the full parallel hybrid electric powertrain.

ing the time constants of the relevant dynamics of the powertrain to the

time constants of the dynamics that are neglected. In [19], this assump-

tion has been verified for engines of passenger cars. It is obvious that this

assumption is also valid for electric machines because the time constants

of the electric components are even smaller than those being present in

combustion engines.

In the following, the relevant powertrain components shown in Fig. 2.1

are being discussed with their respective inputs, outputs, and, for dynam-

ically modeled components, state-variables. Effects caused by changes of

the temperatures of the battery, the electric motor, and the engine are

neglected throughout this work. The parameters of the powertrain are

summarized in Table 2.1.

2.1 Chassis Model

The chassis model encompasses all parts of the vehicle that yield the rela-

tion between speed v(t), acceleration v̇(t), road grade γ, and the resulting

speed ωWH , acceleration ω̇WH , and torque TWH at the gearbox output,

which is the ’wheel-side’ of the gearbox. For this relation, the vehicle mass,

its aerodynamic properties, wheel properties, and transmission ratio of the

final drive are relevant. The tractive force Ft required at the wheel is the

sum of the force due to inertia Fi, the aerodynamic drag Fa, the rolling
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friction force Fr, and the force induced by gravity Fg. This results as

Ft = Fi + Fa + Fr + Fg, (2.1)

where

Fi = mv · v̇(t) (2.2a)

Fa =
1

2
ρaAfcdv

2(t) (2.2b)

Fr = (cr,1v + cr,0) · mvg cos(γ) (2.2c)

Fg = mvg sin(γ). (2.2d)

The parameter mv is the vehicle mass, ρa the density of the air, Af the

frontal area of the vehicle, cd its aerodynamic drag coefficient, cr,1 and cr,0

the rolling friction coefficients, and g the gravitational acceleration.

The torque and speed required at the gearbox output can be computed

with the tractive force and the speed by

ωWH =
v

rWH

(2.3)

ω̇WH =
v̇

rWH

(2.4)

TWH =

{

rWHFt + ΘWH
v̇

rWH
+ TWH,loss, if v > 0

0, if v = 0
, (2.5)

where rWH is the effective wheel radius, ΘWH the wheel’s inertia, and

TWH,loss a constant loss torque.

2.2 Gearbox

The gearbox is modeled including the gear ratio of the final drive. The

efficiency ηGB of the gearbox is assumed to be constant. The resulting

speed and torque required at the gearbox input to satisfy the requested

speed and torque at the wheel are calculated by

wgb = νGB(kGB) · ωwh (2.6)

ω̇gb = νGB(kGB) · ω̇wh (2.7)

TGB =

{

TW H

ηGB ·νGB(kGB) , if TWH ≥ 0
TW H ·ηGB

νGB(kGB) , if TWH < 0,
(2.8)
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where kGB is the selected gear number and νGB(kGB) the corresponding

transmission ratio.

The gear switching strategy is assumed to be defined by the manufac-

turer of the gearbox and is therefore not part of the energy management

for the HEV. The strategy used throughout this thesis is a purely speed-

based strategy as illustrated in Fig. 2.2. This figure shows that there is a

hysteresis to avoid too frequent switching if the vehicle speed is close to

one of the thresholds. The arrows indicate what characteristic is relevant

for upshifts and downshifts, respectively.

v [km/h]

k
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B
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]

0 20 40 60 80 100 120
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2

3
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Figure 2.2: Speed-dependent gear switching.

2.3 Torque Coupler

The electric motor is directly connected to the shaft of the gearbox input.

Therefore, the transmission ratio between electric motor and gearbox input

is one and consequently not explicitly expressed in the following. The node

where the torques of the electric motor and the engine are superposed is

called torque coupler. The following torque balance must be satisfied:

TGB = TICE + TEM . (2.9)

Due to limitations of engine and motor torque, it can happen that this

torque balance is not satisfied. Torque demands which are high, i.e.,

TGB >TICE,max+TEM,max, result in an infeasible torque balance (2.9).

If this happens, the driving cycle is infeasible. On the other hand, high

negative torque demands TGB < TEM,min cannot satisfy the torque bal-

ance (2.9), too. This case represents strong braking phases that cannot be
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captured by the electric motor anymore. Hence, the conventional brakes

supply the torque difference. Since the actuation of the conventional brakes

is obvious from an energetic point of view, these are not modeled explicitly.

As a consequence of the torque balance (2.9), the operation points of

the powertrain are fully determined by choosing either the engine torque

or the torque of the motor. For consistency with the common literature,

the motor torque is chosen as the control input. Normalized with the

requested torque at the gearbox, the control signal u is defined as the split

factor

u =
TEM

TGB

. (2.10)

2.4 Internal Combustion Engine

To model the internal combustion engine quasi-statically, the inputs are

the torque TICE, the rotational speed ωICE , and the acceleration ω̇ICE.

The torque, that internally needs to be provided by the piston, is calculated

by adding the torque that is required to overcome the engines inertia to

the torque that is requested from the engine. The parameter ΘICE is the

rotational inertia of the engine. The internal torque is given by

TICE,i = TICE + ΘICEω̇ICE , (2.11)

where the requested engine torque can be expressed by the split factor as

TICE = (1 − u) · TGB. (2.12)

The (internal) engine torque is limited by the engines maximum torque

line, namely

TICE,i ∈ [0, TICE,max(ωICE)]. (2.13)

The corresponding fuel mass flow
∗
mf is evaluated from a stationary con-

sumption map

∗
mf=

{

fICE(TICE,i, ωGB), if u < 1

0, if u = 1.
(2.14)

This formulation assumes that the engine is shut off if no torque is required,

i.e., the clutch is then disengaged and the injection is stopped.
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The corresponding efficiency map of the engine motor with the maxi-

mum torque line is shown in Fig. 2.3.

The engine’s rotational speed is limited to

ωICE ∈ [wICE,idle, wICE,max] (2.15)

ωICE [rpm]
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Figure 2.3: Engine map with iso-efficiency and peak torque lines.

2.5 Electric Motor

Similarly to the internal combustion engine, the electric motor is also mod-

eled with a quasi-static map of the electric power PEM as a function of the

requested torque TEM and speed ωGB. The torque is again superposed

with the torque due to inertia. Hence, the following equations describe the

electric motor.

TEM,i = TEM + ΘEM ω̇EM (2.16)

TEM = u · TGB (2.17)

PEM = fEM (TEM,i, ωGB) (2.18)

TEM,i ∈ [TEM,min(ωEM ), TEM,max(ωEM )] (2.19)

ωEM ∈ [0, ωEM,max] (2.20)
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The parameter ΘEM is the rotational inertia of the electric motor.

The corresponding efficiency map of the electric motor with the maxi-

mum and minimum torque lines is shown in Fig. 2.4. The efficiency in this

figure is expressed for the motor and the generator separately such that it

is less than one.
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Figure 2.4: Motor map with iso-efficiency and peak torque lines.

2.6 Battery

The battery is modeled by a Thévenin equivalent circuit model. Such

a model neglects the dynamics of the electrochemistry. However, these

dynamics are relatively fast and can be neglected for a model dedicated to

energetic considerations. The equivalent circuit is represented in Fig. 2.5,

where Voc(ξ) is the open-circuit voltage of the battery depending on the

state-of-charge ξ. The variable Ri(ξ, sign(IBT )) is the inner resistance as a

function of the state-of-charge, but also of the direction of the current IBT .

This simple model allows to express the terminal voltage of the battery as

VBT (ξ, IBT ) = Voc(ξ) − Ri(ξ, sign(IBT )) · IBT , (2.21)

where a discharging current is defined to be positive in accordance with

the literature, as for example in [8].
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PSfrag

Ri(ξ, sign(IBT ))

Voc(ξ)VBT (ξ, I)

Figure 2.5: Equivalent circuit model for the battery.

The battery power results then as

PBT = VBT (·) · IBT (·) = Voc(·) · IBT (·) − Ri(·) · I
2
BT (·). (2.22)

In order to formulate the battery model corresponding to the backward-

approach, the above equation is solved for the battery current as a function

of the power that is drawn/supplied from/to the battery. This yields

IBT (ξ, sign(PBT )) =
Voc(ξ) −

√

V 2
oc(ξ) − 4Ri(ξ, sign(IBT )) · PBT

2Ri(ξ, IBT )
. (2.23)

The state-of-charge of the battery is the only state variable of this model

and results from current integration

dξ

dt
= −

IBT

Q0
, (2.24)

with an initial condition ξ(t = 0) = ξ0. The parameter Q0 is the nominal

battery capacity. The state-of-charge of the battery is physically limited

to [0, 1]. In order to prevent the battery from excessive wear, operation of

the battery is only allowed in some limited range

ξ ∈ [ξmin, ξmax], (2.25)

given by hard constraints that lie within the physical SoC limits. These

hard constraints are defined by the manufacturer of the battery pack. In

this thesis, the state constraints are set to ξmin = 0.4 and ξmax = 0.7 in

accordance with [16].

The battery used in this thesis is a nickel-metal hydride battery (NiMH).

Its open-ciruit voltage Voc(ξ) is shown in Fig. 2.6, its inner resistance is

kept constant due to the lack of better data. Its value is given in Table 2.1.

Since measurements were performed on a lithium-ion battery (Li-ion) at a

later stage, the Li-ion battery with the measured data is used in Sec. 4.3.2.
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Figure 2.6: Open-circuit voltage of the NiMH battery.

2.7 Auxiliary Systems

The power demand of the auxiliary systems are summarized in an electric

power demand Paux. For the sake of simplicity this value is kept constant

throughout this thesis.
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Table 2.1: Parameters for the powertrain.

Parameter Value Unit

mv 1578 [kg]

Af 2.51 [m2]

cd 0.3167 [-]

cr,0 9·10−3 [-]

cr,1 8.53·10−5 [s/m]

rWH 0.308 [m]

ΘWH 3.8925 [kg m2]

TWH,loss 7.912 [Nm]

νGB [17.4812, 9.8806, 6.4858, . . . [-]

4.9657, 3.9523, 3.3949]

ηGB 0.9 [-]

ΘICE 0.079 [kg m2]

ωICE,idle 89 [rad/s]

ωICE,max 655 [rad/s]

ΘEM 0.0289 [kg m2]

ωEM,max 1262 [rad/s]

Ri 0.273 [Ω]

Q0 22320 [C]

Paux 350 [W]



Chapter 3

Dynamic Programming

This chapter gives a brief overview of the deterministic dynamic program-

ming algorithm, which throughout this thesis is referred to as dynamic

programming (DP). This algorithm relies on the principle of optimality

that was introduced by Bellman [13]. In this chapter, the algorithm is

introduced with a focus on its application, the interested reader is referred

to [14] for more details.

Since DP requires evaluation of the entire discretized state/time-space,

it is computationally expensive. However, it allows to find the global opti-

mal control signal if the disturbance is completely known. This global op-

timum is very valuable to quantify the performance of suboptimal, causal

control strategies on an objective basis. Further, the results can be used

to get insight into the structure of the optimal solution and help to under-

stand the problem.

Since the algorithm relies on the discretized state-space, some numer-

ical problems appear that lead to some deviations of the achieved final

state from the targeted final state. During this work, a method was de-

veloped to improve the numerics of the algorithm. This finally increases

the precision of the final state considerably. Further, this method allows

for reduction of the computational cost considerably. The method is so far

only applicable to problems with a scalar state and is published in [20, 21].

In Chapter 6, the method is applied with a second state variable which is

only a binary variable. The extension for this special case is explained in

more details in [22].

The method to improve the numerics is investigated on the example of

the optimal fishing problem in a Lotka-Volterra population. This standard

optimal control problem can be solved analytically for the continuous-time

problem and allows therefore for a complete evaluation of the method.
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3.1 Problem Formulation

The goal of this project is to find an optimal control that minimizes the fuel

consumption of a full parallel hybrid electric vehicle. In order to be able to

use typical optimization tools, such as dynamic programming or Pontrya-

gin’s minimum principle, the problem must be formulated mathematically

in a suitable form, first.

A non-mathematical formulation of the current problem would be:

Find the optimal control signal, that actuates the hybrid vehicle such that

its integral fuel consumption over a given driving cycle is minimized. This

control signal must further assure that the state-of-charge of the battery

remains within well defined bounds. It must also take into account that

the torque provided by the electric motor, as well as the engine torque,

are limited. At the beginning of the driving cycle, the battery is at some

initial state-of-charge. Obviously, the fuel optimal solution would be to

deplete the battery over the driving cycle since the electric energy can be

used to replace fuel energy. To avoid such charge depleting solutions, a

condition on the final state-of-charge must be defined. In this thesis, we

define a target set for the final state.

A general mathematical formulation of such an optimal control problem

with fixed final time tf is

min
u(t)

J(u(t)) (3.1a)

s.t.

ẋ(t) = F (x(t), u(t), t) (3.1b)

x(0) = x0 (3.1c)

x(tf ) ∈ [xf,min, xf,max] (3.1d)

x(t) ∈ X (t) (3.1e)

u(t) ∈ U(t), (3.1f)

where

J(u(t)) = G(x(tf )) +

∫ tf

0

H(x(t), u(t), t)dt (3.1g)

is the cost functional.

The energy management problem for the parallel hybrid electric vehicle
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can be formulated as an optimal control problem as follows:

min
u(t)

J(u(t)) (3.2a)

s.t.

ξ̇(t) = −
IBT (ξ(t), u(t), t)

Q0
(3.2b)

ξ(0) = ξ0 (3.2c)

ξ(tf ) ∈ [ξf,min, ξf,max] (3.2d)

ξ(t) ∈ [ξmin, ξmax] (3.2e)

u(t) ∈ [umin(t), umax(t)], (3.2f)

where

J(u(t)) =

∫ tf

0

Hl·
∗
mf (u(t), t)dt (3.2g)

is the cost functional. This cost integrates the fuel mass flow
∗
mf (u(t), t)

multiplied with the (constant) lower heating value Hl over the driving

cycle. Hence, this formulation minimizes the fuel energy consumption

which is equivalent to minimizing the fuel mass consumption.

The only state variable is the state-of-charge of the battery. Its dy-

namics are given by (2.24). Together with the expressions of the current

(2.23) and the motor characteristics (2.17), the rate of change of the bat-

tery (3.2b) is expressed as a function of the control u, the state ξ, and the

time. The time variance of the model results because the disturbance de-

fined by the driving cycle wGB(t), TGB(t) is included in the model instead

of a disturbance input.

The problem formulated above by (3.2) is a typical optimal control

problem. Its following properties are worth to note:

• Nonlinearity: The state dynamics (3.2b) as well as the cost func-

tional (3.2g) are nonlinear. The system could be linearized around

some operating points. However, this would not yield useful results

because important characteristics of the system would be lost. The

most prominent characteristic is the discontinuity of the engine’s fuel

consumption between on and off condition.

• State constraints : The constraints on the state-of-charge are time-

invariant.
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• Input constraints : The input constraints are directly given by limi-

tations of the electric motor. Further, there are indirect limitations

given by the engine limitations and the torque balance. The input

constraints are time-variant, here.

• Time variance: The problem is defined over a driving cycle. Hence,

the rotational speed and the torque that are requested from the

powertrain vary with time. As a consequence, the problem is time-

variant.

3.2 Basic DP Algorithm

Since dynamic programming is a numerical algorithm used here to solve

a continuous optimal control problem, the continuous-time model (3.1b)

must be discretized in time. Let the discrete-time model be given by

xk+1 = Fk(xk, uk), k = 0, 1, . . . , N − 1 (3.3)

with the state variable xk ∈ Xk and the control signal uk ∈ Uk. Further-

more, assume that the disturbance is perfectly known in advance and at

every time instance k. This disturbance signal is included in the state

update function (3.3) in the formulation here. Hence, the update function

is a function of the time step, what is indicated with the function’s index

k.

Let π = {µ0, µ1, . . . µN−1} be a control policy. Further let the dis-

cretized cost of (3.1g) using π with the initial state x(0) = x0 be

Jπ(x0) =gN (xN ) + φN (xN ) . . .

+

N−1
∑

k=0

hk(xk, µk(xk)) + φk(xk), (3.4)

where gN (xN ) + φN (xN ) is the final cost. The first term gN (xN ) cor-

responds to the final cost in (3.1g). The second term is the additional

penalty function φN (xN ) forcing a partially constrained final state (3.1d).

The function hk(xk, µk(xk)) is the cost of applying µk(xk) at xk, according

to H(x(t), u(t), t) in (3.1g). The state constraints (3.1e) are enforced by

the penalty function φk(xk) for k = 0, 1, . . . , N − 1.
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The optimal control policy πo is the policy that minimizes Jπ

Jo(x0) = min
π∈Π

Jπ(x0), (3.5)

where Π is the set of all admissible policies.

Based on the principle of optimality [13], dynamic programming is the

algorithm, which evaluates the optimal cost-to-go1 function Jk(xi) at every

node in the discretized state-time space2 by proceeding backward in time:

1. End cost calculation step

JN (xi) = gN (xi) + φN (xi) (3.6a)

2. Intermediate calculation step for k = N−1 to 0

Jk(xi) = min
uk∈Uk

{

hk(xi, uk) + φk(xi) + Jk+1(Fk(xi, uk))
}

(3.6b)

The optimal control is given by the argument that minimizes the right-

hand side of equation (3.6b) for each xi at time index k of the discretized

state-time space.

The cost-to-go function Jk+1(x) used in (3.6b) is evaluated only on dis-

cretized points in the state space. Furthermore, the output of the model

function Fk(xi, uk) is a continuous variable in the state space which can be

between the nodes of the state grid. Consequently, the last term in (3.6b),

namely Jk+1(Fk(xi, uk)) must be evaluated appropriately. There exist sev-

eral methods of finding the appropriate cost-to-go Jk+1(Fk(xi, uk)) such as

using a nearest-neighbor approximation or using an interpolation scheme.

Throughout this thesis, linear interpolation of the cost-to-go Jk+1 is used

to account for the problem of the discretized state space.

The output of the algorithm (3.6) is an optimal control signal map.

This map is used to find the optimal control signal during a forward simu-

lation of the model (3.3), starting from a given initial state x0, to generate

the optimal state trajectory. In the map the control signal is only given for

the discrete points in the state space grid. The control signal is therefore

interpolated when the actual state does not coincide with the points in the

state grid.

1The terms cost-to-go and optimal cost-to-go are used equivalently throughout this

chapter referring to optimal cost-to-go. It is important to note that the term optimal

is used in the sense of optimality achievable under the numerical errors.
2The following notation is used: xi

k
denotes the state variable x in the discretized

state-time space at the node with time-index k and state-index i. xk denotes a (state-)

continuous state-variable at time k.
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3.3 Numerical Issues

When implementing the algorithm numerical errors must be considered

and minimized. One issue to consider is the definition of the cost function

for infeasible states and inputs. Infeasible states and inputs are of course

infinitely expensive and should therefore have infinite cost φk(xi 6∈ Xk)→∞

for k = 1, . . . , N since the defined objectives (such as final state constraints

and model limitations) cannot be achieved. When using infinite cost for

such states, some substantial numerical errors occur due to the discretiza-

tion of time and state space.

Define the set of reachable states Ωi
k over one time-step by using all

admissible inputs and starting at a given state xi at time k

Ωi
k = {x|x = Fk(xi, u) ∀ u ∈ Uk}. (3.7)

Consider the grid point/time step domain in Fig. 3.1 (bottom graph) and

that the DP algorithm is calculating the cost-to-go for the state xi at time

k+1. If an infinite cost is used for infeasible states and linear interpolation

is used the feasible part of Ωi
k+1 would use an interpolation between an

infinite cost-to-go Jk+2(x
i) and a finite cost-to-go Jk+2(x

i+1). As a result,

the cost-to-go for xi at time k + 1 becomes infinite, i.e., Jk+1(x
i) → ∞,

although the grid point {k + 1, i} is perfectly within the feasible domain.

Now consider the algorithm at time k and the step of calculating the

cost-to-go for the state xi. The cost-to-go Jk(xi) will, for the same reason

as for the time k + 1, be infinite since Jk+1(x
i) was calculated before

to be infinite. When these effects continue and the algorithm proceeds

backwards in time, the calculated infeasible region will grow into the actual

feasible region.

A first step to tackle this problem is to use a big, but finite value

for the cost instead of infinity φk(xi 6∈ Xk) = J∞ for k = 1, . . . , N . This

big finite value J∞ must be bigger than the maximum value of the cost-

to-go function Jk(xi). Using a finite cost value for infeasible domains

improves the solution, but the effect shown above for infinity cannot be

completely eliminated close to the boundary line. Throughout this chapter

the method of using a finite cost value J∞ for infeasible domains together

with the algorithm in Sec. 3.2 is referred to as basic DP.

Due to the interpolation between feasible and infeasible states, the

infinite gradient at the boundary line is being blurred. This is shown in
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Figure 3.1: Schematic overview of an optimal control problem solved using the
dynamic programming algorithm. The figure shows the state variable boundaries
for the dynamic programming algorithm for the entire problem domain (top) and
in the grid point/time step domain (bottom).

Fig. 3.2 for the fishing problem (introduced later), where the dashed line is

the cost-to-go computed by DP with a finite cost for infeasible states, i.e.,

the basic DP method. The solid line corresponds to the cost-to-go from DP

improved by the new method introduced in this work. As a result of the

blurred cost-to-go function, the optimal state trajectory cannot approach

the boundary line since the computed cost-to-go near the boundary line
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is too high. Figure 3.3 shows the corresponding state trajectory (dashed)

being deviated by this effect. The solid line is the state trajectory from

DP improved by the new method.
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Figure 3.2: Section of the cost-to-go function Jk(x) at time index k such that
t = 180 h for the fishing problem. State space discretization is ∆x = 10, penalty
for infeasible states is set to J∞ = 1200.

3.4 Boundary Line Method

The method presented in this section tackles the problem of a blurred

gradient at the boundary line due to interpolation of the cost-to-go between

a feasible and an infeasible state-grid point. Therefore, the boundary line

between feasible and infeasible regions must be found. This is shown in the

first part of this section. The second part shows a simple, yet powerful,

method to improve the DP by accounting for this boundary line. This

improved DP is referred to as boundary line DP.

Throughout this section, equation (3.3) is reformulated as

xk+1 = fk(xk, uk) + xk, k = 0, 1, . . . , N − 1 (3.8)

where

fk(xk, uk) = Fk(xk, uk) − xk. (3.9)
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Figure 3.3: State trajectories from DP for the fishing problem. The solid line
shows the result based on the boundary line method. The dashed line is the state
trajectory resulting from the basic DP. The dotted vertical line at t = 180 h
indicates the time where Fig. 3.2 is evaluated. State space discretization is
∆x = 10, penalty for infeasible states is set to J∞ = 1200.

3.4.1 Computation of the Boundary Line

There exist infeasible regions in the state-time space of an optimization

problem with fixed final time and a partially constrained final state if the

state dynamics are bounded. Since the dynamic system is assumed to be

one-dimensional, there exist only two infeasible regions, namely an upper

and a lower region. This is depicted in Fig. 3.1. In this section, the lower

boundary line between feasible and infeasible region is derived. The upper

boundary line is found in analogy.

The partially constrained final state is given by (3.1d). The lower

boundary line is defined as the lowest state xk,low at each time instance k

that allows to achieve the minimal final state xf,min. Note that the lower

boundary line is only discretized in time, i.e., it is continuous in the state

variable. The lower boundary line can be evaluated by sequentially going

backward in time from k = N−1 back to k = 0 and solving the following
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optimization problem at each time instance k:

min
xk,low,uk

xk,low (3.10a)

s.t.

fk(xk,low , uk) + xk,low = xk+1,low (3.10b)

uk ∈ Uk (3.10c)

xk,low ∈ Xk. (3.10d)

The problem is initialized with xN,low = xf,min. At each time-step, uk

and xk,low are the only unknowns, xk+1,low is a parameter at time k. By

solving (3.10b) for xk,low and inserting it in (3.10a) the following, more

direct problem is obtained:

max
xk,low,uk

fk(xk,low , uk) (3.11a)

s.t.

fk(xk,low , uk) + xk,low = xk+1,low (3.11b)

uk ∈ Uk (3.11c)

xk,low ∈ Xk. (3.11d)

If the state is assumed to be unconstrained, i.e., (3.11d) is omitted, the

following formulation is equivalent:

xk,low = xk+1,low − max
uk∈Uk

fk(xk,low , uk) (3.12)

Equation (3.12) is a fixed point problem (x = f(x)), where xk,low is the

unknown.

The lower boundary line is finally found by the following algorithm:

1. Initialize with the lower bound of the partially constrained final state

xk,low = xf,min.

2. Proceed backward in time for k = N − 1, . . . , 0

(a) Solve the fixed point problem (3.12) without state constraints

as shown below in (3.13).

(b) Check wether the solution found respects the state constraints.

(c) If the constraints are not respected, solve the general problem

(3.11).
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(d) Store the solution xk,low with the respective minimizer uk,low

and the cost-to-go Jk,low .

The fixed point problem (3.12) of time step k without state constraints

can be solved with the following algorithm3:

1. Initialization:

xj=0
k,low = xk+1,low (3.13a)

2. Iteration over j until a specified tolerance is achieved:

xj+1
k,low = xk+1,low − max

uk∈Uk

{fk(xj
k,low , uk)} (3.13b)

This algorithm converges if

∣

∣

∣

∣

∣

∂

∂xj
k,low

max
uk∈Uk

{fk(xj
k,low , uk)}

∣

∣

∣

∣

∣

< 1. (3.13c)

Note that the algorithm mentioned above (3.13) finds the limit value xk,low

in the first iteration if the update function fk is independent of the state

variable xk.

3.4.2 Interpolation Near the Boundary Line

It is assumed that the state boundary lines xk,low (and xk,high) shown in

Fig. 3.1 with their corresponding cost-to-go Jk,low (and Jk,high) along the

boundary line have been calculated prior to the DP algorithm. Therefore,

when the set Ωi
k contains the boundary it is possible to interpolate be-

tween the exact boundary and a feasible state grid point as illustrated in

Fig. 3.4 with the solid and the dashed lines. The dotted line illustrates

the interpolation by the basic algorithm at the boundary between feasible

and infeasible regions.

Consider the DP algorithm to evaluate the cost-to-go for the state-grid

point xi at time k + 1 (see Fig. 3.1, bottom graph). Starting from state

xi, the state achieved at the end of this time-step

xk+2 = fk+1(x
i, uk+1) + xi ∈ Ωi

k+1 (3.14)

3The index j placed on the top right of x is the iteration index, here. It is not the

index of the state-grid as used in the rest of this chapter.
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xi−2 xi−1 xi xi+1 xi+2
x

Jk+1(x)

Jk+1(x
i−1)

Jk+1,low

J∞

xk+1,low

feasibleinfeasible

Figure 3.4: Interpolation of Jk+1(x) near the boundary line. The dashed lines
illustrates the (linearly) interpolated values including the boundary line. The
dotted line illustrates the interpolation used by the basic algorithm.

can reach the feasible as well as the infeasible region. The corresponding

cost-to-go Jk+2(xk+2) is evaluated by interpolation between Jk+2(x
i+1)

and Jk+2,low if the state xk+2 is above or on the boundary line xk+2,low.

Otherwise, the cost-to-go is set infinite or to the big, finite value J∞. This

procedure allows to maintain the same accuracy close to the boundary line

as achieved within the feasible domain.

Application of the optimal control signal map in the forward simulation

which is mentioned in Sec. 3.2 is improved by the boundary line in anal-

ogy. Since the control signal on the boundary line was evaluated before,

interpolation of the control signal is carried out between the grid points of

the feasible domain or between the feasible domain and the boundary line.

3.5 Example: Optimal Fishing

This section studies a well-known optimal control problem namely the

optimal fishing in a Lotka-Volterra fish population. The fishing problem

is chosen because it has an analytic solution.



29 Chapter 3 Dynamic Programming

3.5.1 Continuous-Time Problem

The continuous-time dynamic Lotka-Volterra system is

ẋ(t) =
2

100
·

(

x(t) −
x2(t)

1000

)

− u(t), (3.15)

where the state variable x(t) is the amount of fish in a lake, the con-

trol signal u(t) is the fishing rate. The control signal u(t) is limited

to u(t) ∈ [0, 10]. For the considered system the state x(t) is limited to

x(t) ∈ [0, 1000] since

lim
t→∞

u(t)=0

x(t) = 1000. (3.16)

The objective is to maximize the amount of fish caught, which is equivalent

to minimize

J =

∫ tf

0

−u(t)dt (3.17)

within a fixed time tf while the minimal amount of fish in the population

at the final time must be xf,min = 750. This can be stated as the optimal

control problem

min
u(t)

∫ tf

t=0

−u(t)dt (3.18a)

s.t.

ẋ(t) =
2

100
·

(

x(t) −
x2(t)

1000

)

− u(t) (3.18b)

x(0) = 250 (3.18c)

x(tf ) ≥ 750 (3.18d)

x(t) ∈ [0, 1000] (3.18e)

u(t) ∈ [0, 10] (3.18f)

tf = 200. (3.18g)

The solution to the above optimal control problem is straightforward to

determine and has the form

uo(t) =















0 if t ∈ [0, ta]

5 if t ∈ (ta, tf − tb)

0 if t ∈ [tf − tb, tf ]

(3.19a)
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where

ta = tb = 100 · artanh

(

1

2

)

. (3.19b)

The final maximum amount of fish caught is

Jo
analytic = −5 · (tf − ta − tb)

= −1000 ·

(

1 − artanh

(

1

2

))

≈ −450.694 (3.20)

3.5.2 Discrete-Time Problem

In order to evaluate the optimal solution by means of dynamic program-

ming, the continuous-time state dynamics (3.15) must be discretized. Us-

ing an Euler forward approximation with a time step ts =0.2 h, the discrete-

time model is

xk+1 = f(xk, uk) + xk, k = 0, 1, . . . , N − 1 (3.21a)

where

f(xk, uk) = ts ·

(

2

100
·

(

xk −
x2

k

1000

)

− uk

)

. (3.21b)

The state xk is the amount of fish in a lake, the control signal uk is the

constant fishing rate during one time step. The discrete-time optimal

control problem is:

min
uk∈[0, 10]

N−1
∑

k=0

−uk · ts (3.21c)

s.t.

xk+1 = f(xk, uk) + xk (3.21d)

x0 = 250 (3.21e)

xN ≥ 750 (= xf,min) (3.21f)

xk ∈ [0, 1000] (3.21g)

N =
200

ts
+ 1. (3.21h)

As mentioned in Sec. 3.3, use of a big, but finite value J∞ to penalize

infeasible states improves numerics. This value should be chosen as small
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as possible but larger than any value of the (feasible) cost-to-go that could

occur. Since this simple example allows for analytic solutions the max-

imum cost-to-go of the continuous-time problem is evaluated in order to

choose a suitable value for J∞. The minimum cost-to-go Jt(x) is obviously

at t = 0 and x = 1000 and yields:

Jt=0(x = 1000) = 500 artanh

(

1

2

)

− 1000 − 125π

≈ −1118. (3.22)

For the fishing problem, at t = 0, the minimum cost-to-go (3.22) is ap-

proximately 1118 less than the cost-to-go at t = tf = 200

Jt=200(x ∈ Xt=200) = 0. (3.23)

The penalty of the infeasible states at tf must therefore be penalized by

value larger than 1118 to ensure that the final state constraint is met.

Consequently, the penalty J∞ used for the cost-to-go of infeasible states

is set to a value greater than J∞ > 1118. For the example here a value of

J∞ = 1200 (3.24)

is chosen and is used in the DP-algorithm.

The output of the dynamic programming algorithm is an optimal con-

trol signal map, specifying the optimal control signal at each time step k

and each state xk ∈ Xk. The optimal control signal map for the Lotka-

Volterra system is shown in Fig. 3.5. It shows that the optimal control

is ‘not fishing’ (u = 0) if the fish population is small (x < 500), ‘moderate

fishing’ (u = 5) if the population is x = 500 and ‘full fishing’ (u = 10) is

the population is large (x > 500). Toward the end of the problem, one

must stop fishing as late as possible, such that the population reaches the

specified minimum final size of xf,min = 750. The resulting optimal state

trajectory, i.e., the fish population for an initial state of x0 = 250 is shown

as the black solid line. The solution of the dynamic programming clearly

reflects the optimal control found for the continuous problem (3.19a).

3.5.3 Resolution Study

The accuracy of the solution obtained with dynamic programming can de-

grade due to numeric issues as mentioned earlier. The state space must
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Figure 3.5: The optimal control signal map, determined using dynamic pro-
gramming, for the discrete-time Lotka-Volterra system. The optimal state tra-
jectory for x0 = 250 when using the map is shown as the solid black line.

be discretized for the DP-algorithm. The resolution of the state space

discretization is a critical quantity. On one hand, the computational ef-

fort increases with higher resolution. On the other hand, accuracy of the

solution improves with increasing resolution.

Therefore, a study is carried out here to quantify the accuracy of the

solution obtained by DP for the simple example of the fishing problem.

The fishing problem has been chosen because an analytic solution exists

that can be used as a benchmark. The resolution study is carried out for

the basic DP, but also for the new method presented in this chapter, i.e.,

the boundary line DP.

The quality of the solution is expressed as the relative difference be-

tween optimal cost obtained by DP and the analytic optimal solution,
Jo

analytic−Jo
dp

Jo
analytic

. Figure 3.6 shows this deviation of the optimal solution eval-

uated with DP (basic and boundary line) from the analytic optimal solu-

tion.

Since the analytic solution is evaluated for the original continuous-time

problem, the discrete-time solution can never achieve the analytic optimal

solution. This discretization error is indicated in Fig. 3.6 with the dotted

line marked as ‘minimum time-discretization error’. It emphasizes that the

solution using the boundary line DP converges well toward the discrete-
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Figure 3.6: The relative deviation of the cost computed by dynamic program-
ming compared to the optimal analytic solution for the fishing problem.

time optimum. Furthermore, this figure illustrates the importance of the

boundary line: the numeric solution with the boundary line DP is closer to

the analytic solution than with the basic DP for the same resolution by a

factor of 50 to 68000. It is interesting to note that the cost (3.21c) resulting

from boundary line DP is inferior to the cost resulting from basic DP over

the entire range of resolution that was investigated, i.e., the solution using

the boundary line DP at lowest resolution (∆x = 125) is closer to the

analytic solution than the solution of the basic DP at highest resolution

(∆x = 1).

The relative deviation of the final state achieved by the DP (basic

and boundary line) from the optimal final state is shown in Fig. 3.7 for

different resolutions. The optimal final state is the lowest admissible final

state for this example, i.e., xo(tf ) = xf,min. The figure shows clearly that

the final state deviation of the basic DP decreases with decreasing ∆x, i.e.,

increasing resolution. Using the boundary line DP, the final state deviation

is negligible over the entire range of resolutions investigated here.
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Figure 3.7: The relative deviation of the actual final state and the optimal
final state for the fishing problem.

3.5.4 Computational Effort

The computational effort of an optimization method is often a crucial

factor that determines wether a method is being applied in practice for a

given problem or not. Therefore, not only the accuracy of a solution as

shown in Sec. 3.5.3 is relevant, but also the corresponding computational

cost.

The number of model-function evaluations for the basic DP with an

equally spaced grid is given by:

NDPbasic
feval = Nx · Nu · N. (3.25)

This is only true for a single dimensional state space and a scalar control

signal. Nx is the number of grid points for the state space, Nu for the

control signal, and N for the time discretization.

When using the boundary line DP, the infeasible domain is well known.

Consequently, computation for the grid points in this infeasible domain

(see Fig. 3.1) can be omitted [23]. The number of infeasible grid points

at a time-step k is denoted as N infeas
k,x . Hence, the number of function
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evaluations that can be saved are:

N infeas
feval = Nu ·

N−1
∑

k=0

N infeas
k,x . (3.26)

The cost to evaluate the boundary line cannot be neglected. The number

of function evaluations needed to compute the line is denoted with N line
feval.

Consequently, the number of function evaluations needed for solving

the DP with the boundary line is given by:

NDPline
feval = NDPbasic

feval − N infeas
feval + N line

feval. (3.27)
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Figure 3.8: Number of function evaluations needed to find the solution of the
fishing problem.

Figure 3.8 shows the number of function evaluations for the fishing

problem over the discretization step ∆x. It shows that more computations

can be saved due to the infeasible domain than what is needed to evaluate

the boundary line. The boundary line DP requires less function evaluations

by a factor of 1.5 to 1.85 than the basic DP over the entire range of

discretization steps investigated here. Further it should be recalled that the

accuracy of the solution is considerably higher, even if the computational

burden is lower.

More interesting is a comparison of solutions of similar accuracy. There-

fore, the solution using the basic DP at lowest discretization step ∆x = 1 is
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Table 3.1: Comparison at similar accuracy for the fishing problem.

basic DP boundary

line DP

state space discretization [-] ∆x 1 125

amount of fish caught [-] −J 445.936 449.340

function evaluations [-] Nfeval 1002001000 4877143

compared to the solution of the boundary line DP at highest discretization

step ∆x = 125. The values are shown in Table 3.1. These results reveal

that the boundary line DP is computationally a factor of 1002001000
4877143 ≈ 205

more efficient than the basic DP although the accuracy of the solution is

still better (449.340 > 445.936). This result motivates to apply the method

to more complex systems.

3.6 Application on the Hybrid Vehicle

The optimal control problem of the energy management for the parallel

hybrid electric vehicle as formulated by (3.2) is solved using dynamic pro-

gramming for the NEDC with the same algorithm as applied to the optimal

fishing problem. The initial condition is ξ0 = 0.55, the final target set is

ξf,min = 0.55 and ξf,max = 0.7, and the state constraints are ξmin = 0.4

and ξmax = 0.7. In Fig. 3.9 the resulting optimal torque split is shown at

each state-of-charge over the duration of the driving cycle for the hybrid

vehicle. Similarly to the fishing problem, the optimal state-of-charge tra-

jectory is close to the boundary of the feasible state region at the end of

the problem.
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Figure 3.9: Output of the dynamic programming algorithm. The optimal input
map for a full HEV driving the NEDC and the state-of-charge trajectory (black)
when using the optimal control signal map.
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3.7 Conclusions

The deterministic dynamic programming algorithm is briefly introduced

and numerical issues with final state constraints are pointed out. A method

is presented to handle these numerical issues appropriately. This method

is referred to as boundary line method and it is evaluated on an exam-

ple where analytical solutions exist. This investigation shows clearly that

the accuracy of the final state has been increased considerably, even at

relatively low state-space resolution.

In addition, this method proves to be computationally very efficient,

since the resolution of the state-space could have been decreased consider-

ably while maintaining the same accuracy as with the basic DP algorithm.

Further, computation of the grid points lying within the infeasible do-

main can be omitted, reducing computational cost further. The additional

computational steps required to compute the boundary line are negligible

compared to the computations that can be saved by application of this

method. However, the method applies so far to optimal control problems

with one state variable, only.

Finally, the optimal control map for the fuel optimal torque split on a

full parallel hybrid vehicle is shown as a further example. The algorithm

shown in this chapter is being used extensively in the following chapters

mainly to evaluate the performance of suboptimal solutions with respect

to the theoretical optimum.



Chapter 4

From Optimal Toward Causal Control

The optimal control evaluated with dynamic programming in Chapter 3

clearly yields the global optimal control for the given driving cycle. How-

ever, it cannot be applied for real-time applications due to many limita-

tions. First, the driving cycle, i.e., the disturbance has to be known a

priory. This means, that the control resulting from DP is fully predictive,

hence, non-causal. Second, it is computationally expensive and therefore

not suitable for real-time application. Therefore, part of the optimality

has to be sacrificed in order to derive a causal control. Nevertheless, the

global optimal solution is very valuable since it allows to benchmark the

suboptimal, but causal controllers with respect to the global optimum that

could be achieved theoretically. If a causal controller achieves performance

that is close to the global optimum, it proves to be an appropriate con-

trol. Further, the global optimum can be applied to get insight into the

structure of the optimal solution.

This chapter moves stepwise toward a fully causal control. First, the

structure of an optimal control is derived by means of Pontryagin’s mini-

mum principle in Sec. 4.1. In order to render the problem solvable, some

simplifications of the model have to be admitted. Pontryagin’s minimum

principle yields necessary conditions for the optimal control only. Hence,

global optimality is not guaranteed. In Sec. 4.1.3, the necessary conditions

for optimality that yield a two-point boundary value problem are solved

numerically.

The step toward a causal controller is taken in Sec. 4.2, where the

necessary conditions of optimality together with the insights of the optimal

control are being used to derive a suboptimal, but fully causal control. At

this stage, this causal control is only using information of the current state

of the plant. This control relies on the model presented in Chapter 2 and
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the resulting control cannot be expressed with analytic functions, it rather

needs to perform some simple optimization using the model equations in

real-time at every time sample. Although this online optimization can be

carried out on a standard engine control unit (ECU), a computationally

less expensive control is presented in Sec. 4.3 based on a simplified model.

This simplified control is not only computationally attractive since the

set of control candidates is solved analytically, this simplified control even

yields a well defined control law. This law consists of simple rules that

rely only on parameters of the powertrain. With this at hand, one can

prove, that, for the simplified yet realistic model, rule-based strategies can

be derived from optimal control theory.

4.1 Pontryagin’s Minimum Principle

The optimal control problem formulated in Sec. 3.1 in its general form (3.1)

and in its specific form (3.2) for the fuel optimal control of the full parallel

HEV is hard to be solved using Pontryagin’s minimum principle. This is

a consequence of the problem having state constraints, having a partially

constraint final state, and being time-variant. The state constraints, that

could be well handled in DP, increase the complexity of the solution using

Pontryagin’s minimum principle considerably. As indicated in [24] gener-

ally and in [25] specifically for HEVs, such a problem can be solved if the

number of intervals where the state constraints become active is known.

In typical (time-invariant) optimal control problems the state constraints

are active only during one interval in time. However, for the problem de-

scribed in this work, it is a priori unknown at what time instances and how

often the state constraints become active. The authors of [26] present an

iterative, heuristic method to solve the optimal control problem of a state

constrained HEV. However, the method is acausal and yields a suboptimal

solution which is close to the global optimal solution. In this section, the

state is assumed to be unconstrained unless otherwise stated in order to

keep the problem solvable. This assumption can lead to solutions that vi-

olate the state constraints being present in the real model. However, this

approach allows to derive the structure of an optimal control. At a later

stage, a feedback control is introduced to keep the state-of-charge around

some reference value. This SoC-control induces some additional fuel cost.

Hence, a part of the optimality has to be sacrificed to keep the SoC away
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from its constraints.

Furthermore, the optimal control problem (3.1) is defined with a target

set for the final state. Physical considerations yield clearly that the fuel

optimal solution of the HEV-problem will always target the lower bound of

this target set. Any final state-of-charge that is higher than the necessary

minimum final state corresponds to some energy stored in the battery

that could have been used to further reduce fuel consumption. Hence, the

target set of the final state can be reduced to a single point without loss

of optimality of the solution:

ξ(tf ) ∈ [ξf,min, ξfmin] = ξf,min = ξf . (4.1)

Summarizing, the optimal control problem of the HEV is with

• fixed final time tf which is given by the duration of the driving cycle,

• unconstrained state by assumption,

• and fixed final state since the final target set can be reduced to a

single point without impact on the optimal solution.

4.1.1 Necessary Conditions for Optimality

In order to state the necessary conditions for optimality, the Hamiltonian

needs to be defined first. From (3.2b) and (3.2g) it results as

H(ξ(t), u(t), λ(t), t) = Hl
∗
mf (u(t), t) − λ(t)

IBT (ξ(t), u(t), t)

Q0
, (4.2)

where λ(t) is the costate, which is sometimes also referred to as augmented

variable, adjoint variable, or Lagrange multiplier.

According to Pontryagin’s minimum principle, the optimal control sig-

nal uo must satisfy the following necessary conditions [24, 27]:

1. State dynamics, boundary conditions, and costate dynamics:

ξ̇o(t) = ∇λH|o = −
IBT (ξo(t), uo(t), t)

Q0
(4.3a)

ξo(0) = ξ0 (4.3b)

ξo(tf ) = ξf (4.3c)

λ̇o(t) = −∇ξH|o = λ(t)
1

Q0

∂

∂ξ
IBT (ξo(t), uo(t), t) (4.3d)
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2. For all t ∈ [0, tf ], the Hamiltonian H(ξo(t), uo(t), λo(t), t) has a

global minimum with respect to u ∈ [umin(t), umax(t)] at u = uo(t),

i.e.,

H(ξo(t), uo(t), λo(t), t) ≤ H(ξo(t), u(t), λo(t), t). (4.3e)

4.1.2 Physical Interpretation of the Necessary Condi-

tions

The first of the necessary conditions (4.3a) simply yields back the state

dynamics of the system. The second (4.3b) and third condition (4.3c) im-

pose the initial and final condition on the system. If the final condition

is chosen identical to the initial condition, the vehicle will be operated

such that the battery’s charge is sustained over the driving cycle and the

entire energy consumption of the vehicle is covered from fuel energy. The

fourth condition (4.3d) yields the dynamics of the costate. For the cur-

rent problem, neither an initial nor a final condition on the costate are

being imposed. The optimal, continuous-time control problem, which is

of infinite size, is reduced to a problem of finite size using Pontryagin’s

minimum principle. The remaining problem consists only on finding an

initial condition on the costate such that all the necessary conditions are

met. This is a one-dimensional problem, here. The physical meanings of

the costate λ and the Hamiltonian H are not obvious so far. Introducing

the following substitution of the costate with a dimensionless variable

s(ξ(t), t) := −
λ(t)

Voc(ξ(t))Q0
, (4.4)

yields the following expression for the Hamiltonian:

H(ξ(t), u(t), s(t), t) = Hl·
∗
mf (·) + s(·)Voc(·)Q0

IBT (·)

Q0
,

= Pf (u(t), t) + s(ξ(t), t) · PBT,i(ξ(t), u(t), t), (4.5)

where Pf and PBT,i are the fuel power and the inner battery power given

by

Pf (·) = Hl·
∗
mf (·) (4.6)

PBT,i(·) = Voc(·) · IBT (·). (4.7)
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The physical meaning of the Hamiltonian and the introduced variable

s become much clearer from the form of equation (4.5). The fuel power

Pf and the inner battery power PBT,i are summed up, weighted by s. If

for example the vehicle is operated in pure thermal mode, the battery’s

current is zero and the value of the Hamiltonian is the current (fuel) power

consumption of the vehicle. If the engine would now be operated at slightly

higher load than required from the driving cycle, the electric path must

provide some negative power to meet the power balance. This negative

power is a recharging power according to the sign definition introduced in

Chapter 2 of the model. The value of the Hamiltonian is then the increased

fuel power reduced by a weighted negative electric power. It seems that

the value of the Hamiltonian represents an equivalent fuel power. The nor-

malized costate variable s converts the inner battery power into a quantity

of equivalent fuel power. Hence, the variable s is referred to as equivalence

factor as firstly mentioned in [28, 29].

Finally, the necessary condition (4.3e) simply expresses that the op-

timal control action at every time is found as the global minimizer of

the Hamiltonian along the optimal trajectory. In other words, the equiv-

alent fuel power computed with the optimal equivalence factor must be

minimized at every time. This minimization of the Hamiltonian typically

yields a finite set of optimal control signals out of the continuous space of

admissible control signals.

In literature, such approaches for evaluating the fuel optimal control of

HEVs have been introduced much earlier. The authors of [5, 6, 7] found by

physical reasoning that minimizing some equivalent fuel consumption at

every time step, i.e., minimizing a local cost function instead of minimizing

the integral cost function, yields results that are very close to the optimal

solution. Later, it was shown by [10] that the idea of minimizing a local

cost function can be derived from optimal control.

4.1.3 Two-Point Boundary Value Problem

The problem resulting from the necessary conditions for optimality (4.3)

from Sec. 4.1.1 is a two-point boundary value problem (2PBVP). To solve

this problem, the initial condition for the costate λ(0) must be found such

that the resulting final state ξ(tf ) from applying the Hamiltonian mini-

mizing control meets the specified final state ξf . This initial costate can

be found by a shooting method.
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Since the sensitivity of the current of the battery IBT on the state-

of-charge ξ is small, the partial derivative ∂IBT (·)
∂ξ

is assumed to be zero.

With this assumption, the costate dynamics (4.3d) result as

λ̇(t) = λ(t)
1

Q0

∂

∂ξ
IBT (ξ(t), u(t), t) ≈ 0. (4.8)

Hence, the costate is a constant and is identical to its initial value:

λ(t) = λ(0) = λ0. (4.9)

In order to justify this assumption, the two-point boundary value prob-

lem with the assumed constant costate is solved for the problem without

state constraints. The simulations are carried out for four regulatory driv-

ing cycles, namely NEDC, CADC, ARB-02, and FTP-75. These driving

cycles are shown in Appendix B. The engine-off phase of the FTP-75 of

600 s has been removed because thermal effects are neglected in the model.

The resulting state trajectory for CADC is shown in Fig. 4.1. This

graph shows that both state-of-charge trajectories have identical initial

and final states as specified. The trajectory resulting from DP is with

higher values for the state-of-charge. This is a consequence of the battery

having a higher efficiency at higher SoC. Since the dynamics of the costate

are neglected, the two-point boundary value problem does not account

for this effect appropriately. In order to quantify the optimality of the

solution, the resulting fuel consumption of the two-point boundary value

problem is compared to the fuel consumption resulting from DP. The rela-

tive difference between the fuel consumption FCS achieved by any strategy

S and the fuel consumption FCDP resulting from DP is expressed as the

relative excess consumption rEC which is defined as

rEC =
FCS − FCDP

FCDP

. (4.10)

The resulting fuel consumptions FC are summarized in Table 4.1, together

with the relative excess consumption rEC, the constant costate λ0, and

the maximum and minimum value of the state-of-charge trajectory. The

final states, achieved for the two-point boundary value problem and for

DP, lie within 6 ·10−4 from the specified final state for all four cycles. The

maximum difference between these two final states over all four cycles is

less than 2 · 10−10. This shows, that the simulations are valid and well

comparable.
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Table 4.1: Simulation results for the two-point boundary value problem.

Cycle
FC (2PBVP/DP) rEC λ0 max/min(ξ(t))

[l/100km] [%] [J] [-]

NEDC 4.79/4.79 0.166 −1.454 · 107 0.55/0.28

CADC 6.67/6.67 0.055 −1.387 · 107 0.55/0.29

ARB-02 6.64/6.64 0.007 −1.386 · 107 0.72/0.49

FTP-75 4.47/4.47 −0.005 −1.452 · 107 0.60/0.41

t [s]

ξ
[-
]

2PBVP DP

0 500 1000 1500 2000 2500 3000 3500

0.2

0.4

0.6

Figure 4.1: State-of-charge trajectories for the two-point boundary value prob-
lem with a constant costate and for DP on CADC.

The fuel consumption resulting from solving the two-point boundary

value problem with the assumption of a constant costate is very close to

the optimum evaluated by DP. It is important to note that the solution of

DP has some very small deviation from the global optimum, resulting in

a negative rEC for the case of the FTP-75 driving cycle. This is due to

the fact, that DP can only be evaluated on a discretized state-space. Since

the optimal cost-to-go at the end of each time-step is interpolated linearly

between the grid points, some small errors occur due to nonlinearities in the

optimal cost-to-go. The two-point boundary value problem, in contrast, is

evaluated continuously in the state-space. This can lead to slightly better

fuel consumption in some special cases. It is important to note that the

two-point boundary value problem is acausal because the initial condition

for the costate has to be evaluated using the entire driving cycle.
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4.2 Causal Approach

All the controls presented so far in this chapter are acausal, i.e., the decision

of the control action depends on information on the future driving cycle.

In order to derive a control law that can be used in a real vehicle, it must

be fully causal. Therefore, a fully causal control strategy is derived in this

section. Hence, it must be assumed that there is no information available

on future driving conditions. Since the future driving cycle is unknown

at this stage and the battery is bounded, it must made sure that the

state-of-charge remains within some bounds. This issue can be addressed

by penalizing state-of-charge deviations from some set-point that lies in

between the lower and the upper bound of the battery. This results in an

extension of the original optimal control problem stated in (3.2). The cost

functional J given by equation (3.2g) is then extended with such a penalty

on state-of-charge deviation.

4.2.1 Derivation of Causal Control with SoC-Penalty

The cost functional (3.2g) extended with a penalty on state-of-charge de-

viations results in the extended cost functional J̃ , given by

J̃(u(t)) =

∫ tf

0

{

Hl·
∗
mf (u(t), t) + α

(

ξref (t) − ξ(t)

∆ξnrm

)2q
}

dt, (4.11)

where α is a weighting parameter, ∆ξnrm normalizes the deviation, and

q ∈ N determines the order of the penalty. The normalization with ∆ξnrm

is introduced to assure that a deviation of ∆ξnrm from the set-point ξref

yields a penalty of α independent of the choice of q.

The Hamiltonian resulting for this extended cost functional is

H̃(ξ, u, λ) = Hl·
∗
mf (u) + α

(

ξref − ξ

∆ξnrm

)2q

− λ(t) ·
IBT (ξ, u)

Q0
, (4.12)

and the H-minimizing control results as

uo = argmin
u

H̃(ξo, u, λo). (4.13)

Assuming the optimal cost-to-go function J̃ o(ξ, t) corresponding to the

extended cost functional J̃ would be known, the optimal costate is found
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as the gradient of the optimal cost-to-go in the state. This is a result from

Hamilton-Jacobi-Bellman-theory and the interested reader is referred to

[24]. Hence, the optimal costate is then given by

λo(ξ, t) =
∂J̃ o(ξ, t)

∂ξ
. (4.14)

Since no knowledge is available on future driving conditions, it is not

possible to evaluate the optimal cost-to-go function J̃ o(ξ, t). Therefore, a

(suboptimal) cost-to-go function is estimated as a function of the state-of-

charge, but independent of time. The (suboptimal, time-invariant) cost-

to-go function is estimated as follows: The cost functional (4.11) penalizes

the fuel consumption as well as any SoC deviation from the reference value.

The fuel consumption is assumed to consist of two parts. The first part

represents the fuel energy Jf,1(ξ) that would be used to re- or discharge

the battery in future from the actual state-of-charge back to the reference

value. The second part represents the remaining fuel energy use Jf,2 which

is assumed to be independent of the current state-of-charge. Therefore, the

estimated cost-to-go function is written as

J̃ (ξ) = Jf,1(ξ) + Jf,2 + JSoC(ξ), (4.15)

where JSoC denotes the cost due to SoC deviations from the reference

value.

Since only the gradient of the cost-to-go function in the state-of-charge

is of interest (4.14), the term Jf,2 does not need to be resolved. The

fuel energy used to compensate the current state-of-charge needs to be

approximated. The energy stored in the battery at a state-of-charge of

ξ(t) with respect to the energy at the reference state-of-charge ξref is

computed by

EBT,∆ξ = Q0

∫ ξref

ξ(t)

Voc(ξ̃)dξ̃. (4.16)

This energy due to a deviation from the reference state-of-charge must

be compensated in future using the thermal path. Hence, the fuel energy

used/saved to recharge/discharge the battery depends on the efficiency

of the engine, but also on the efficiency of the electric path. These effi-

ciencies depend on the future operating points and are unknown at this

stage. Therefore, a constant average conversion efficiency ηc is assumed.



4.2. Causal Approach 48

The fuel energy required to compensate the state-of-charge deviation is

consequently estimated by

Jf,1(ξ) ∼=
EBT,∆ξ

ηc

=
Q0

ηc

∫ ξref

ξ(t)

Voc(ξ̃)dξ̃. (4.17)

The SoC penalty term JSoC is estimated based on the assumption that the

SoC is controlled such that it is brought back from the current value ξ(t)

to the reference value ξref in time Th. This future SoC trajectory ξfut(τ)

is assumed to be affine in time

ξfut(τ) = ξ(t) −
ξ(t) − ξref

Th

· τ. (4.18)

The cost resulting from the second term of (4.11) combined with the as-

sumed future SoC trajectory from (4.18) is

JSoC(ξ) =

∫ Th

0

α

(

ξref − ξfut(τ)

∆ξnrm

)2q

dτ =
αTh

1 + 2q
·

(

ξref − ξ(t)

∆ξnrm

)2q

. (4.19)

Hence, the estimation of the cost-to-go function obtained from (4.15),

(4.17), and (4.19) is

J̃ (ξ) = Jf,1(ξ) + Jf,2 + JSoC(ξ)

=
Q0

ηc

∫ ξref

ξ(t)

Voc(ξ̃)dξ̃ + Jf,2 +
αTh

1+2q
·

(

ξref − ξ(t)

∆ξnrm

)2q

. (4.20)

The corresponding suboptimal, time-invariant costate resulting from (4.14)

and (4.20) thus becomes

λ(ξ) =
∂J̃ (ξ)

∂ξ
= −

Q0Voc(ξ)

ηc

− α̃ · (ξref − ξ(t))
2q−1

, (4.21)

with the substitution

α̃ :=
2qαTh

(1 + 2q)∆ξ2q
nrm

. (4.22)

Summarizing, the suboptimal but causal control u(ξ) is the minimizer of

the extended Hamiltonian H̃ (4.12), where the suboptimal, causal costate

λ(ξ) is computed with (4.21). An interesting property of the extended

Hamiltonian is that the term containing the SoC-penalty is not an explicit

function of the control signal u. Hence, the extended Hamiltonian H̃ yields

the same minimizer as the original Hamiltonian H (4.3e).
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4.2.2 Summary of the Causal Control: ECMS

In order to express the H-minimizing control with more intuitive quantities,

the substitution of λ with s (4.4) is used again. The resulting, causal

equivalence factor is then

s(ξ) =
1

ηc

+
α̃

Q0Voc(ξ)
· (ξref − ξ(t))

2q−1
. (4.23)

The average conversion efficiency ηc varies slightly with the driving profile

because it depends on the operating points of the components and these

operating points are depending on the driving cycle. Therefore, the value

of ηc is adjusted during operation to keep the state-of-charge trajectory

around the set-point ξref . This can by achieved using a an integrator with

integration time Ti. Furthermore, 1/ηc is substituted by s0 for convenience.

Summarizing, the suboptimal, causal control is given by

u = argmin
ũ

{Pf (ũ) + s(ξ) · PBT,i(ξ, ũ)} (4.24a)

s(ξ(t)) = s0 +

∫ t

0

ξref − ξ(τ)

Ti

dτ +
α̃(ξref − ξ(t))2q−1

Q0Voc(ξ)
. (4.24b)

where Pf (u) = Hl
∗
mf (u) is again the fuel power consumed by the engine

and PBT,i(ξ, u) = Voc(ξ)IBT (ξ, u) is the inner battery power for the actual

torque split.

Since the Hamiltonian represents an equivalent fuel power that must

be minimized at every time, this control is referred to as equivalent con-

sumption minimization strategy (ECMS) in consistency with the literature

[28, 29].

This ECMS can easily be implemented in a vehicle. A block diagram of

the structure of such an implementation is shown in Fig. 4.2. The inputs

to the strategy are:

• The state-of-charge of the battery. This quantity cannot be measured

directly, but there exist reliable methods to estimate it with sufficient

accuracy. The authors of [30] successfully developed an extended

Kalman filter to estimate the SoC. The necessary measurements are

the terminal current IBT and the terminal voltage VBT of the battery.

• The reference value ξref for the state-of-charge. For the case where

no information on future driving conditions is available, this quantity

is set to a constant value.
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Figure 4.2: System level block diagram of the ECMS control system with the
vehicle.

• The demand determined by the driving cycle. In a real vehicle,

it is the driver that requests a torque from the powertrain by the

accelerator and brake pedals, the rotational speed of the gearbox is

measured. In the simulation environment used here, the requested

torque and speed at the gearbox are computed from the data of the

driving cycle.

Such an implementation has been carried out successfully on a prototype

of a full parallel HEV together with the industrial partner.

This control strategy has some important properties that are worth to

be recalled here. A first important point is its causality. All the decisions

are only taken from information on the present and the past. The ECMS is

therefore non-predictive. Secondly, this structure includes a feedback path

such that the state-of-charge is controlled. A third property is that the

strategy is capable to track some reference value for the state-of-charge.

This property will be used in Chapter 5 to extend this non-predictive

ECMS.
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4.2.3 Results and Limitations of the ECMS

The non-predictive ECMS from Sec. 4.2.2 is compared now to the global

optimum obtained using DP. However, no non-predictive strategy can

guarantee to be perfectly charge sustaining. Therefore, the non-predictive

ECMS is simulated first with an initial state-of-charge of ξ(0) = 0.55

achieving some final state ξ(tf ). The DP solution is then evaluated using

these initial and final conditions on ξ. Since the precision of the achieved

final state is crucial to yield a proper evaluation, numerical issues in the

DP algorithm must be treated appropriately as discussed in Chapter 3

and [20, 21]. This procedure of evaluating the non-predictive against the

global optimal strategy with identical initial and final state yields a ‘fair’

comparison of the two strategies without the need for converting electric

energy into a fuel equivalent. The relative difference between suboptimal

and optimal fuel consumption are again expressed with the relative excess

consumption rEC (4.10) that is defined in Sec. 4.1.3.

The driving cycles used for the evaluations are standard regulatory

driving cycles such as the NEDC, the CADC, the ARB-02, and the FTP-

75. These regulatory driving cycles are shown in Appendix B. In addition,

new driving cycles with topographic profiles are proposed here. These cy-

cles are labeled FTPelv, US06elv, and SWISSelv whose profiles are shown

in Fig. 4.3. The first cycle, FTPelv, is constructed by addition of an alti-

tude profile to the FTP-75. The engine-off phase of the FTP-75 of 600 s has

been removed for the FTPelv cycle because thermal effects are neglected.

The altitude profile is obtained from the public database ADVISOR [31],

namely from its driving cycle ’NREL2VAIL’ that is a measured driving

cycle. From this altitude profile, only the section from km 14 to km 32 is

considered. The second cycle, US06elv, consists of a part of the speed pro-

file of the regulatory driving cycle US06 and is scaled down to a maximum

speed of 80 km/h. The altitude profile is extracted from topographic maps

of a real, representative road in the surroundings of Zurich. The third cy-

cle, SWISSelv, has been recorded in Switzerland and shows a relatively

large amount of elevation changes.

The parameters used to evaluate the ECMS are summarized in Ta-

ble 4.2. They are tuned for the urban part of the Common Artemis Driving

Cycle (CADC-Urban) and for the vehicle defined in Chapter 2 as follows:

The parameter q is chosen as q = 2 in order to penalize large SoC de-

viations severely while having a soft penalty on small deviations. The
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Figure 4.3: The three driving cycles with speed (solid) and topographic profiles
(dashed).

Table 4.2: Parameters for the ECMS.

Parameter Value Unit

s0 2.8 -

Ti 100 s

ξref 0.55 -

∆ξnrm 0.1 -

q 2 -

Th 500 s

α 2000 W
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reference SoC ξref is centered between the lower and the upper bound, the

typical SoC deviation used for normalization is set to ∆ξnrm = 0.1. The

crucial parameters, however, are s0, α, and Ti. In a first step, the basic

equivalence factor s0 is evaluated by using no SoC control, i.e., α = 0 and

Ti = ∞. An iterative search for the charge-sustaining s0 yields s0 = 2.77

for urban part of CADC. Hence, a rounded value of s0 = 2.8 is applied.

The control parameters α and Ti are found manually such that the SoC

deviation from the set point is less than 0.05.

Table 4.3: Simulation results for the ECMS.

Cycle
FC (ECMS/DP) rEC

[l/100km] [%]

NEDC 5.46 / 5.33 +2.4

CADC 6.72 / 6.71 +0.2

ARB-02 6.74 / 6.72 +0.3

FTP-75 4.73 / 4.70 +0.7

FTPelv 4.55 / 4.20 +8.3

US06elv 8.07 / 7.64 +5.7

SWISSelv 3.90 / 3.54 +10.1

The simulation results are summarized in Table 4.3, which shows the

fuel consumption and the relative excess consumption rEC as defined by

(4.10). These results show that the ECMS provides close to optimum fuel

consumption for most flat standard cycles. The rEC increases only for

driving cycles with long recuperation phases such as the NEDC that has a

long final deceleration phase. The situation changes substantially as soon

as elevation changes are considered. This can be seen in the simulation re-

sults of the cycles FTPelv, US06elv, and SWISSelv, where the topographic

profile leads to an rEC value ranging from 5.7% up to 10.1%. This large

difference between achieved fuel consumption and optimal fuel consump-

tion is mainly due to the fact that the (non-predictive) ECMS tries to

keep the SoC near the reference value ξref that is centered between the

lower and upper constraints, ξmin and ξmax, respectively. Consequently,

if a longer recuperation phase occurs, only a fraction of the recuperable

energy can be stored in the battery before its capacity limits are reached.

Therefore, better approaches are necessary which avoid this limitation,

particularly in hilly driving profiles. As announced by [12], this can only
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be achieved by using predictive strategies.

4.3 Optimal Control with a Simplified Model

The causal control presented in Sec. 4.2 is a purely model based approach

that yields a fuel consumption which is close to the global optimum for

most driving cycles. The control signal is found by online minimization

of the Hamiltonian. This minimization is carried out numerically and

requires some evaluations of the Hamiltonian. This is computationally

expensive and the control law resulting from minimizing the Hamiltonian

is not explicit.

In this section, a simplified model of the hybrid vehicle is presented.

This simplified model allows for analytical minimization of the Hamilto-

nian and yields an explicit control law that is a function of powertrain

parameters, the requested power, and the equivalence factor, only. This

analytic control law is computationally very attractive and shows clearly

the relation between requested power, the equivalence factor, and the re-

sulting optimal control signal.

In a first part, a very simple model is introduced. This model has al-

most no constraints on the electric motor and the engine. Further, the

powertrain parameters are assumed to be not a function of the rotational

speed. Hence, this model is speed-independent and has no input con-

straints. However, the resulting control law is very simple and offers great

understanding. This is presented in Sec. 4.3.1.

In a second part, namely Sec. 4.3.2, the model is extended with input

constraints, namely on the electric motor and the engine. Further, the

powertrain parameters are expressed as a function of the rotational speed

of the powertrain, i.e., the model is speed-dependent. This extended model

is validated in Sec. 4.3.2 using the original model that was introduced in

Chapter 2.

4.3.1 Optimal Control with Unconstrained,

Speed-Independent Model

In this section, the simplified, unconstrained model of a parallel hybrid

electric powertrain is presented. Based on this model, the optimal control

is derived and illustrated.
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Unconstrained, Speed-Independent Model

For a parallel hybrid electric powertrain whose structure is illustrated in

Fig. 4.4, we use a simplified model relating the total power demand Pd(t),

the motor power Pm(t), and the engine power Pe(t) to the fuel power

Pf (t), the battery power Pb(t), and the energy content in the battery

Eb(t). Assuming a battery model with a voltage source VOC in series with

a resistor R, the battery current Ib is given by

Ib =
VOC −

√

V 2
OC − 4RPb

2R
. (4.25)

The total power loss over the resistance is

Pl(Pb) = RI2
b =

(

VOC −
√

V 2
OC − 4RPb

)2

4R
. (4.26)

Approximating the power loss using a Taylor series around Pb = 0 yields

Pl(Pb) ≈Pl(0) +
∂Pl

∂Pb

∣

∣

∣

∣

∣

0

·
Pb

1!
+

∂2Pl

∂P 2
b

∣

∣

∣

∣

∣

0

·
P 2

b

2!
+ O(P 3

b ) (4.27)

=0 + 0 · Pb +
R

V 2
OC

· P 2
b + O(P 3

b ). (4.28)

The battery power loss in the simplified model is therefore assumed to be

Pl(Pb) =
R

V 2
OC

· P 2
b = βP 2

b . (4.29)

The model equations are

Pe(t) = Pd(t) − Pm(t) (4.30a)

Pf (t) =
Pe(Pm(t), Pd(t)) + P0

e
· B (4.30b)

Pb(t) = Pm(t) · η− sign(Pm(t)) (4.30c)

d

dt
Eb(t) = −Pb(Pm(t)) − βPb(Pm(t))2, (4.30d)

where B is equal to one when the fuel injection is active (engine on) and the

clutch between engine and motor is engaged, (Pe(t) > 0), P0 is the engine

friction power, e its internal efficiency, η the efficiency of the electric motor,
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and β = R
V 2 . The only state variable of this model is the energy content

of the battery Eb(t) given by (4.30d). In the remainder of this section the

time dependencies of the variables Pd, Pe, Pm, Pf , Pb, and Eb in the model

equations (4.30) are omitted to increase readability. The parameters of the

un-constrained, speed-independent model are given in Table 4.4.

Initially, the only constraint to the model is that the engine cannot

provide any negative power,

Pe ∈ [0,∞) (4.31)

Pm ∈ (−∞,∞). (4.32)

However, in Sec. 4.3.2 constraints are added to the model in order to

achieve a more realistic behavior.

Pd

Pm

Pb

Pe

B

Eb

Pf

EM BAT

ICE

Figure 4.4: Topology of the parallel hybrid electric powertrain. EM and ICE
are static blocks while BAT is a dynamic block with the state variable Eb. The
variable B decides whether the engine is on and the clutch is closed.

Table 4.4: Parameters of the powertrain.

Parameter Value Unit

P0 4.5 · 103 W

e 0.4 -

η 0.9 -

R 0.5 Ω

VOC 300 V

β = R
V 2

OC

≈ 5.6 · 10−6 W−1
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Optimal Control

The optimal control problem consists of finding the optimal power signal

for the electric motor P o
m such that the fuel consumption is minimized and

the charge in the battery is sustained over the driving cycle. The requested

power profile Pd is given by the driving cycle as a disturbance and the final

time tf , being the duration of the cycle, is fixed.

The optimal control problem is formulated by the cost functional, the

system dynamics, input constraints and state constraints, and the initial

and the final condition. The cost functional to be minimized, which is the

total fuel (energy) consumption over the driving cycle, is

J =

∫ tf

0

Pf (τ)dτ. (4.33)

While the system dynamics and input constraints are given by (4.30)–

(4.32), the state constraints are neglected throughout this section. The

initial and the final condition are chosen equal to zero such that charge

sustenance is guaranteed

Eb(0) = Eb(tf ) = 0. (4.34)

Hence, a positive (negative) battery energy content Eb(t) indicates that the

battery is charged (discharged) at time t compared to the initial condition.

Note that the energy content of batteries is in general bounded. However,

the optimal control problems solved here neglect the bounds on the state.

This assumption allows for explicit solutions. Nevertheless, as it will be

shown in Sec. 4.3.4, the battery’s energy content can still be kept within

reasonable bounds by an appropriate causal control.

Resulting Optimal Control Law

The optimal control problem stated above is solved using Pontryagin’s

minimum principle. This method has been successfully applied in Sec. 4.1

and 4.2. However, the simplified model presented here allows solving ex-

plicitly for the optimal control law, which can be represented as a clearly

defined map. This map is shown in Fig. 4.5 for a powertrain with the

parameters specified in Table 4.4. It contains the optimal motor power

as a function of a constant equivalence factor s and the requested power

Pd. The constant equivalence factor s is introduced in Sec. 4.3.1 below,
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where the optimal control law is derived in detail. The optimal control

law consists of only four regions, namely pure electric driving (including

recuperation), pure thermal, boosting, and recharging.

The power limits P
(.)
lim separating the four regions in the control map

are given by

P bo
lim(s) =

−
(

s
η
− 1

e

)

+
√

4 sβ
η2

P0

e

2 sβ
η2

(4.35a)

P th
lim(s) =

−
(

s
η
− 1

e

)

+

√

(

s
η
− 1

e

)2

+ 4 sβ
η2

P0

e

2 sβ
η2

(4.35b)

P re
lim(s) =

−
(

s
η
− 1

e

)

+

√

(

s
η
− 1

e

)2

−
(

s
η
− 1

eη2

)2

+4 sβ
η2

P0

e

2 sβ
η2

(4.35c)

P re−
lim (s) =

−
(

sη− 1
e

)

+
√

4sβη2 P0

e

2sβη2
. (4.35d)

These power limits show the clear advantage of the simplified model pre-

sented in this section, namely the fact that the resulting optimal control is

a simple rule-based controller. However, it is completely defined by phys-

ical powertrain parameters and it is derived using Pontryagin’s minimum

principle.

The optimal control corresponding to the map shown in Fig. 4.5 is

mathematically expressed as

P o
m(Pd, s)=



































































η( η

e
−s)

2sβ
, if (Pd > 0) ∩ (s < η

e
)

∩ (Pd > P bo
lim(s))

0, if (Pd > 0) ∩ (η
e
≤ s ≤ 1

ηe
)

∩ (Pd > P th
lim(s))

−
s− 1

ηe

2sβη
, if (Pd > 0) ∩ (s > 1

ηe
)

∩ (Pd > P re
lim(s))

−
s− 1

ηe

2sβη
, if (Pd < 0) ∩ (Pd > P re−

lim (s))

Pd, otherwise.

(4.36)
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Figure 4.5: Overview of the regions with the different optimal control P o
m (sep-

arated by solid lines) and the power limits P
(.)
lim for the unconstrained problem.

Example on a Driving Cycle

The optimal control law (4.36) as a function of the power demand Pd and

the equivalence factor s is applied in this section to a regulatory driving

cycle, namely the CADC which is shown in Appendix B. The remaining

problem consists of finding a constant equivalence factor that guarantees

the charge sustenance for the driving cycle. Figure 4.6 shows the final

energy content in the battery when the optimal control law (4.36) is applied

with the powertrain parameters given in Table 4.4. The charge-sustaining

equivalence factor is found by a root finding algorithm at Eb(tf ) = 0.

The shaded area in Fig. 4.7 illustrates the instances during which the

engine is used to recharge the battery, with Pm = −2187.1 W. As stated

by the optimal control law (4.36), the threshold that determines between

pure electric and recharging operation is a power limit as shown in the

upper graph of Fig. 4.7. The bottom part of the figure shows the speed

profile and illustrates clearly that there is no speed limit deciding between

electric or recharging modes.
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Figure 4.6: Energy in the battery Eb at final time tf on CADC as a function
of the equivalence factor s. The charge-sustaining value scs is indicated by the
vertical line.
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Figure 4.7: Power and speed profile Pd(t) and v(t) of CADC on the inter-
val t ∈ [2900, 3050] with the optimal control. Gray indicates recharging mode
(Pm = −2187.1 W), white indicates electric mode (Pm = Pd).
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Pontryagin’s Minimum Principle: Derivation of the Optimal Con-

trol Law

As mentioned above, this section shows the detailed derivation of the opti-

mal control law using the simplified model. The formulation of the optimal

control problem defined by (4.30)–(4.34) yields the Hamiltonian [27]

H = Pf − λ ·
(

Pb + βP 2
b

)

=
Pd−Pm+P0

e
· B− λ

(

Pmη− sign(Pm)+ βP 2
mη−2 sign(Pm)

)

. (4.37)

If the control P o
m is optimal, then the conditions (4.38) are satisfied ac-

cording to Pontryagin’s minimum principle.

d

dt
Eo

b = −P o
m · η− sign(P o

m) − β
(

P o
m · η− sign(Pm)

)2

(4.38a)

Eo
b (0) = 0 (4.38b)

Eo
b (tf ) = 0 (4.38c)

d

dt
λo = −∇Eb

H |o = 0 (4.38d)

H(P o
m,λo, t) ≤ H(Pm, λo, t) (4.38e)

These conditions are necessary for optimality. Since the Hamiltonian is

not a function of the state variable Eb, the optimal costate λo is constant.

Throughout this section the constant optimal costate (4.39), with inverted

sign, is referred to as equivalence factor, s, since it is weighting the electric

power in the battery with the chemical power provided by fuel in the

Hamiltonian (4.37).

λo(t) = −s (4.39)

Equation (4.38e) states that P o
m can only be optimal if it is the global

minimizer of the Hamiltonian. Therefore, the Hamiltonian is carefully an-

alyzed in the following to derive the optimal control law. The Hamiltonian

(4.37) expressed as a piecewise function is

H =



























Pd+P0

e
+
(

sη− 1
e

)

Pm+sβη2P 2
m, if Pm≤ 0 <Pd−Pm

Pd+P0

e
+
(

s
η
− 1

e

)

Pm+ sβ
η2 P 2

m, if 0 ≤ Pm < Pd

s
η
Pm + sβ

η2 P 2
m, if Pm = Pd ≥ 0

sηPm + sβη2P 2
m, if Pm = Pd ≤ 0

(4.40)
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The first interval Pm ≤ 0 < Pd − Pm indicates that the electric motor power

is negative Pm < 0 and the engine power positive Pe = Pd − Pm > 0.

To simplify the explanations, the four parts of the Hamiltonian (4.40),

together with the special case Pm = 0 < Pd, are defined as

Hre =
Pd+P0

e
+

(

sη−
1

e

)

Pm+ sβη2P 2
m, for Pm <0<Pd−Pm (4.41a)

Hth =
Pd + P0

e
, for Pm = 0 < Pd (4.41b)

Hbo =
Pd+P0

e
+

(

s

η
−

1

e

)

Pm+
sβ

η2
P 2

m, for 0 < Pm < Pd (4.41c)

Hel =
s

η
Pm +

sβ

η2
P 2

m, for Pm = Pd ≥ 0, (4.41d)

H−
el = sηPm + sβη2P 2

m, for Pm = Pd ≤ 0, (4.41e)

where Hre is the Hamiltonian for recharging, Hth represents pure thermal

operation, Hbo boosting, Hel pure electric propulsion, and H−
el pure electric

recuperation.

To find the control Pm that minimizes the Hamiltonian (4.40), the first

and second derivatives of the Hamiltonian with respect to the control Pm

are analyzed. Since the Hamiltonian is not differentiable at Pm = 0 and

Pm = Pd, the derivatives are only analyzed for Hre and Hbo

∂Hre

∂Pm

=

(

sη−
1

e

)

+ 2sβη2Pm, for Pm < 0 < Pd − Pm (4.42)

∂Hbo

∂Pm

=

(

s

η
−

1

e

)

+ 2
sβ

η2
Pm, for 0 < Pm < Pd. (4.43)

Since the parameters β and η are positive and s is assumed to be positive1,

the second derivatives of the Hamiltonians Hre and Hbo are positive

∂2Hre

∂P 2
m

= 2sβη2 > 0 (4.44)

∂2Hbo

∂P 2
m

= 2
sβ

η2
> 0. (4.45)

To analyze the change in the derivative ∂H
∂Pm

at the point Pm = 0 the limits

of the first derivatives (4.42) and (4.43) are investigated. The limits when

1A posteriori checking of the optimal solution will reveal that this assumption was

valid.
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Pm is approaching zero are

lim
Pm→0−

∂Hre

∂Pm

= sη −
1

e
(4.46)

lim
Pm→0+

∂Hbo

∂Pm

=
s

η
−

1

e
, (4.47)

where

lim
Pm→0−

∂Hre

∂Pm

< lim
Pm→0+

∂Hbo

∂Pm

. (4.48)

Equation (4.48) is true for any s since 0 < η < 1. Equation (4.48), together

with the property of the second derivative (4.44)–(4.45), proves that

∂Hre

∂Pm

<
∂Hbo

∂Pm

. (4.49)

This property will be used in the following for the minimization of the

Hamiltonian.

Minimization for Pd > 0

The minimum of the Hamiltonian can be found, depending on the value

of s, in different intervals of the control Pm. A sketch of the Hamiltonian

for all intervals of s is shown in Fig. 4.8. There is a discontinuity in the

Hamiltonian at Pm = Pd. Hence, this control can be an optimal control

candidate for all intervals in s.

The minimization of the Hamiltonian for its continuous part is carried

out by analyzing its derivatives. If the limit of the derivative of Hbo (4.47)

is negative, i.e. s < η
e
, the optimum of the Hamiltonian is either in Hbo or

in Hel. If the limit of the derivative of Hre (4.46) is positive, i.e. s > 1
ηe

,

the optimum of the Hamiltonian is either in Hre or in Hel. Finally, if

the limit of the derivative of Hbo (4.47) is positive and the limit of the

derivative of Hre (4.47) is negative, then the optimum is either in Hth or

in Hel. These conclusions can be summarized as

min
Pm

H(Pm) =















min{Hel, Hbo}, if s < η
e

min{Hel, Hth}, if η
e
≤ s ≤ 1

ηe

min{Hel, Hre}, if s > 1
ηe

(4.50)

To find the control Pm that minimizes the Hamiltonian Hbo (4.41c), the
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Figure 4.8: Schematic overview of the shape of the Hamiltonians Hre and Hbo

for all intervals of s.

derivative (4.43) is set to zero and solved for Pm.

∂Hbo

∂Pm

=

(

s

η
−

1

e

)

+ 2
sβ

η2
Pm = 0 (4.51)

⇒ Pm = P bo
m (s) ,

η(η
e
− s)

2sβ
(4.52)

To find the control Pm that minimizes the Hamiltonian Hre (4.41a), the

derivative (4.42) is set to zero and solved for Pm.

∂Hre

∂Pm

=

(

sη −
1

e

)

+ 2sβη2Pm = 0 (4.53)

⇒ Pm = P re
m (s) , −

s− 1
ηe

2sβη
(4.54)

The candidates for the optimal control P o
m corresponding to (4.50) are

therefore

P o
m ∈















{Pd, P bo
m (s)}, if s < η

e

{Pd, 0}, if η
e
≤ s ≤ 1

ηe

{Pd, P re
m (s)}, if s > 1

ηe
.

(4.55)

The control that minimizes the Hamiltonian is determined by comparing

the Hamiltonians in (4.50) when using the corresponding optimal control

candidates in (4.55).

For s < η
e
, only Hel(Pd) and Hbo(P

bo
m (s)) can be optimal according

to (4.50) and (4.55). Therefore, the condition for pure electric driving is
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Hel(Pd) < Hbo

(

P bo
m (s)

)

. Solving this inequality for the power demand Pd

yields the condition for pure electric driving, namely

Pd < P bo
lim(s) ,

−
(

s
η
− 1

e

)

+
√

4 sβ
η2

P0

e

2 sβ
η2

. (4.56)

For η
e
≤ s ≤ 1

ηe
, the condition Hel(Pd) < Hth(0) yields as condition for

pure electric driving

Pd < P th
lim(s) ,

−
(

s
η
− 1

e

)

+

√

(

s
η
− 1

e

)2

+ 4 sβ
η2

P0

e

2 sβ
η2

. (4.57)

For s > 1
ηe

, from Hel(Pd) < Hre (P re
m (s)) it follows

Pd <P re
lim(s),

−
(

s
η
− 1

e

)

+

√

(

s
η
− 1

e

)2

−
(

s
η
− 1

eη2

)2

+4 sβ
η2

P0

e

2 sβ
η2

. (4.58)

It is interesting to note that for equality of the above conditions, i.e.,

Pd = P
(·)
lim, the Hamiltonian has two identical minima. For a constant

power demand, this would result in singular optimal control as investi-

gated by [32]. The only charge-sustaining solution would be either pure

thermal propulsion or duty cycling between pure electric and recharging.

In reality, the power profile is never constant over the entire problem du-

ration. Consequently, the optimal control for Pd = P
(·)
lim is chosen to be

pure electric P o
m = Pd without loss of optimality.

Minimization for Pd < 0

When Pd < 0, both boosting Hbo and pure thermal driving Hth are not

possible since Pe ∈ [0, ∞). The Hamiltonian Hre given by (4.41a) is pos-

sible when Pd − Pm > 0. Equation (4.41a) remains the same when Pd < 0.

However, the Hamiltonian for pure electric recuperation (4.41e) is differ-

ent from the one of pure electric driving (4.41d). During braking phases

(Pd < 0), the only candidates are therefore Hre (P re
m (s)) and H−

el (Pd).
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Pure electric recuperation is optimal if

H−
el (Pd) <Hre (P re

m (s)) (4.59)

Pd <P re−
lim (s) ,

−
(

sη − 1
e

)

+
√

4sβη2 P0

e

2sβη2
. (4.60)

4.3.2 Optimal Control with Input-Constrained

and Speed-Dependent Model

The optimal control of the simplified model presented in Sec. 4.3.1 is being

extended toward a more realistic model in this section. First, input con-

straints, i.e., power limits on the engine and the motor are being imposed.

Second, the model is extended to a time-variant model, i.e., its parameters

are speed-dependent.

Input-Constrained Model

The only constraint in the model thus far has been that the engine cannot

provide any negative power. This single input constraint is not sufficient,

however. The minimum and maximum power limits of the electric motor

must be considered as well as the maximum power of the combustion

engine. Hence, this section extends the optimal control law in presented

Sec. 4.3.1 with the following power constraints:

Pe ∈ [0, Pemax] (4.61a)

Pm ∈ [Pmmin, Pmmax]. (4.61b)

As a consequence of these constraints, the power balance (4.30a) cannot

always be fulfilled. For example, very high power demands that exceed

the maximum power of engine and motor together, Pd > Pemax + Pmmax,

are infeasible. Similarly, strongly negative power demands Pd < Pmmin

are infeasible for the powertrain. However, for such strong negative power

demands, the remaining braking power is assumed to be absorbed by the

conventional brakes such that Pm = Pmmin.

The control Pm can now be limited to Pmmin, Pmmax, or to Pd − Pemax

indirectly by the engine. Hence, the optimal control that minimizes the

Hamiltonian is not only a function of s, but also of the constraints be-

ing active. The power limits shown in Fig. 4.5 that separate the differ-

ent operating modes are now extended with additional limits due to the
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constraints. Figure 4.9 shows an example of the new power limits for a

powertrain with the parameters listed in Table 4.4 and Table 4.5. Note

that this is only an example and that there will be other active power lim-

its if the parameters change. Figure 4.9 shows that the number of power

limits and the number of regions with different operating modes have in-

creased. The power limits that are added to the previous limits (4.35) are

Pemax + P bo
m (s), Pemax, Pemax + P re

m (s), Pemax + Pmmin, Pmmax, Pmmin,

P re,m
lim (s), and P re,m−

lim (s). These power limits are derived analogously to

the limits (4.35). The regions in Fig. 4.9 are also separated by the two new

equivalence factor limits sbo,m
lim and sre,m

lim . The equations for the power lim-

its P re,m
lim (s) and P re,m−

lim (s) are given in the Appendix by (C.6) and (C.9)

respectively. The equations for the equivalence factor limits sbo,m
lim and

sre,m
lim are given in the Appendix by (C.2) and (C.4). These equations are

explained further in Appendix C.

Table 4.5: Power limits of the powertrain.

Parameter Value Unit

Pemax 75 · 103 W

Pmmax 25 · 103 W

Pmmin −25 · 103 W

All new power limits that result from including the constraints on the

engine and motor must be calculated for determining the optimal control

at the actual operating condition. Therefore, the computational effort for

determining the optimal control P o
m from the equivalence factor s and the

current power demand Pd has increased.

A more efficient way of determining the optimal control P o
m is to, as

described in [11], evaluate the Hamiltonian (4.40) for the possible optimal

control candidates given by

P(Pd, s) = {0, Pd, P bo
m(s), P re

m(s), Pmmax, Pmmin, Pd−Pemax}. (4.62)

The optimal control is then determined by evaluating the Hamiltonian for

the control candidates in (4.62) and selecting the control that yields the

minimum. This selective minimization of the Hamiltonian must respect
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Figure 4.9: Overview of the regions with the different optimal control P o
m

(separated by solid lines) and the power limits P
(.)
lim for the constrained problem.

the constraints (4.61a) and (4.61b), as well as the power balance (4.30a)

P o
m(Pd, s) = argmin

Pm∈P(Pd,s)

H(Pm, Pd, s) (4.63a)

s.t.

Pe = Pd − Pm (4.63b)

Pm ∈ [Pmmin, Pmmax] (4.63c)

Pe ∈ [0, Pemax]. (4.63d)

The method of selectively minimizing the Hamiltonian for the optimal con-

trol candidates is referred to as selective Hamiltonian minimization (SHM),

here. Note that, for many operating conditions, a careful implementation

of the SHM can utilize the constraints (4.63b)–(4.63d) in order to mini-

mize the feasible candidates in P(s). It is therefore possible to reduce the

computational effort to perform the minimization (4.63a).

Example on a Driving Cycle

When the power constraints in the engine and motor are included, the

method of finding the charge-sustaining equivalence factor is the same as in
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Sec. 4.3.1, i.e., a root finding algorithm is used. Note that the initial guess

of the algorithm must be larger than sbo,m
lim since below this equivalence

factor the operating modes do not change and the final energy in the

battery is constant. The charge-sustaining equivalence factor for CADC

is slightly different when including the constraints scs = 2.8463 compared

to the unconstrained case scs = 2.8399 because of the new regions shown

in Fig. 4.9.

Figure 4.10 shows a section of the optimal charge-sustaining control for

the CADC where four different modes can be observed. These modes are

recharging Pm = −2409.0 W, electric driving and recuperation Pm = Pd,

maximum recuperation Pm = Pmmin, and boosting or recharging limited

by the engine Pm = Pd − Pemax. This figure clearly shows that the differ-

ent operating modes are separated by power limits (top graph) and not by

speed limits (bottom graph).
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Figure 4.10: Power and speed profile Pd(t) and v(t) of CADC on the in-
terval t ∈ [2900, 3050] with the optimal control. Light gray indicates recharg-
ing mode (Pm = −2409.0 W), medium gray indicates maximum recuperation
(Pm = Pmmin), dark gray indicates boosting or recharging limited by engine
(Pm = Pd − Pemax), and white indicates electric mode (Pm = Pd).

Input-Constrained, Speed-Dependent Model

The model described in Sec. 4.3.2 does not depend on the rotational

speed of the crankshaft. In reality, however, several component param-
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eters are speed-dependent. This section investigates a modified version

of the model given by equations (4.30) including the input constraints

(4.61a) and (4.61b), where e, P0, and Pemax are replaced by e(ω), P0(ω),

and Pemax(ω), respectively.

In the electric path, only the parameters of the electric motor are speed-

dependent, strictly speaking. This would result in the parameters η(ω),

Pmmax(ω), and Pmmin(ω). The battery characteristics are indeed not

speed-dependent. However, the parameter β, which captures nonlinear-

ities in the battery, can also be used to capture the nonlinearities in the

electric motor. Consequently, the entire electric path is integrated in the

parameters η(ω), β(ω), Pmmax(ω), and Pmmin(ω).

The speed-dependent model is finally obtained by fitting the parame-

ters of the simplified, speed-independent model to measured data for a set

of rotational speeds. The following data of a real powertrain are typically

available to fit the speed-dependent model:

• A stationary fuel consumption map of the engine as a function of the

rotational speed and the torque,

• the maximum torque curve of the engine,

• the idle speed of the engine,

• a stationary electric consumption map of the motor as a function of

the rotational speed and the torque,

• the maximum and minimum torque lines of the motor,

• the open-circuit voltage and the inner resistance curves for charging

and discharging of the battery as a function of the state-of-charge.

Original Model

In order to evaluate the simplified model introduced in Sec. 4.3.2 using

speed-dependent parameters versus the real powertrain, the more detailed

model presented in Chapter 2 is used. Since at this stage measurements

of a lithium-ion battery are available, these data are used here. The open-

circuit voltage and the inner resistance for charging and discharging of this

battery pack are shown in Fig.4.11, its capacity is Q0 = 6.2 Ah. This more

detailed model with the Li-ion battery is referred to as the original model
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in the following. This original model relies on measured data, namely the

consumption maps and the maximum torque lines of the engine and the

electric motor, and the characteristics of the battery given by the open-

circuit voltage and the inner resistance over the state-of-charge.
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Figure 4.11: Measured characteristics of the Li-ion battery pack. The top
graph shows the open-circuit voltage and the bottom graph shows the inner
resistance for charging and discharging.

Fitting of Speed-Dependent Parameters

The speed-dependent parameters of the simplified model are evaluated for

each rotational speed such that the sum of the absolute errors between the

simplified model and the original model is minimized. Such a fit is shown

in Fig. 4.12 for ω = 1000 rpm and ω = 3000 rpm. It clearly shows that

the engine can be well approximated with an affine function and that the

electric path is well described by a piecewise quadratic function.

The resulting speed-dependent parameters for the simplified model are

shown in Fig. 4.13, while the corresponding efficiency maps are shown in

Figs. 4.14 and 4.15. The peak efficiency in Fig. 4.14 is very high for an

SI engine. This is a consequence of the affine approximation that tends to

underestimate the fuel consumption at high loads due to enrichment.
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Figure 4.12: Characteristics of the engine (top) and the electric path (bottom)
for two selected speeds for the original model (solid) and the fitted simplified
model (dashed).
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Figure 4.13: Parameters of the simplified, speed-dependent model of the par-
allel propulsion system.
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Optimal Control

Using the speed-dependent model, the derivation and the solution of the

optimal control problem stated in (4.30)–(4.34) do not change from those
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using the speed-independent model above. The optimal control policy

given in (4.63a) is still optimal when speed-dependent parameters are used.

However, the power limits are now dependent on the rotational speed and

thus the different regions shown in Fig. 4.9 vary with the rotational speed.

Therefore, the regions defining the optimal control increase by one dimen-

sion, namely the speed ω. Figure 4.16 shows the regions for the charge-

sustaining equivalence factor for CADC. In order to improve readability,

this figure is expressed with torque values instead of power.
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m

(separated by solid lines) for the constrained, speed-dependent problem. The
regions are represented for the charge-sustaining equivalence factor scs for CADC
as a function of gearbox speed ω and torque Td.

4.3.3 Model Validation

In this section, the simplified model (4.30) with the speed-dependent pa-

rameters shown in Fig. 4.13 and the constraints (4.61) is validated by the

original model in Sec. 4.3.2. The validation is carried out by application

of a feedforward control signal to both models. Both the state trajectory

Eb(t) and the cost functional Ef (t) are being compared for three driving

cycles. The driving cycles used in this section are the CADC, the NEDC,

and the FTP-72 as shown in Appendix B. The feedforward signal ap-
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plied here is the charge-sustaining optimal control signal evaluated for the

simplified model. The charge-sustaining optimal control for the CADC

is shown in Fig. 4.16. Figure 4.17 shows the state trajectory Eb(t) and
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Figure 4.17: Signals for the simplified and original models when using the
optimal control determined using the simplified model for the CADC. The upper
graph shows the state trajectory Eb, while the lower graph shows the fuel energy
Ef .

the cost functional Ef (t) of both models for the CADC. Note that the

models are actuated with the same signal. Both trajectories match very

well and justify the simplifications adopted when the simplified model was

formulated from the original model.

The relative deviations of the two models for both signals at the final

time tf are defined as

ǫff,Eb
=

Eb,orig(tf ) − Eb,simp(tf )
∫ tf

0
|Ėb,orig(τ)|dτ

(4.64)

ǫff,Ef
=

Ef,orig(tf ) − Ef,simp(tf )

Ef,orig(tf )
. (4.65)

Table 4.6 shows that the final energy content of the battery Eb(tf ) as well

as the final fuel energy use Ef (tf ) of the simplified model fit the original

model well. The largest error, i.e., the error in the final energy content

ǫff,Eb
for NEDC, is 1.6%.
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Note that the error in the final state ǫff,Eb
cannot be separated from

the error in the cost functional ǫff,Ef
since a surplus in final battery energy

Eb(tf ) could have been used to lower the fuel energy Ef (tf ). Therefore, in

order to compare the error in fuel consumption only, the two simulations

carried out must have identical initial and final battery energy levels. This

is achieved by first obtaining the fuel consumption by simulating the orig-

inal model with the feedforward P o
m,simp derived for the simplified model.

This fuel consumption is then compared to the optimal fuel consumption

having identical initial and final battery energy levels. The optimal fuel

consumption for the original model is found by means of dynamic program-

ming [13, 14]. The dynamic programming algorithm has been implemented

using the ideas introduced in Chapter 3 and [20, 21]. The difference in fuel

consumption between these two simulations reveals the losses introduced

by using a simplified model for the evaluation of the control. This increase

in fuel consumption is expressed by the relative excess consumption rEC

as introduced by (4.10) in Sec. 4.1.3

rECff =
Eff,simp

f,orig (tf ) − Edp
f,orig(tf )

Edp
f,orig(tf )

. (4.66)

These increases in fuel consumption are shown in Table 4.7. Note that

the simplified model is state independent while in the original model the

battery is dependent on the state. A large deviation of the state will

therefore increase the error between the models. Part of the relative excess

consumption rECff in Table 4.7 is a consequence of the relatively large

state deviations Eb(t) when applying P o
m,orig. The solution from dynamic

programming accounts for the state dependencies of the original model

and reduces the state deviation.

Table 4.6: Validation of the simplified model versus the original model.

Variable CADC NEDC FTP-72

ǫff,Eb
0.2% 1.6% 1.1%

ǫff,Ef
0.2% 0.7% 1.0%

Table 4.7: Increased fuel consumption due to simplified model for control.

Variable CADC NEDC FTP-72

rECff 0.8% 1.2% 1.5%
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4.3.4 Application of Simplified Model

The simplified, speed-dependent model which was validated in Sec. 4.3.3

can be used for energy management in a real vehicle. The control of

the powertrain at each time sample is then evaluated by the following

algorithm:

1. Read the requested power Pd and the actual speed ω.

2. Evaluate the speed-dependent parameters for the rotational speed ω.

3. For a given s, evaluate the control P o
m that minimizes the Hamilto-

nian according to (4.63a).

4. Apply P o
m to the electric motor and Pd − P o

m to the engine.

The constant equivalence factor must be found such that charge sustenance

is achieved for the given driving cycle as described in Sec. 4.3.1. Such a

controller cannot be realized because it relies on future information, i.e.,

it is non-causal. However, suboptimal approaches can be taken to render

the control causal.

Causal Feedback Control

The causal feedback control used here is identical to the one presented

in Sec. 4.2.2. It evaluates the equivalence factor s such that the state-

of-charge ξ is controlled. The feedback law is given by (4.24b) with the

values given in Table 4.2 together with the battery capacity Q0 = 6.2 Ah,

the open-circuit voltage Voc(ξ = 0.6) = 300 V, and the reference state-of-

charge ξref = 0.6.

CFC SHM Powertrain
ξref s

Pm
ξ

Pe

Pd

−

Figure 4.18: Schematic of the control loop.
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Anti-Windup

The causal feedback control (CFC) given by (4.24b) contains an integral

part to avoid static errors. This integral part can lead to undesired behav-

ior, called wind-up of the integrator, if the controller output is saturated

[33]. The controller for this consideration is only the function (4.24b) with

ξref − ξ(t) being the controller input and s(t) being the controller out-

put as schematically shown in Fig. 4.18. For equivalence factors s being

less than sbo,m
lim (C.2), the control of the powertrain is independent of the

equivalence factor as it can be seen in Fig. 4.9. Hence, the controller out-

put s(t) is saturated for s < sbo,m
lim . For very high values of s(t), such a

saturation does not occur because the power limit P re,m−
lim converges for

s → ∞ to the minimum power limit of the motor Pmmin. This means that

for s > sre,m
lim , there is always more recharging of the battery for larger

values of s. Consequently, an anti-windup scheme is implemented with a

saturation of s(t) ∈ [ssub, ∞), where

ssub = min
ω

sbo,m
lim (ω) (4.67)

= min
ω

η(ω)2

e(ω) (2Pmmax(ω)β(ω) + η(ω))
. (4.68)

Example on a Driving Cycle

The causal controller relying on the simplified model is finally applied

on the original model. To benchmark its performance, the optimal solu-

tion having the same initial and final conditions as the causal controller

Efb,simp
b,orig (tf ) = Edp

b,orig(tf ) is found using dynamic programming. The rel-

ative excess fuel consumption is expressed by

rECfb =
Efb,simp

f,orig (tf ) − Edp
f,orig(tf )

Edp
f,orig(tf )

(4.69)

and is shown in Table 4.8.

The state trajectories resulting from applying the simplified model for

causal control of the original model are shown in Fig. 4.19 for the CADC.

The figure also shows the optimal state trajectory determined using dy-

namic programming.

The sub-optimality of the control can be explained by two effects. First,

the model used to evaluate the control is simplified, i.e., it does not per-

fectly represent the real plant. This effect is investigated in Sec. 4.3.3.
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Second, the causal controller cannot take into account any future informa-

tion on the driving cycle. In contrast, the optimal solution from dynamic

programming fully exploits information on the driving cycle.
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Figure 4.19: State trajectory resulting from applying the simplified model for
causal control of the original model (solid), and the state trajectory using DP
on the original model (dashed) for CADC.

Table 4.8: Relative fuel excess consumption using the simplified model for
control of original model.

Variable CADC NEDC FTP-72

rECfb 1.1% 1.7% 1.7%

However, the causal controller given by (4.24b), (4.62), and (4.63) with

the speed-dependent parameters shown in Fig. 4.13 is computationally

cheap and simple to implement. The controller also achieves results which

are within 1.7% from the global optimum for three driving cycles.

4.3.5 Conclusions for the Simplified Model

In this section, the explicit solution to the optimal control problem of a

simplified speed-independent unconstrained hybrid electric powertrain has

been derived and studied. The solution to the optimal control problem

shows how simple power limits determine the optimal operating mode for

the hybrid powertrain. In contrast to many rule-based controllers which

use a speed threshold between electric and thermal/recharge mode, this

study shows that the solution of the optimal control problem yields a power

threshold.
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The unconstrained problem has been extended to the case where the

electric motor and combustion engine have power constraints. The deriva-

tion of the optimal control is similar to the unconstrained case. However,

there are several additional power limits deciding the optimal control.

The speed-independent, constrained model has been further extended

to a speed-dependent model. The powertrain parameters were fitted to

measured data. The explicit solution to the problem can still be deter-

mined with several additional power limits. The charge-sustaining opti-

mal control map is shown for the CADC in terms of torque demand and

rotational speed. It shows that the optimal control can be expressed as

a simple rule-based map where all regions are defined by model parame-

ters. However, a computationally cheaper method is proposed where the

Hamiltonian is selectively minimized for a set of explicit optimal control

candidates. The benefit of this formulation is the simple structure and the

low number of possible minima.

The model has been validated using the original model that relies on

measured data. A comparison of the signals of the original and the simpli-

fied model by applying a feedforward signal has been carried out. It shows

a maximum error of 1.6% in the final state and 1.0% in the final cost for

three commonly used driving cycles. Despite the broad simplifications the

model captures the most important characteristics of the original hybrid

powertrain.

The simplified model is used in a causal energy management strategy,

where the equivalence factor is updated by a causal controller. When using

the simplified model for causal control the fuel consumption is within 1.7%

from the global optimum for three driving cycles. The simplicity and the

high performance in fuel economy prove that the proposed strategy is well

suited for real-time control of parallel hybrid electric powertrains.

The formulation of the simplified model further allowed to analytically

derive a saturation in the equivalence factor that can be used to implement

an anti-windup scheme in a causal equivalence factor controller.



Chapter 5

Predictive Control for the

State-of-Charge

It was indicated in Sec. 4.2 and [12] that a non-predictive strategy performs

poorly in the presence of constraints on the battery’s state-of-charge if the

amount of recuperated energy is large compared to the storage capacity of

the battery. This is due to the fact that there will be future recuperation

phases during which the controller has no action on the state. If such

phases occur and the strategy is non-predictive, it is likely that the state

runs into its constraints. Hence, only a predictive strategy can prevent

this.

Therefore, a predictive strategy is introduced in this chapter. Many

predictive approaches have been presented in literature as for example

[9, 23]. However, most of these approaches assume that the future driving

profile is known at a high accuracy. In contrast, the approach presented

here requires only the current state of the powertrain and data available

from navigation systems, such as the average traveling speed on the future

road segments and the corresponding elevation profile. These data are

available from standard navigation systems if these devices are extended

with topographic maps. To evaluate these data, the destination of the trip

has to be known by the navigation system. Typically, the driver specifies

the destination. If the driver plans a trip he often took in the past, he

typically does not specify a destination. For these cases, an algorithm can

be used to detect the planned trip out of a set of previously driven trips.

Such an algorithm has been successfully developed and tested by [34].

This predictive strategy uses an algorithm that generates a time-varying

trajectory ξref (t) for the reference of the state-of-charge to avoid the events

where the battery’s state-of-charge runs into its constraints due to recuper-
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ation. This algorithm is referred to as predictive reference signal generator

(pRSG), here. This predictive reference signal generator exploits all avail-

able information of the future driving profile and respects the state con-

straints on the battery’s SoC. The underlying algorithm is computation-

ally very attractive, since the problem could be formulated as a quadratic

program (QP). Figure 5.1 illustrates schematically the extension of the

existing ECMS with the pRSG.

VehicleECMSpRSG

Position Data

Predictive Energy Management

ξref u ξ

v, γ

Figure 5.1: Block diagram of the pRSG-ECMS control system.

5.1 Method

The operation of an HEV can be categorized into two main types of opera-

tion. The first type of operation consists of all operations where the super-

visory control can explicitly control the SoC by favoring or penalizing the

use of the electric path. The time intervals during which the supervisory

control is using this type of operation are referred to as free segments in the

following. The second type of operation consists of all operations where

the supervisory control cannot explicitly control the SoC. This is typically

the case when the powertrain is either in boosting (TGB > TICE,max) or in

recuperation mode (TGB < 0); the use of the electric path is determined

purely by the driver/cycle. These time intervals are referred to as fixed

segments. Since the SoC cannot be explicitly controlled during fixed seg-

ments, it can happen that the SoC violates its constraints as discussed in

the previous section. If this happens during a recuperation phase, some of

the available recuperable energy must be wasted in the conventional brakes

in order to respect the upper SoC constraint. Therefore, the ECMS needs

to be extended in order to assure that information on the future driving

profile is used to prevent such energy wasting events. This objective is

achieved by computing a time-varying reference trajectory for the SoC.
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In a first step, the future fixed segments are identified from data of the

navigation system. With this information the future recuperable energies

of the fixed segments are estimated and converted into future SoC changes.

This is presented in Sec. 5.1.1.

In a second step, the SoC reference trajectory is synthesized on the basis

of that information. The reference trajectory is assumed to be a piecewise

affine function of time, where each affine segment corresponds to a free

or a fixed segment. The parameters of the piecewise affine SoC reference

trajectory are computed such that the SoC constraints of the battery are

not violated. The necessary computations can be formulated as a quadratic

program, which is solved very efficiently. The precise formulation of this

optimization is presented in Sec. 5.1.2.

5.1.1 Prediction of Recuperation Time Segments

In order to predict the time segments where recuperation takes place, only

information provided by the navigation system is used, namely the topo-

graphic profile (5.1) and the average traveling speed on each road segment

(5.2) between the actual position and the destination. These data points

are specified at the discrete distances dh,m and dv,n, respectively.

hm = h(dh,m) (5.1)

vn = v(dv,n) (5.2)

The two sets of data, represented in Fig. 5.2 (top and center graphs), are

mapped to a common grid di (5.3) as illustrated by the dashed vertical

lines. As a result, each road segment with length ∆di is characterized by

its grade γi and its average speed vi.

di = dh,m ∪ dv,n (5.3)

The estimated force acting on the vehicle over the segment i is given by

Funlim,i =
1

2
ρAfcdv

2
i + crmvg cos γi + mvg sin γi, (5.4)

where ρ is the air density, Af is the frontal area of the vehicle, cd is the

aerodynamic drag coefficient, cr is the rolling friction coefficient, mv is the

vehicle mass, and g is the gravitational acceleration.
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Figure 5.2: Data from the navigation system mapped to a common grid (top
and center graphs) with the estimated recuperation force and the resulting re-
cuperated energy due to elevation changes (bottom graph).

During recuperation, high electric power flows can occur. These power

flows can exceed the limitation Pel,min(< 0) of the electric path that in-

cludes the electric motor, the power converter, and the battery. Therefore,

the (negative) force is limited by

F i = max

{

Funlim,i,
Pel,min

vi · ηrecup

}

. (5.5)

The efficiency ηrecup of the electric path during a recuperation phase is

assumed to be constant. It accounts for all of the losses from the wheels

to the battery. The assumption of a constant ηrecup could be relaxed

easily by accounting for the operating-point dependent efficiencies of all

components. Such an expansion would, however, not change the main

results of this work.

Figure 5.2 (bottom graph) illustrates the average force corrected with

the recuperation efficiency for each road segment. The resulting estimated

amount of potential energy that is recuperated over each interval i, indi-

cated in this figure by the grey area, is given by

Erecup,i =

{

−F i · ∆di · ηrecup, if F i < 0

0, else.
(5.6)
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In order to derive the SoC reference trajectory, the recuperated energies

Erecup,i are converted to the equivalent SoC changes ∆ξ̃i using (5.7). The

superscript ˜ is used in the following to denote variables of the fixed seg-

ments. For this conversion, the SoC is assumed to be near a given set-point

ξset. This assumption is made because the SoC level at which each recu-

peration will occur is unknown at this stage. The corresponding distances

∆di are converted to time intervals using (5.8).

∆ξ̃i =
Erecup,i

Q0Voc(ξset)
(5.7)

∆t̃i =
∆di

vi

(5.8)

To reduce the computational burden caused by generating the SoC refer-

ence trajectory, at each time step all successive segments of recuperation

are lumped into one segment of recuperation. Each of these N aggregated

recuperation segments is then saved as a triple R̃i containing its (future)

starting time, its duration, and the SoC change that is expected

R̃i = {t̃i, ∆t̃i, ∆ξ̃i}. (5.9)

5.1.2 Synthesis of an SoC Reference Trajectory

The data about future expected recuperation segments R̃i is used to syn-

thesize a reference trajectory for the SoC. As illustrated in Fig. 5.3, the

problem that has to be solved is to find a piecewise-affine reference trajec-

tory for the SoC that never violates the SoC boundaries. This trajectory

consists of the fixed segments in which recuperation takes place and of the

free segments that lie between two fixed segments. The fixed segments

are known by their (future) starting time t̃i, their duration ∆t̃i, and their

change in SoC ∆ξ̃i. If the value of the SoC at each start of a fixed segment

ξ̃i is defined, the entire reference trajectory is determined. Hence, the SoC

values ξ̃i are the unknowns that have to be found in order to be able to

synthesize the SoC reference trajectory.

The reference trajectory ξref must:

• remain within the interval Ω = [ξref,min, ξref,max] at all times;

• keep the final SoC of the reference trajectory within a target interval

Ωf = [ξset − δξf , ξset + δξf ]; and
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ξref,max

ξset ± δξf

ξ,ref,min

t

ξ0

freefree fixedfixed

ξ

ξ̃i
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∆ξ̃i

t̃i
Figure 5.3: Synthesis of the reference SoC trajectory by varying the initial
condition ξ̃i for each recuperation phase.

• minimize the rate of change of the SoC during the free elements of

the reference trajectory.

The last point is a choice that is made to extend the lifetime of the battery.

In fact, minimizing the rate of change corresponds to minimizing the cur-

rents drawn from the battery, which is known to be beneficial for batteries

[35].

Assumptions

The following problem formulation is based on the assumptions that

• the fixed segments correspond to recuperation phases only, i.e.

∆ξ̃i > 0 ∀i = 1, . . . , N ;

• the reference trajectory starts in a free segment;

• fixed and free segments are alternating; and

• the final segment is a fixed segment.

The assumption that the fixed segments consist only of recuperation phases

is made because boosting phases in general are very short and are, there-

fore, considered as disturbances. This assumption is not strictly necessary,

but it reduces considerably the number of linear inequality constraints in

the quadratic program formulated below. The assumption that the refer-

ence trajectory starts on a free segment is not restricting. If the vehicle is

in a fixed segment when the optimization is started, the reference signal

up to the end of this segment is already fixed. Hence, the problem can be
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formulated to begin at the end of this first segment. The assumption that

fixed and free segments are alternating is a consequence of the aggregation

of the recuperation phases as discussed in Sec. 5.1.1. The last point simply

reflects the assumption that the vehicle will be brought to standstill at the

end of each trip.

Problem Formulation

The objectives mentioned above can now be rephrased mathematically as

follows:

• The SoC must be in the set Ω (lower bound, upper bound) and the

final SoC (lower final state, upper final state) must be in the set Ωf

ξ̃i ≥ ξref,min − εi (5.10a)

ξ̃i + ∆ξ̃i ≤ ξref,max + εi (5.10b)

ξ̃N + ∆ξ̃N ≥ ξset − δξf − εf (5.10c)

ξ̃N + ∆ξ̃N ≤ ξset + δξf + εf , (5.10d)

where εi and εf are slackness variables that are introduced to guar-

antee the feasibility by softening the state constraints. Equation

(5.10a) has to be fulfilled for all i = 1, . . . , N . The assumption that

ξset + δξf < ξref,max implies that (5.10b) has to be fulfilled only for

all i = 1, . . . , N − 1. For i = N , (5.10b) is always fulfilled when

(5.10d) is fulfilled. Summarizing, there are 2N + 1 inequalities that

must be satisfied.

• The minimization of the slopes of the free segments and the penalties

on the slackness variables are expressed by

min
z

{

αε,f · ε2
f +

N
∑

i=1

(

∆ξ̂2
i

∆t̂2i
+ αε · ε

2
i

)}

, (5.11a)

where

∆ξ̂i = ξ̃i − (ξ̃i−1 + ∆ξ̃i−1) (5.11b)

∆ξ̃0 = 0 (5.11c)

∆t̂i = t̃i − (t̃i−1 + ∆t̃i−1) (5.11d)

t̃0 = 0 (5.11e)

∆t̃0 = 0. (5.11f)
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The superscriptˆdenotes variables of the free segments.

The unknown vector z of length 2N + 1 is given by

z = [ξ̃1, . . . , ξ̃N , ε1, . . . , εN , εf ]T , (5.11g)

where ξ̃i represent the SoC at the beginning of each i-th fixed seg-

ment. The slackness variables are penalized using the positive weights

αε and αε,f , respectively.

The problem defined by (5.10) and (5.11) can be formulated as a stan-

dard QP

min
z

zT Qz + pT z (5.12)

s.t. Az ≤ b.

The matrices Q, p, A, and b can be derived from (5.10) and (5.11) and

are listed in Appendix D. The matrix Q is tridiagonal, and all elements

of the main diagonal are strictly positive. Furthermore, the other two

diagonals contain some zeros each. With these properties, the matrix Q is

positive-definite. Consequently, the QP (5.12) is convex and can be solved

in polynomial time.

Synthesis of the Reference Trajectory

The desired SoC reference trajectory ξj(tj) is now determined by the first

N elements ξ̃i of the solution z of the QP, by the starting SoC value ξ0,

and by the SoC changes ∆ξ̃i. This is shown in (5.13).

ξj =















ξ0, if j = 1

ξ̃i, if j = 2i, i = 1, . . . , N

ξ̃i + ∆ξ̃i, if j = 2i + 1, i = 1, . . . , N

(5.13a)

tj =















0, if j = 1

t̃i, if j = 2i, i = 1, . . . , N

t̃i + ∆t̃i, if j = 2i + 1, i = 1, . . . , N

(5.13b)

Since the SoC reference trajectory is calculated from data on the aggre-

gated time grid (5.9), it is projected back to the original time grid by

linear interpolation and finally re-mapped from time to the positions di

using (5.3).
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5.2 ECMS with Predictive Reference Signal

Generator

At this point, the non-predictive ECMS can be combined with the predic-

tive reference signal generator as illustrated in Fig. 5.1. Instead of a con-

stant value, the ECMS obtains now a time- or position-dependent reference

value ξref (t). This reference signal requests that the SoC of the battery is

lowered by the ECMS before some important recuperation phases occur.

This ensures that most of the available energy can be recuperated. In

the following, this predictive energy management strategy is referred to as

pRSG-ECMS. The block diagram in Fig. 5.4 shows the system consisting

of the predictive controller and the vehicle on a system level.

Gearbox Engine

Motor

Tank

Battery

ECMS

Equivalence

Factor

SoC

Estimation

Torque

Distribution

Control

Vehicle

Driving Cycle

pRSG

Position

Elevation Profile

avg. Speeds Navigation

System

min
u

H

VBT , IBT

v, γ
ξ

TICETEM

u

s

ξref

Figure 5.4: System level block diagram of the pRSG-ECMS control system
with the vehicle.

5.2.1 Definition of Test Framework

Since both strategies, namely the pRSG-ECMS and the standard ECMS,

are causal, neither of them can guarantee that the specified final SoC is

achieved exactly. Consequently, the resulting fuel consumption (FC) of

each strategy over a driving cycle cannot be compared with the other
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because the change of the electric energy content in the battery over the

cycle is not equal in both cases. Therefore, each strategy is compared

with the corresponding global optimal solution. This optimal solution is

evaluated for the same initial and final state as resulting from each strategy.

The relative excess consumption rEC introduced in Sec. 4.2.3 is used in

all cases to compare the results.

5.2.2 Simulation of the Navigation System

To assess the quality of the proposed method, simulations of all three cases

(ECMS, pRSG-ECMS, and DP) must be carried out. The pRSG-ECMS

requires the data provided by the navigation system to be available. These

data points are derived from the exact driving profiles for simulation as

follows:

• Topographic data points provided by the navigation system are as-

sumed to be exact. Therefore, the data points defined in the driving

profile are used for the simulation as well as for the prediction.

• In contrast, the speed profile cannot be predicted exactly by the

navigation system. Therefore, using the exact driving profile, an

average speed is computed which is used as the simulated output

available from the navigation system. This approximation is very

rough on purpose. Fig. 5.5 shows this approximation for the first

part of SWISSelv. The algorithm that was used to construct the

simulated average traveling speed is listed in Appendix E.

distance [km]
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Figure 5.5: Approximated data of the simulated average traveling speed (filled)
as provided by the navigation system (first part of the SWISSelv cycle) together
with the real driving cycle (solid line).
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5.3 Simulation Results

This section shows the results of the simulations carried out for the three

test cycles with elevation changes (FTPelv, US06elv, and SWISSelv). The

parameters for the ECMS and for the pRSG-ECMS are identical to assure

that both strategies yield the same results on flat terrain. The parameters

are listed in Table 4.2. The additional parameters used for the pRSG are

shown in Table 5.1.

Fuel consumption and the relative excess consumption of the two causal

strategies are summarized in Table 5.2. In hilly environment, the pRSG-

ECMS performs considerably better than the ECMS. The fuel consump-

tion with the pRSG-ECMS deviates by less than 5.1% from the optimal

solution for the cycles investigated here. For the cycle US06elv, the pRSG-

ECMS yields almost optimal fuel consumption. This is explained by the

fact that the driving cycle has an almost constant speed near the value

of 60 km/h that closely matches the estimation of the navigation system.

Furthermore, the altitude profile of this driving cycle shows a relatively

uniform road grade, first ascending, then descending.

Figures 5.6, 5.7, and 5.8 show the state trajectories of the ECMS and

the pRSG-ECMS with the corresponding optimal state trajectories ob-

tained with DP (dashed). In addition, the topographic profile is shown to

point out the interconnection between (future) elevation and SoC. These

figures illustrate that, particularly for the US06elv, the state trajectory

obtained with the pRSG-ECMS is closer to the optimal solution than that

obtained with the standard ECMS. A comparison of the topographic pro-

file with the SoC trajectory shows that the proposed strategy lowers the

SoC before important recuperation events take place.

Table 5.1: Parameters for the pRSG-ECMS.

Parameter Value Unit

ηrecup 0.7 -

ξmin 0.4 -

ξmax 0.7 -

δξf 0.01 -

αε 108 s−2

αε,f 107 s−2
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Table 5.2: Simulation results for three cycles with elevation changes.

Cycle Strategy
FC (Strategy/DP) rEC

[l/100km] [%]

FTPelv
ECMS 4.55 / 4.20 +8.3

pRSG-ECMS 4.42 / 4.20 +5.2

US06elv
ECMS 8.07 / 7.64 +5.7

pRSG-ECMS 7.45 / 7.45 +0.0(2)

SWISSelv
ECMS 3.90 / 3.54 +10.1

pRSG-ECMS 3.63 / 3.54 +2.4
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Figure 5.6: SoC trajectories of ECMS vs. DP and pRSG-ECMS vs. DP for
cycle FTPelv and its elevation profile.

5.4 Conclusions

The non-predictive, causal control strategy from Sec. 4.2 (ECMS) is ex-

tended in this chapter with an algorithm that computes a reference tra-
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Figure 5.7: SoC trajectories of ECMS vs. DP and pRSG-ECMS vs. DP for
cycle US06elv and its elevation profile.

jectory for the state-of-charge of the battery. This reference trajectory

assures that the state-of-charge is kept well within its constraints even if

large amounts of energy resulting from elevation changes are recuperated.

The algorithm presented here is computationally efficient since it could be

formulated as a quadratic program. Further, it relies only on data from

the navigation system assuming this system comprises topographic maps.

Consequently, the algorithm is well suited for real-time application in the

control unit of a hybrid vehicle.

Simulation results have shown that the fuel consumption can be re-

duced considerably compared to the non-predictive strategy from Sec. 4.2

for driving cycles with topographic profiles. For the SWISSelv driving

cycle with great elevation changes, the non-predictive strategy showed an

increased fuel consumption toward the global optimum by 10.1%. In con-

trast, the predictive strategy improved the fuel consumption such that it
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Figure 5.8: SoC trajectories of ECMS vs. DP and pRSG-ECMS vs. DP for
cycle SWISSelv and its elevation profile.

was only 2.4% higher than the global optimum for this specific driving

cycle. The smallest improvement was observed for the FTPelv cycle where

the relative excess consumption improved from 8.3% to 5.2% by applica-

tion of the predictive reference trajectory.

Since the predictive algorithm developed in this chapter does not as-

sume a specific powertrain topology, it can be used for any hybrid pow-

ertrain if the corresponding non-predictive energy management strategy

allows for reference tracking of the state-of-charge. Furthermore, the pro-

posed algorithm seems to be very promising for application in a plug-in

HEV. Such a vehicle has a considerably larger battery than a standard

HEV, allowing to use electric energy as a primary energy source. Hence,

the initial condition of the battery is typically ‘fully charged’, the optimal

final condition ‘completely discharged’, i.e., the condition on charge sus-

tenance can be omitted for plug-in HEVs. This final condition is optimal
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in the sense of monetary energy cost for the current prices on electricity

and fuel in most countries [36]. The predictive algorithm presented here

can be used for plug-in HEVs by simply setting the target final state of

the battery ξset equal to the lower constraint ξref,min. Clearly, the end of

the trip corresponds the the place where the battery will be recharged.
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Chapter 6

Predictive Engine Start/Stop

Decision

The models deployed in the previous chapters of this thesis all neglect the

energetic costs that result from a start of the engine. However, such costs

are present in reality. To start the engine, some additional torque must

be provided by the electric path to accelerate the engine. This yields a

consumption of electric energy which at some time must be generated from

fuel. In addition to the electric consumption, some additional fuel must

be injected at each engine start to build up the wall film for the case of

port fuel injected engines, as it will be discussed later.

If a control strategy does not include such starting costs in the un-

derlying model, frequent engine starts can occur. This happens especially

for constant speed sections where such a ‘duty cycling’ at high frequency

is indeed optimal if no starting costs are present. If such a duty cycling

is commanded by the control strategy in a real vehicle, fuel consumption

increases due to the starting cost. Further, the comfort for the driver

is reduced and wear of the components is increased, especially for the

clutch. To avoid such duty cycling, introduction of an additional penalty

on each engine start has been proposed in literature [8]. Such a penalty

indeed reduces the frequency of the duty cycling for constant speed pro-

files. However, on a real driving cycle, the engine start is delayed by the

penalty that can lead to inefficient operating points of the powertrain. It

is clear, that the optimal decision can only be found if the future driving

profile is taken into account.

In this chapter, the global optimal solution is evaluated with DP for

the base model that does not include any starting cost, but also for two

different models including starting cost. This investigation shall reveal the



6.1. Model of the Hybrid Powertrain Including Engine Start 98

impact of the starting cost on the fuel consumption but also on the number

of engine starts. Later, a suboptimal, model predictive control (MPC) is

investigated to evaluate how much of this theoretical fuel saving potential

can be realized as a function of the length of the prediction horizon.

6.1 Model of the Hybrid Powertrain Includ-

ing Engine Start

The original model from Chapter 2 is extended in this section with a simple

physical model for the engine start. Since the state of the engine must be

saved in the computation in order to be able to detect a change of the

engine state, the state vector of the model increases by one dimension. In

the original model, the only state variable was the state-of-charge ξ of the

battery. Here, a new state variable is introduced to describe the state of

the engine. Since the engine can only be on or off, this variable is binary.

Let’s call this variable xICE . The resulting state vector is

x =

[

ξ

xICE

]

. (6.1)

6.1.1 ICE Start

The engine in full parallel HEVs is typically started by closing the clutch

such that some torque is transmitted to the engine. Consequently, the

engine is accelerated up to the speed of the gearbox input ωGB. In order

to guarantee the driver’s comfort, the electric motor must compensate the

torque transmitted by the clutch in addition to the torque that needs to

be provided for propulsion. Injection of fuel starts as soon as the engine

reaches the speed of the gearbox and the clutch is fully engaged. However,

at the beginning of the injection, additional fuel must be injected to the

fuel used for combustion. This additional fuel is necessary to build up the

wall-film [37, 38] in the intake manifold. Consequently, there are two effects

contributing to the cost that must be accounted for an engine start: Firstly,

the additional electric energy necessary to provide the torque to accelerate

the engine. This electric energy is finally compensated by chemical energy,

i.e., resulting as fuel cost. Secondly, some additional amount of fuel to build

up the wall-film must be injected. This results directly in an increase of
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the fuel consumption. The wall film is only relevant in a port fuel injected

(PFI) engine. For a direct injected (DI) engine, it can be neglected. Both

engine types are studied in this chapter.

There exist many other possibilities to start the engine. However, the

starting procedure shown here represents the standard engine start in full

parallel HEVs.

To model the starting of the ICE in the quasi-static simulation (QSS),

the simulation must be refined in order to capture the starting sequence

which is faster than one sampling period ∆t = 1 s of the QSS. Therefore,

the sampling period during which a start occurs is divided in two periods

as illustrated in Fig. 6.1: First, the starting period of length tst is defined

where the engine is accelerated from zero speed up to the speed of the

gearbox ωGB. Then, the propulsion period of length tpr = ∆t−tst results

during which the powertrain is in regular propulsion mode. The starting

torque Tst = 45 Nm is constant and defined by the controller of the clutch,

i.e., the clutch is closed by a controller such that this constant torque is

being transmitted until the speeds of both sides of the clutch match.

t

T

0

Tst

Tst TGB

TEM

TICE

tst ∆t−tst

I II III

Figure 6.1: The quasi-static torques of the gearbox (gray box), electric motor
(solid line), and combustion engine (dashed line) during pure electric driving (I),
ICE start (II), and recharging (III).

The time required to accelerate the engine from zero speed to the rota-

tional speed of the gearbox ωGB can be computed with the engines inertia

ΘICE , the starting torque Tst, and the brake torque of the dragged engine
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Tbrq = −18 Nm as follows

tst =
ΘICE · ωGB

Tst − Tbrq

. (6.2)

For the case where the maximum torque of the electric motor is not suf-

ficient to fulfill the requested torque at the gearbox during the starting

period, it is possible to compensate for the missed torque in the propul-

sion period of this sampling period such that the energy provided to the

gearbox corresponds to the requested value. The resulting torque at the

gearbox for the propulsion period is then given by

TGB,pr =
∆t · TGB − tst · (TEM,eff,ac − Tst)

∆t − tst

, (6.3)

where TEM,eff,ac is the torque that is effectively provided by the electric

motor. The electric motor is capable to be overloaded for a short time.

During the starting sequence of the engine, the motor is allowed to be

overloaded by the starting torque Tst. Hence, the effectively available

torque during the starting sequence is given by

TEM,eff,ac = min (TGB + Tst, TEM,max(ωGB) + Tst). (6.4)

The mass of the fuel wall film that has to be build up at every start is

modeled to be constant given by the variable mwf . The assumption of a

constant value for this parameter will be discussed below and its sensitivity

is investigated in Sec. 6.2.3.

6.1.2 ICE Stop

In order to stop the engine, the clutch is disengaged and the injection is

stopped. However, the engine carries out a few revolutions until it comes to

a full stop. During that time, the fuel stored in the wall film is evaporated,

passes through the cylinders, and is finally lost for propulsion after the next

engine start. Similarly, the kinetic energy stored in the engine cannot be

recuperated by the electric path. This is a consequence of the parallel

topology where the speed of the motor is fully determined by the speed of

the gearbox input.
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6.1.3 Combined Backward/Forward Approach

Quasi-static, backward-facing models are commonly applied to estimate

fuel consumptions for vehicles on a given driving cycle [17, 18, 39]. Quasi-

static means for such models that all signals are assumed to be constant

over one time step. Further, the consumption of the power converters is

evaluated for static operation. The term backward-facing describes the

direction of the signals. Simulations that are backward-facing start the

computations from the cycle, through the powertrain, back to the power

converters. This direction is inverse to the physical direction. Physically,

the starting point is a cause (e.g. force) that results in an effect (e.g.

acceleration), i.e., forward-facing. In backward-facing models the effect is

given and the corresponding cause is calculated. This procedure allows for

fast computations of the fuel consumption for a given driving cycle.

However, such backward-facing approaches fail if the requested driving

cycle is not feasible due to limitations in the powertrain such as maximum

torques, currents, and so forth. This issue becomes more important for

the model presented in this chapter, since the maximum torque depends

strongly on the state of the engine. In the case of strategies with a limited

prediction horizon, the vehicle can run into a situation, where the vehicle

accelerates with engine being off. If the requested acceleration is then too

high for the electric motor only, some torque from the engine is required to

fulfill the requested torque. However, starting the engine reduces the avail-

able torque additionally. This results in a situation where the requested

torque cannot be provided by any means for the actual engine state. Nev-

ertheless, the driving cycle per se is feasible: if the engine was started

earlier, this situation would be perfectly feasible.

In this study fully predictive strategies as well as control strategies with

limited prediction horizon are investigated. Therefore, a purely backward-

facing model cannot be applied for all cases as explained above. Conse-

quently, a combined approach is taken: The signals are computed in a

backward fashion, first. If some signals are being limited, the entire path

is calculated forwards with the limited signals resulting in the maximum

feasible acceleration. This results in a speed profile deviating from the orig-

inal driving cycle. This combined backward/forward approach is also used

in the ADVISOR simulation toolbox [31]. In order to guarantee compara-

bility, the modified driving cycle is being saved after each simulation and

being applied for computation of the optimal reference fuel consumption.
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6.2 Optimal Control

In order to evaluate the optimal control to drive the model presented in

Sec. 6.1 from some initial state x0 to some final state xf , deterministic

dynamic programming (DP) is again applied as introduced in Chapter 3.

Since the second state variable, namely the engine state, is binary, only

one state variable, namely the state-of-charge, needs to be discretized.

The cost function to be minimized is again the fuel energy consumption

J =

∫ tf

0

Hl·
∗
mf (τ)dτ, (6.5)

where
∗
mf is the fuel mass flow, and Hl is the lower heating value of the

fuel.

The motivation to evaluate the global optimum is manifold. Firstly,

the optimal solution for three different models is being compared. These

models encompass a model without any modeling of the ICE starting, a

model with PFI where ICE starting is modeled, and a model with DI also

including ICE starting. This comparison shall point out wether it is worth

to model the ICE starting or not. Secondly, a sensitivity analysis is carried

out in order to investigate the sensitivity of the mass of the wall film on

the fuel consumption. Thirdly, the global optimum is used in Sec. 6.3 as

a benchmark to gauge suboptimal solutions.

6.2.1 Three Different Models

The optimal fuel consumption is evaluated here for three different models.

The first model is the referred to as base model where ICE-starting is

not modeled. This model is the one used in the previous chapters and is

described in Chapter 2. For this model, the engine can be started at any

time if the speed of the gearbox is above idle speed. There is no energy

necessary to start the engine, neither from the electric path, nor from any

additional fuel consumption.

The other two models contain a simple model for the engine start as

introduced in Sec. 6.1.1. The amount of fuel mwf that is lost at each start

is assumed to be zero mwf = 0 g for a direct injected engine, for a port

fuel injected engine it is assumed with mwf = 0.3 g.
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6.2.2 Results from DP for the Three Models

The simulations carried out in this chapter use four regulatory driving cy-

cles, namely NEDC, FTP-72, LA-92, and CADC. These driving cycles have

no topographic profile and their speed profiles are shown in Appendix B.

The simulation results obtained by DP with an initial and final state of

x0 = xf = [0.55, 0]T for the four driving cycles and the three models are

summarized in Table 6.1. The fuel consumption FC which is equivalent to

the cost function (6.5) is, obviously, always minimal for the model without

any starting cost.

The fuel consumption of the model with starting cost and direct injec-

tion is increased by 0.9%–3.9% compared to the base model. The model

with starting cost and port fuel injection shows the highest fuel consump-

tion of the three models with an increase of 1.7%–5.1% compared to the

base model. The order of these results is not surprising since the base

model neglects the electric and chemical energy required for starting the

engine completely, the DI-model takes into account the electric starting en-

ergy, and the PFI-model additionally consumes chemical energy for each

start. The interesting point is that the increase in fuel consumption is

mainly caused by modeling the electric part of the starting, whereas the

energy lost by the wall film introduces a smaller increase in fuel consump-

tion. Further, the number of ICE starts are also reported in Table 6.1. In

order to improve comparability over the cycles, the number of starts per

unit of time is also given. A similar conclusion can be drawn here: Mod-

eling the electric starting cost yields the biggest change, i.e., reduction of

the number of starts. Modeling the wall film fuel mass yields a further

reduction of the number of ICE starts, but its effect is less pronounced.

6.2.3 Sensitivity Analysis

The wall film mass mwf is the most uncertain parameter of this model. Its

value is not constant during operation, it varies mainly with temperature

of the engine, but also with the operating point [37, 38]. Consequently, the

wall film mass that is lost at each engine stop is determined by the engine

temperature and operating point at the time of the shutdown. However,

the wall film mass is assumed to be constant for simplicity. Therefore,

a careful analysis is carried out to investigate the sensitivity of the fuel

consumption to the the wall film mass in order to validate this assumption.
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Table 6.1: Simulation results of DP with the base model where ICE starting
is not modeled, and the two models where ICE starting is modeled once with
mwf = 0.3 g for PFI, once with mwf = 0 g for DI. The relative difference to the
model without modeling of ICE starting is indicated in parenthesis.

Cycle
model with FC Nst

Nst

tf

ICE-starting [l/100km] [-] [min−1]

NEDC

no 4.80 24 1.22

yes (DI) 4.85 (+0.9%) 12 (-50.0%) 0.61

yes (PFI) 4.88 (+1.7%) 8 (-66.7%) 0.41

FTP-72

no 4.35 63 2.76

yes (DI) 4.49 (+3.2%) 21 (-66.7%) 0.92

yes (PFI) 4.54 (+4.4%) 17 (-73.0%) 0.75

LA-92

no 5.46 91 3.80

yes (DI) 5.68 (+3.9%) 30 (-67.0%) 1.25

yes (PFI) 5.74 (+5.1%) 24 (-73.6%) 1.00

CADC

no 6.67 252 4.82

yes (DI) 6.86 (+2.9%) 72 (-71.4%) 1.38

yes (PFI) 6.92 (+3.7%) 62 (-75.4%) 1.19

This sensitivity analysis is carried out by evaluation of the optimal

control with a constant wall film mass in the range mwf ∈ [0, 0.5] g. The

resulting optimal control is then applied to the model with the ‘true’ wall

film mass mwf = 0.3 g. The resulting fuel consumption normalized with

the minimal fuel consumption achieved on each driving cycle is shown in

Fig. 6.2. These results reveal that a wrongly estimated wall film mass yields

an excess in fuel consumption of less than 0.3 % even if the parameter is

estimated with a value of 0 g instead of 0.3 g. If the more realistic range of

0.3 ± 0.1 g is considered, the excess in fuel consumption is less than 0.1%.

Consequently, the sensitivity of the wall film mass on the fuel consumption

is very small and the assumption of a constant value proofs to be sufficient

for the current purposes.

Although the fuel energy consumption is the objective function to be

minimized in this chapter, it is worth to have a look at the number of

engine starts Nst over the driving cycle. Figure 6.3 depicts the number of

engine starts normalized with the minimum number of starts for each cycle.

These results reveal that the number of ICE starts decreases with the mass



105 Chapter 6 Predictive Engine Start/Stop Decision

mwf [g]

F
C

/
m

in
(F

C
)

[-
]

NEDC

FPT-72

LA-92

CADC

0 0.1 0.2 0.3 0.4 0.5
1

1.001

1.002

1.003

1.004

1.005

Figure 6.2: Sensitivity of the assumed wall film mass mwf in the control on
the fuel consumption FC. The ‘real’ wall film mass of the model is mwf = 0.3 g.

of the wall film that is assumed in the control, as expected. However, as

resulting from Fig. 6.2, choosing a too high value for mwf can be beneficial

in terms of components wear and comfort, since this reduces the number

of ICE starts further while sacrificing only little fuel economy.
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Figure 6.3: Sensitivity of the assumed wall film mass mwf in the control on
the number of ICE starts Nst normalized by the minimum ICE starts achieved
for each cycle. The ‘real’ wall film mass of the model is mwf = 0.3 g.
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6.3 Suboptimal Control

Since there is no information on the entire future driving conditions avail-

able in reality, a study on the optimal prediction horizon is carried out to

answer the question ‘what prediction horizon is necessary to capture most

of the fuel saving potential’. To answer this question, a model predictive

control scheme [40] is being set up.

6.3.1 Model Predictive Control

The MPC scheme applied here evaluates the optimal control signal starting

from the current state of the system and solving an optimal control prob-

lem for the known disturbance (driving cycle) over the prediction horizon

th. From the resulting control signal of length th only the first element

is used during the current time step. The rest of the signal is dismissed

and one time step later, the optimal control problem is solved again over

the time horizon th. In order to solve the optimal control problem at each

time, DP is used within the time horizon since this technique yields the

optimal solution for a nonlinear, constrained problem. Further, since this

study is limited to simulations, computational cost is not an issue here.

However, MPC schemes relying on DP can be applied in real-time for the

control of hybrid electric vehicles as it has been successfully demonstrated

in [23]. The computational effort depends strongly on the number of state

variables, but also on the prediction horizon and their discretization, re-

spectively.

Details on the MPC Implementation

Even though the MPC scheme is predictive, the time horizons used here are

too short to prevent the state-of-charge from running into its constraints,

especially if long recuperation phases occur as discussed in Chapter 5.

Therefore, a penalty on the state-of-charge is introduced in the cost func-

tion as in Sec. 4.2 with the same values of the tuning parameters.

The optimal control problem solved at every time t for the MPC is

minimizing the cost function

JMPC=K (x(t + th)) +

∫ t+th

t

{

Hl·
∗
mf (τ)+α

(

ξref − ξ(τ)

∆ξnrm

)2q
}

dτ. (6.6)
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The final cost K(x) assigned to each state at the end of the time horizon is

crucial for the performance of the MPC. If the optimal cost-to-go function

J (x, t + th) resulting from the DP problem with the penalty on the state-

of-charge would be used for each specific cycle, the MPC solution would be

identical with the DP solution. However, the optimal cost-to-go function

contains information on the entire future driving behavior which is undesir-

able for the current study. Therefore, a time-invariant final cost is applied.

It is chosen as the temptorally averaged optimal cost-to-go function of the

DP problem with a penalty on state-of-charge deviations. In order to avoid

over-fitting to a specific cycle, the DP was evaluated on a cycle consisting

of NEDC, FTP-72, LA-92, and CADC in sequence. To reduce the impact

of the final state constraint, this cycle was repeated twice consecutively,

but only the first part was used to compute the time-invariant final cost.

The final cost K(x) for the MPC is obtained from the cost-to-go func-

tion J (x, ti) as

K(x) =

∑N
i=1 (J (x, ti) − minx J (x, ti))

N
, (6.7)

where N is the number of (time) samples.

6.3.2 Simulation Results

The simulations are carried out for all four driving cycles, for prediction

horizons of th = 1, 2, . . . , 15 s, and for both engine types PFI and DI.

The fuel consumption between these results cannot be compared directly

because it depends on the change in the state-of-charge of the battery over

the cycle. In order to compare these results, the fuel consumption achieved

by the MPC is compared to the optimal fuel consumption evaluated by

DP with the same final state as reached using MPC. Further, since the

speed profile resulting from the MPC with limited horizon can have small

deviations from the original speed profile, the DP solution is evaluated for

the speed profile that was stored during the simulation using MPC. The

difference of these two fuel consumptions, i.e., the fuel consumption of the

suboptimal MPC and the optimal DP, is expressed again as the relative

excess consumption rEC as it was used in Sec. 4.2.3, given by (4.10).

The simulation results show that the SoC-penalty used in the MPC

scheme is sufficient because the SoC does not reach its constraints in any

of the driving cycles. All simulations proved to be valid.
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Figures 6.4 and 6.5 illustrate the relative fuel consumption as a function

of the prediction horizon and for various cycles for both engine types,

respectively. These figures show that with the minimum prediction horizon

of th = 1 s, there is a maximum potential of 4% (3%) for the PFI (DI)

engine toward the global optimum. Obviously, the best fuel saving is

achieved for the longest prediction horizons, but these graphs are very flat

for longer horizons. This reveals that even a relatively short prediction

horizon of approximately 4 seconds is sufficient to achieve most of the

potential independent of the value of the wall film mass mwf . This result

is very promising since predictions of the speed profile over 4 seconds seem

to be realistic with current technology. At this point, it must be mentioned

that this study relies on the assumption that the prediction within the

horizon is perfect. In reality, any prediction is uncertain.
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Figure 6.4: Relative fuel consumption for different prediction horizons. Base
model is the PFI-engine with mwf = 0.3 g.

6.4 Conclusion

This chapter shows the importance of proper modeling of the engine start

cost. An evaluation of the optimal fuel consumption of the model without

start cost and the two models including start cost for direct injection and

port fuel injection has been carried out. This investigation reveals, that

the fuel consumption for a model with starting cost can be up to 5.1%

higher in the case of PFI, and up to 3.9% higher for DI compared to the
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Figure 6.5: Relative fuel consumption for different prediction horizons. Base
model is the DI-engine with mwf = 0 g.

model that neglects starting cost. These maximum values are observed for

the LA-92 driving cycle.

These important differences motivate to include the starting cost in

the energy management for parallel electric hybrid vehicles. Since the

absolute value of the wall film mass is rather uncertain and since it also

depends on the operating points, a sensitivity analysis on this parameter

has been carried out. This analysis reveals that the sensitivity is rather

small. The maximum excess in fuel consumption is less then 0.3% if the

mass is assumed to be zero instead of 0.3 g. For a more reasonable range

of 0.3 ± 0.1 g for the wall film mass, the fuel consumption increased by

less than 0.1%. These results justify the assumption of a constant wall

film mass. Further, it has been observed, that overestimating the wall film

mass yields a very small increase in fuel consumption, but the number of

engine starts could be further reduced.

The step toward a causal control has been carried out by using a model

predictive controller. This MPC control uses dynamic programming over a

short time horizon and requires a prediction of the future driving cycle for

this horizon. An investigation of the fuel consumption with respect to the

global optimum has been carried out for various lengths of the prediction

horizon. The results showed clearly, that some prediction is necessary

to find an appropriate decision for the engine start and stop. However,

a short prediction horizon of about 4 s is sufficient to achieve good fuel

consumption. Such a short prediction is realistic with current technology.
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Chapter 7

Summary & Conclusions

The aim of this project was to develop novel control strategies for the

operation of a full parallel hybrid electric powertrain that minimize the

fuel consumption over the driving cycle. In a first step, the global optimal

solution was evaluated by means of dynamic programming. This technique

requires full knowledge of the driving cycle. The resulting control laws are

therefore not immediately useful for real-time implementation. However,

they are very valuable in order to benchmark the performance of any other

suboptimal, but realizable control strategy.

Since the dynamic programming method requires a discrete-time model

of the plant and a quantized state-space, it is prone to numerical errors,

particularly when a specified final state is enforced. A novel method has

been developed that reduces the mismatch between desired and achieved

final state, but also the computational cost significantly.

Causal control strategies were found using Pontryagin’s minimum prin-

ciple. Assuming no knowledge on future driving conditions, a causal, non-

predictive controller was derived with this method. This controller mini-

mizes the equivalent fuel cost at every sampling time. The equivalent fuel

cost is computed by weighting the fuel consumed by the engine against the

electric energy consumed inside the battery using an equivalence factor.

Such equivalent fuel consumption minimization strategies are known in lit-

erature. However, in this work a novel and detailed derivation is presented

that includes a penalty on the deviation of the battery state-of-charge with

respect to a desired reference value.

A simplified model has been presented and validated against the orig-

inal model. This simplified model allowed to derive analytical expressions

for the control candidates. This novel control law consists of a simple

rule based map which is determined by powertrain parameters only. Eval-
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uation of this control law is computationally significantly more efficient

than minimizing the Hamiltonian numerically at every time sample. Us-

ing this simplified control a lower saturation in the equivalence factor could

be found analytically. This allowed to extend the causal control with an

anti-windup scheme.

The ECMS achieved a fuel consumption that was very close to the

global optimum on most driving cycles. However, as soon as the amount

of recuperated energy became important compared to the storage capac-

ity of the battery, the performance of ECMS decreased considerably, as for

example in driving cycles with altitude variations. This decrease in per-

formance can be explained by the fact that the ECMS is non-predictive

and its derivation assumes an unconstrained battery. If long recuperation

phases occur, it is obvious that the state-of-charge of the battery should

be lowered prior to each important recuperation phase. This would then

allow to capture the recuperable energy within the constraints of the bat-

tery. Such a behavior can only be achieved by exploiting some information

on the future driving conditions. In this work, a novel algorithm has been

developed that exploits data from the navigation system such as the to-

pographic profile and the average traveling speeds of the planned trip.

This algorithm is called predictive reference signal generator (pRSG) and

computes an appropriate reference trajectory for the state-of-charge to the

end of the trip. Since the ECMS is capable to track some reference val-

ues for the state-of-charge, the ECMS and the pRSG have been joint to a

predictive energy management system. As a result, good performance in

terms of fuel consumption was achieved even in driving cycles with topo-

graphic profiles. Since the proposed algorithm is formulated as a quadratic

program, it is computationally very efficient and well suited for real-time

application in the vehicle.

The control strategies developed in this work rely on a model that does

not account for any energetic consumption required to start the engine. In

reality, there is some additional torque required from the electric motor to

accelerate the the engine during startup. Depending on the type of engine,

a certain amount of fuel is required for each start. In order to evaluate

the impact of the starting cost on the total fuel consumption, the model

has been extended with such starting costs. An investigation with DP

revealed that the engine start should not be neglected for energetic reasons,

as well as for reasons of comfort and components wear. Implementation
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of a model predictive controller and a careful analysis with various lengths

of the prediction horizon have shown that a short prediction horizon is

sufficient for the decision to start or to stop the engine.

The conclusion of this work is that some prediction is helpful to mini-

mize the integral fuel consumption. The proposed predictive energy man-

agement finally acts on two time scales: First, an accurate prediction of the

torque requested by the driver over a short horizon improves the start/stop

decision for the engine considerably. Second, a long-term prediction on the

topographic profile and average traveling speeds on the planned trip allows

to improve the management of the battery’s state-of-charge to maximize

the amount of recuperated energy.

Throughout this project, the powertrain components were assumed to

be given, i.e., no optimization on the component dimensioning was car-

ried out. Further, all components were modeled isothermally, i.e., thermal

effects are neglected. An important topic in the field of hybrid electric ve-

hicles is the aging of the battery. Such aging phenomena are also neglected.

If appropriate models on battery aging would exist, the cost functional for

the energy management could be extended with a penalty on the variables

describing the battery aging. This would yield an energy management

strategy that inherently reduces the aging of the battery. However, the

battery’s wear is not considered explicitly in this thesis. Nevertheless, it

is possible to adjust the proposed control strategies to the aging of the

battery and other components, because the control is defined by physical

parameters of the powertrain. Hence, if the parameters are observed over

lifetime of the vehicle, they can be adjusted in the energy management

system. An adaptive control would result.
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Appendix A

Nomenclature

Nomenclature

Symbol Description Unit

Af Frontal area of vehicle [m2]

E Energy [J]

F Force [N]

FC Fuel consumption [l/100km]

H Hamiltonian [·]

Hl Lower heating value [J/kg]

I Current [A]

J Cost functional [·]

J̃ Extended cost functional [·]

J Cost-to-go [·]

P Power [W]

Q0 Nominal battery capacity [C]

R Ohmic resistance [Ω]

T Torque [Nm]

Ti Integration time constant [s]

Th Time horizon [s]

V Voltage [V]

cd Aerodynamic drag coefficient [-]

cr,{1,0} Rolling friction coefficients [s/m], [-]

d Distance [m]

e Internal efficiency of combustion engine [-]

g Gravitational acceleration [m/s2]

h Elevation [m]
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Nomenclature

Symbol Description Unit

kGB Gear number [-]

m Mass [kg]

mwf Mass of wall film [kg]
∗
mf Fuel mass flow [kg/s]

q Parameter of order of SoC-penalty [-]

rWH Effective wheel radius [m]

rEC Relative excess consumption [-]

s Equivalence factor [-]

t Time [s]

th Time horizon of MPC [s]

tst Starting time of ICE [s]

u Split factor [-]

u Control vector [·]

v Speed [m/s]

x State vector [·]

z Unknown vector in the QP [·]

Θ Rotational inertia [kg m2]

α Weighting parameter of SoC-penalty [·]

αε Weighting parameter of slackness variables [·]

β Parameter of simplified battery model [W−1]

γ Road grade [rad]

ε Slackness variable [·]

η Efficiency [-]

λ Costate [·]

ν Gear ratio [-]

ξ State-of-charge [-]

ρa Air density [kg/m3]

τ Time constant [s]

ω Rotational speed [rad/s]
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Abbreviations

Acronym Description

2PBVP Two-point boundary value problem

CFC Causal feedback control

DI Direct injection

DP Dynamic programming

ECMS Equivalent minimization strategy

ECU Engine control unit

HEV Hybrid electric vehicle

ICE Internal combustion engine

MPC Model predictive control

PFI Port fuel injection

pRSG Predictive reference signal generator

QP Quadratic program

QSS Quasi-static simulation

SHM Selective Hamiltonian minimization

SI Spark ignition
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Regulatory Driving Cycles

NEDC

time [s]

sp
ee

d
[k

m
/
h
]

0 500 1000 1500 2000
0

50

100

150

FTP-75

time [s]

sp
ee

d
[k

m
/
h
]

0 500 1000 1500 2000
0

50

100

150

FTP-72

time [s]

sp
ee

d
[k

m
/
h
]

0 500 1000 1500 2000
0

50

100

150



119 Chapter B Regulatory Driving Cycles
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Appendix C

Power Limits

The amount of boosting P bo
m (s) in (4.52) is limited by the electric motor

maximum power constraint when

P bo
m (s) > Pmmax (C.1)

which is equivalent to

s < sbo,m
lim ,

η2

e(2Pmmaxα + η)
. (C.2)

The amount of recharging P re
m (s) in (4.54) is limited by the electric motor

minimum power constraint when

P re
m (s) < Pmmin (C.3)

which is equivalent to

s > sre,m
lim ,

1

ηe(1 + 2αηPmmin)
. (C.4)

When the electric motor minimum power constraint is active in the recharg-

ing region, electric driving is optimal for Pd > 0 when

Hel(Pd) <Hre (Pmmin) (C.5)

Pd <P re,m
lim (s) , . . .

−
(

s
η
− 1

e

)

+

√

(

s
η
− 1

e

)2

+ 4 sα
eη2 Ψ1

2 sα
η2

(C.6)

where

Ψ1 = (P0 + Pmmin(ηes(1 + Pmminηα) − 1)) . (C.7)
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If Pd < 0 then recuperation is optimal when

H−
el (Pd) <Hre (Pmmin) (C.8)

Pd <P re,m−
lim (s) , . . .

−
(

s
η
− 1

e

)

+

√

(

s
η
− 1

e

)2

+ 4sαη2Ψ2

2 sα
η2

(C.9)

where

Ψ2 =

(

P0

e
+

(

sη −
1

e

)

Pmmin + sαη2P 2
mmin

)

. (C.10)
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Matrices of the QP
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Construction of the Simulated Data

Output of the Navigation System

It is assumed that the navigation system only distinguishes between urban,

extra-urban, and highway with the corresponding regulatory speed limits

of 50, 80, and 120 km/h, respectively. (Obviously, any other choice would

work as well.) The average traveling speed assigned to each of these zones

are assumed to be 30, 60, and 100 km/h, respectively.

To obtain the simulated estimated navigation data v(d) from the exact

speed profile v(t) of the test cycle, the following steps are carried out:

1. Converting the speed signal into an index signal i(t) using threshold

values of 55 and 85 km/h. The indices i = 1, 2, 3 stand for urban,

extra-urban, or highway.

2. Filtering the index signal with a non-causal zero-phase low-pass filter

with time constant τ = 30 s.

3. Rounding the filtered index signal back to integers.

4. Replacing the indices back to traveling speeds of 30, 60, or 100 km/h.

5. Mapping of the average speed signal v(t) from time to position v(d).
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