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Abstract 
This dissertation formulates a proposal for a real time implementable energy manage-
ment strategy (EMS) for plug-in hybrid electric vehicles. The EMS is developed to 
minimize vehicle fuel consumption through the utilisation of stored electric energy and 
high-efficiency operation of powertrain components. This objective is achieved through 
the development of a predictive EMS, which, in addition to fuel efficiency, is optimized 
in terms of computational cost and drivability. 

The requirement for an EMS in hybrid powertrain vehicles stems from the integration of 
two energy stores and converters in the powertrain; in the case of hybrid electric vehi-
cles (HEVs) usually a combustion engine and one or more electric machines powered 
by a battery. During operation of the vehicle the EMS controls power distribution be-
tween engine and electric traction motor. Power distribution is optimized according to 
the operating point dependent efficiencies of the components, energy level of the battery 
and trip foreknowledge. Drivability considerations, e.g. frequency of engine starts, can 
also be considered. 

Powertrain hybridization is one of several measures which can increase vehicle fuel 
economy. Due to high oil prices and legislative requirements caused by the environ-
mental impact of greenhouse emissions, fuel economy has gained importance in recent 
years. In addition to increased fuel economy, powertrain hybridization permits the sub-
stitution of fuel for electrical energy by implementing an external recharging option for 
the battery. This vehicle class, incorporating a battery rechargeable via the electrical 
grid, is known as a plug-in HEV (PHEV). PHEV share characteristics of both HEVs 
and all-electric vehicles combining several advantages of both technologies. 

The rechargeable battery feature of the PHEVs makes their EMS development espe-
cially challenging. For minimal fuel consumption, the battery is discharged optimally 
over the whole trip length, prioritising electrical energy when driving conditions are 
such that its use maximises the fuel saving that can be achieved. Therefore, an EMS for 
a PHEV depends heavily on the availability of a priori knowledge about the trip, i.e. the 
knowledge about future vehicle speed and road grade. This requires the driver to indi-
cate the route before trip start. The route knowledge in combination with GPS or Gali-
leo based next generation navigation systems using information from a geographic in-
formation system (GIS) about terrain height profile, road type (e.g. motorway or coun-
try road), and legal speed limits can be evaluated by a speed prediction algorithm in-
cluding information about the driver’s behaviour for a detailed prediction of the trip. 
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These navigation systems and algorithms in combination with expected future advances 
and the deployment of technologies such as intelligent transport systems (ITS) and ve-
hicle-to-vehicle communication (V2V), will make more exact traffic information avail-
able to further improve prediction. Despite expected advances in prediction quality, 
inaccuracy of prediction data has to be considered and is therefore regarded in this 
work. 

The EMS proposed in this dissertation combines different approaches which are exe-
cuted step by step. A first approximation of the energy distribution during the trip is 
based on a mixed integer linear program (MILP), which gives the optimal energy state 
of the battery during the trip. This is especially important for trips with long uphill, 
downhill or urban phases, i.e. sections with a particularly high or lower power require-
ment. The results from MILP are then used by a dynamic programming (DP) algorithm 
to calculate optimal torque and gear using a receding prediction horizon. Using a reced-
ing prediction horizon, an important reduction of computational cost is achieved. Lastly, 
from the DP results a rule-based strategy is generated using a support vector machine 
(SVM). This last step is necessary to ensure the drivability of the vehicle also for inac-
curate prediction data. The dissertation is organized as followed: 

Firstly, the vehicle models employed in the dissertation and its validation are described. 

Secondly, a DP based algorithm is presented to compute the torque and gear during the 
trip. As DP is computational quite intensive, techniques are presented to lower the com-
putational costs. 

Thirdly, the DP algorithm is used in a model predictive control framework (MPC) with 
a receding prediction horizon. Necessary boundary condition of the battery state of 
charge (SOC) given by a SOC set point function for the entire trip are obtained using 
MILP.  

Fourthly, the MPC framework is implemented in an adaptive rule-based strategy. This 
strategy is continuously adapted during the trip in respect to the MPC optimization re-
sults. The rule-based strategy ensures robustness of the EMS also for inaccurate predic-
tion data. 
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List of Symbols 
𝛼𝑎𝑐𝑐 accelerator pedal position 

𝛼𝑏𝑟𝑎𝑘𝑒 brake pedal position 

𝛼𝑟𝑜𝑎𝑑 angle of road inclination 

𝑎  longitudinal vehicle acceleration 

𝐴𝑓 vehicle frontal area 

𝑐𝑤 vehicle drag coefficient 

𝐸𝑏𝑎𝑡,𝑚𝑖𝑛 minimum battery energy level 

𝐸𝑏𝑎𝑡,𝑚𝑎𝑥 maximum battery energy level 

𝐸𝑏𝑎𝑡,𝑛𝑜𝑚 nominal battery energy capacity 

𝐸𝑏𝑎𝑡 stored chemical energy in battery 

𝑓𝐵𝑊  nonlinear vehicle backward model 
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𝑔𝑟 gear ratio (including final ratio) 
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𝑃𝑒𝑚,𝑚𝑎𝑥 maximum mechanical power of the electric motor as a fuction of 𝜔𝑒𝑚 

𝑃𝑒𝑚 mechanical power of the electric motor 

𝑃𝑖𝑐𝑒,𝑚𝑎𝑥 maximum mechanical power of the engine as a fuction of 𝜔𝑖𝑐𝑒 

𝑃𝑖𝑐𝑒 mechanical power of the engine  
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𝑃𝑖𝑛𝑣,𝐴𝐶 electrical power at AC (motor) side of the inverter 

𝑃𝑖𝑛𝑣,𝐷𝐶 electrical power at DC (battery) side of the inverter 
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𝜇𝑟 vehicle rolling resistance 

𝒖 control vector 
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𝑆𝑂𝐶0 battery state of charge at trip start 

𝑆𝑂𝐶𝑒𝑛𝑑 battery state of charge at end of trip 

𝑆𝑂𝐶 battery state of charge  
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𝜔𝑒𝑚 electric motor shaft speed 

𝜔𝑖𝑐𝑒 combustion engine shaft speed 
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1 Introduction 

1.1 Background and Motivation 
In recent years, the issue of fuel economy in the development of transportation vehicles 
has gained increasing importance. This is mainly due to:  

• the assumed impact of carbon dioxide (CO2) on the climate  
• legislative requirements 
• the increasing price of oil and uncertainty over future price changes. 

In 2009, transportation sector emissions amounted to 25% of the European Union 
(EU)’s total greenhouse gas emissions1, and 29.9% of its CO2 emissions. The contribu-
tion of road-only transport (i.e. cars, trucks and buses) to the transportation sector’s total 
greenhouse gas emissions is 71.7%, which still corresponds to more than 14% of the 
EU’s total emissions [1]. Taking into account the emissions caused by the complete 
energy transformation process (mines, plants, refineries, pipelines, etc.) to calculate 
end-user emissions, the figure of transportation sector greenhouse gas emissions rises to 
29% [2]. Consequently, in 2009 legal requirements were made for car manufacturers to 
reduce the average CO2 emissions of their fleet to 130g/km by 2015 and to 95g/km by 
2020 [3]. 

  

Fig. 1.1. Transportation sector greenhouse 
gas emissions (energy transformation emis-
sions not included) in the EU in 2009 [1]. 

Fig. 1.2. Road transportation contribution to 
the transportation sector greenhouse gas 
emissions in the EU in 2009 (energy transfor-
mation emissions not included) [1]. 

                                                 
1 CO2 equivalent emissions 
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In addition to environmental issues, the development of fuel efficient vehicles is moti-
vated by economic factors, principally rising fuel prices over the last ten years. This 
price increase is mainly due to rising fuel duty and oil prices on the world markets (Fig. 
1.3). Although new oil extraction techniques have been developed (tar sands in Canada 
and deep sea extraction off the coasts of Brazil and Nicaragua), the higher costs of these 
processes and the increased demand from developing countries have driven oil prices to 
new heights. Future oil price development is difficult to predict2, but with rising extrac-
tion and production costs, a return to the low oil prices of the past seems improbable.  

 
Fig. 1.3. Crude oil price development from 1981 to 2012 in US $ (Index 1991=100) [4]. 

Reduced fuel use brings political and economic benefits for oil importing countries - 
lesser dependence on politically unstable oil-producing regions, reduced impact of po-
tential future oil shortages, and a positive effect on the domestic economy through re-
duced imports. Other advantages are reduced environmental damage, a reduction in 
global warming and climate change and its associated extreme weather phenomena. 
Summarising the above, increased fuel economy in automobiles is highly desirable.  

Driven by increasing customer demand, manufacturers have already taken measures 
with vehicles using a conventional powertrain, i.e. a powertrain driven only by a com-
bustion engine. Among those measures are the reduction of the vehicle’s air drag coef-
ficient, the use of lightweight materials, engine downsizing and temporary cylinder de-
activation (“dynamic downsizing”). Major advances have been made in this area in re-
cent years, resulting in a steady reduction in fuel consumption (Fig. 1.4). Another ap-
proach for fuel saving is the powertrain hybridization. Hybridization is the integration 
of an additional energy store and energy converter within a conventional powertrain. 
Usually, this is an electric motor with electrical energy store, which is normally an elec-
trochemical battery or supercapacitor. Vehicles using this type of hybrid powertrain are 

                                                 
2 In 2004 the International Energy Agency (IEA) predicted a crude oil price of 22$ / barrel for 2012. The 

actual price in 2012 was more than 100$ / barrel. 
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called hybrid electric vehicles (HEV). The additional electrical energy store and electric 
motor permit that some of the vehicle’s kinetic energy can be regenerated while braking 
by operating the electric motor in generating mode. In addition, traction power demand 
can be decoupled in terms of time from the mechanical power output of the engine 
within certain limits. Therefore, the combustion engine can operate in higher efficiency 
regions. This is especially advantageous in urban traffic, which is characterised by fre-
quent braking, long idle times and low engine load - while on motorways with their 
higher load profile the engine can operate without additional measures in high effi-
ciency regions. Powertrain hybridization can be classified into different levels, accord-
ing to the maximum power of the electric motor and the electrical energy store capacity. 
Vehicles with high levels of hybridization incorporate electric powertrain components 
which are similar in nominal electric motor power and battery capacity to all-electric 
vehicles, as e.g. battery electric vehicles (BEVs). HEVs with an energy storage system 
capacity comparable to BEVs, i.e. with an energy capacity of at least 4kWh, can re-
charge the battery not only by means of the engine but also by connection to the electri-
cal grid (plug-in HEVs). These plug-in HEVs (PHEVs) have a more limited electric 
driving range than BEVs, but with the option of refilling with gasoline and thereby of-
fering practically unlimited driving range. 

 
Fig. 1.4. Development of average CO2 emissions of new passenger cars in the EU. The cars are 
classified into petrol, diesel and alternative fuel vehicles (AFV) including (P)HEVs [5]. 

By substituting fuel for electrical energy in vehicles, CO2 emissions can be reduced sig-
nificantly. In contrast to using fuel, when using electrical energy to propel the vehicle 
emissions are not generated directly by the vehicle, but at the power plants where the 
electricity is generated. Therefore CO2 emissions depend on the methods of power gen-
eration and fuel type used at the power plant. In regions where large proportions of total 
energy output are generated by renewable sources (hydro-plants, wind/solar plants, etc) 
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such as Sweden or Switzerland, the resulting CO2 emissions are low. However, in re-
gions where coal is the main source for power generation, emissions can be higher than 
those generated by conventional powertrain configurations without an electric motor 
(Fig. 1.5). Therefore, to be effective in reducing emissions, widespread use of PHEVs 
and BEVs must go hand-in-hand with clean electricity generation. The impact of wide-
spread use of BEVs or PHEVs on electrical power generation would be minor, as the 
generated electrical grid load would be relatively small. In Germany, the additional 
electrical energy requirement of 10 million BEVs amounts to only 3% of current total 
electrical power production [6]. 

 
Fig. 1.5. Indirect CO2 emissions of battery electric vehicles by region. Calculation based on a 
BEV with an electrical energy consumption of 18kWh/100km and a charging efficiency of 0.95 
using data from [7]. 

1.2 Introduction to Hybrid Powertrain Concepts 
Hybrid vehicles can have non-electric energy storage system such as flywheels [8], or, 
as in hydraulic hybrid vehicles, compressed gas [9] In the following work, only HEV 
concepts with electrical energy store are discussed, as they not only increase powertrain 
efficiency, but PHEVs can also substitute fuel for electrical energy as the traction en-
ergy source. HEVs have in addition to the fuel based energy store (natural gas, gasoline, 
diesel, hydrogen) an electrical energy store which is normally an electrochemical bat-
tery or a supercapacitor [10]. This electrical energy store supports bidirectional power 
transfer, i.e. it can both store and deliver energy. For PHEVs and most HEVs, this en-
ergy store is a battery and the fuel based energy store a petrol tank. In the following 
work, discussion is limited to (P)HEVs of this type. 

There are a variety of different HEV concepts, which can be classified in terms of their 
level of hybridization or their powertrain configuration. HEV powertrain configurations 
differ in the number of electric machines they incorporate and in the manner in which 
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they are physically connected to the combustion engine and wheels. The level of hy-
bridization is defined by the power rating of the electric machine and battery capacity. 
Increasing levels of hybridization brings on the one hand benefits in the area of fuel 
economy, but on the other hand, higher fabrication costs. Conventional vehicles have 
the lowest level of hybridization (powertrain without electric components), and electric 
vehicles like BEVs with only electric powertrain components have the highest levels of 
hybridization. Between them, there are (in order of level of hybridization): micro HEVs, 
mild HEV, and full HEVs. There are no standardised definitions for the levels, and their 
definitions in literature are inconsistent. A typical classification is indicated in Table I.  

Micro HEVs support mainly an engine start/stop function to reduce engine idle times 
and limited kinetic energy regeneration. Mild HEVs have a higher level of hybridization 
and support energy regeneration at higher loads, and load point shifting of the engine. 
Full HEVs with their stronger electric motor can, in addition, drive electrically. Vehi-
cles with higher battery capacities have a battery charger onboard, which permits bat-
tery charging by connection to the electrical grid. HEVs with this charging capability 
are called plug-in HEVs (PHEVs).  

Table I: Typical classification of HEV according to their level of hybridization. 
 Micro HEV Mild HEV Full HEV PHEV BEV 

𝑃𝑒𝑚.𝑚𝑎𝑥  < 6 kW <25 kW 25-125 kW 50-125 kW 50-125 kW 

𝐸𝑏𝑎𝑡,𝑛𝑜𝑚  <0.1kWh <0.1kWh <2kWh > 4kWh >12kWh 

𝑉0  <24V <60V <600V <600V <600V 

 

For evaluation of PHEV and BEV, typical trip length between two recharging stops is 
an important factor. The most common trip distances of passenger cars are distances 
less than 20km (Fig. 1.6). In Europe, 60% of trips in passenger cars are shorter than 
30km and more than 70% of trips shorter than 50km (Fig. 1.7). According to these fig-
ures, in Europe, for the vast majority of trips the all-electric range achieved with today’s 
battery technology is sufficient. However, as private customers demand vehicles with-
out range restrictions, purchase of BEVs is mainly expected by companies. Due to range 
limitations and high costs, sales figures for all-electric vehicles were below 14,000 in 
2012 in the EU [5] , despite government incentives such as the 7.000 euro premium 
offered in France. Therefore, PHEV must bridge the gap between HEV and BEV until 
battery technology is more advanced. 
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Fig. 1.6. Ratio of typical trip distances of pas-
senger cars in Europe, the USA and Japan 
[11]. 

Fig. 1.7. Cumulative ratio of typical trip dis-
tances of passenger cars in Europe, the USA 
and Japan [11]. 

1.2.1 Hybrid Powertrain Configurations 

In addition to the level of hybridization, HEV can also be classified in terms of the me-
chanical connections between engine, electric machines and wheels. There are four dif-
ferent configuration types: the series, parallel, series/parallel and power split concept. 
These configurations will now be briefly discussed.  

All concepts include a battery, inverter and at least one electric machine. The exemplary 
vehicle in this work has a parallel powertrain, in which both the electric motor and the 
engine are mechanically connected to the wheels, so that the sum of electric motor and 
engine power propels the vehicle. The mechanical connection between engine and elec-
tric motor can be made using torque addition (the most common type); speed addition, 
incorporating a planetary gear; or traction force addition by connecting the electric mo-
tor and engine to the different driving axles [12]. In the exemplary vehicle, torque addi-
tion is achieved by mounting engine and electric motor on a common shaft (Fig. 1.8). 

An advantage of the parallel configuration is that the electric powertrain components 
can be relatively easily integrated into conventional powertrains. Due to the direct me-
chanical connection of engine and drivetrain, engine power can be used for driving 
without the transformation losses which occur in the series concept. In parallel full 
HEV, the engine can usually be separated by a clutch from the rest of the powertrain to 
prevent friction losses when the vehicle is propelled electrically.  

When the engine cannot be separated by a clutch, the configuration is referred to as a 
torque assist parallel hybrid. In [13] it is demonstrated that a torque assist hybrid has 
lower fuel economy compared with a full parallel hybrid with an identical level of hy-
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bridization. Therefore, this configuration is not common for powertrains with a high 
level of hybridization. 

In contrast to the parallel configuration, in the series configuration only the electric trac-
tion motor has a mechanical connection with the wheels. The engine is coupled to a 
generator which delivers electrical energy to supply the electric traction motor. A bat-
tery is used as an energy buffer. A significant drawback of this configuration is that the 
engine power always suffers transformational losses via the conversion chain (engine-
generator-inverter-electric motor). On the other hand, due to the energy buffer, the en-
gine can operate in high efficiency regions and with slow operating point change, result-
ing in lower emissions of unburned hydrocarbons (HC) and carbon monoxide (CO). 
Wheel hub motors can also be used in this concept.  

As only the electric motor is used to power the vehicle, drivability is better than with 
parallel full HEVs due to less engine starts and gear shifts. Having a mechanical con-
nection between electric motor and wheels only, also results in greater freedom in the 
placement of components in the vehicle. Series HEV with an energy store capacity 
comparable to PHEV or BEV and which is chargeable via the electrical grid is referred 
to as a range extender configuration, as it is considered an electric vehicle with onboard 
charging unit. 

Adding a mechanical connection between engine and electric traction motor to the se-
ries configuration, results in a series-parallel configuration. This configuration com-
bines advantages of both series and parallel concepts, such as an increased number of 
available operation modes (for operation modes see Section 1.2.2), but at the cost of 
increased fabrication cost. In order to reduce costs and complexity, a two-speed gearbox 
between drivetrain and powertrain can be used, limiting engine use at lower vehicle 
speeds to the series operation mode. The power-split configuration is another configura-
tion with two electric machines. A drive shaft, engine, motor and generator are con-
nected through a planetary gear. Using a planetary gear, the torque ratio between elec-
tric machine and engine is fixed.  

Fuel economy of the different configurations depends heavily on the component sizes, 
trip length, and power demand. Comparisons between the different plug-in powertrain 
configurations with identical all-electric range and acceleration capability show that the 
minimum possible fuel consumption depends on how much the trip length exceeds the 
all-electric range. Generally, for short trips below the typical range of electric vehicles, 
and with a low power profile, the series configuration has best fuel economy of PHEV 
powertrain configurations. For longer trips with a high power profile, the parallel con-
figuration benefits from the direct mechanical power transmission from engine to 
wheels, avoiding the electrical losses in the component chain of the series configuration 
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when using the engine to propel the vehicle. Results of the power-split configuration 
fall between the results of the series and parallel configuration [14], as due to the plane-
tary gear a proportion of the engine power is transmitted mechanically to the wheels.  

  

  
Fig. 1.8. Hybrid powertrain configurations: parallel (a), serial (b), serial/parallel (c) and 
power-split with a planetary transmission (d). 

1.2.2 Operation Modes of Parallel PHEVs 

The operation modes describe the operation states of the electric motor and engine. The 
available modes depend on the powertrain configuration. In the following discussion, 
only the four operation modes of the considered parallel configuration are introduced 
(Fig. 1.9). Driving electrically, the clutch between electric motor and engine is open and 
the vehicle has BEV behaviour. When accelerating, traction power is only delivered by 
the electric motor (electric mode). When braking, the battery is charged by operating the 
electric machine in generating mode to regenerate some of the vehicle’s kinetic energy 
(regenerative braking mode).  

Closing the clutch and connecting the engine mechanically to the rest of the powertrain 
makes two more operating modes available. In boost mode the engine torque is lower 
than the torque demanded by the driver, and the electric motor supplies the difference. 
In charge mode the engine torque is higher than the requested torque and the electric 
machine operates in generating mode to recharge the battery. This enables operation of 
the engine in high efficiency regions during periods of low cycle power demand, a 
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process known as load point shifting (Fig. 1.10). Engine-only operation, corresponding 
with a conventional powertrain configuration, is referred to as ICE mode.  

Frequent switching from boost or charge mode to electric mode should be avoided by 
the EMS, as this requires starting or stopping the engine and employing the clutch. This 
results in a higher wear-rate for the clutch and can negatively affect drivability of the 
vehicle, as the changing vehicle sound is noticeable by the driver. For these transitions 
an engine start control is necessary which controls motor and engine speed before con-
trolling the slip of the clutch [15]. 

 
Fig. 1.9. Operation modes of a parallel PHEV. The blue arrows indicate mechanical power 
transfer, while the red ones indicate electrical power transfer. 

 
Fig. 1.10. Load point shifting. Engine operating points in the specific fuel consumption map. 
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1.3 Energy Management Problem 
Road vehicle speed is controlled by the driver via a positive torque request via the ac-
celerator pedal or a negative torque request via the brake pedal. The powertrain control 
problem of vehicles with conventional powertrains is straightforward, as positive torque 
is only supplied by the engine. In HEV, a positive torque is supplied either by the en-
gine, the electric motor or by both. This difference makes necessary the use of an EMS. 
The EMS developed in this work is based on the assumption that vehicle speed is con-
trolled by the driver by means of a torque control. There are other approaches to EMS 
which combine power distribution optimization with vehicle speed optimization [16]. 
Vehicle speed optimization is a method which can increase fuel efficiency in a conven-
tional vehicle for a given trip [17].  

The tasks of the EMS are distribution of torque demand 𝑇𝑟𝑒𝑞 between electric machine 
(𝑇𝑒𝑚) and engine (𝑇𝑖𝑐𝑒), gear shifting control, and engine starting and stopping. Optimi-
zation of engine torque is usually done in terms of fuel efficiency, but emissions can 
also be considered. When considering emissions, optimization of the engine operating 
point is a trade-off principally between nitrogen oxide (NOx) emissions, and fuel effi-
ciency [18]. With PHEVs, as a significant portion of the trip can typically be driven 
electrically, engine emission considerations are, relatively, of less importance with 
PHEV than HEV. Disregard of emissions considerations is also motivated by practical 
considerations, as engine emissions are influenced by the transient behaviour of the en-
gine; considering emissions resulting from transient engine behaviour would require a 
more complex dynamic engine model and thus hamper execution in real time. 

In order to improve drivability and reduce clutch wear, engine start and gear shift events 
are minimized. As gear shifting can move the engine operating point into higher effi-
ciency regions there is also a trade-off between gear shifts and maximal fuel economy.  

There is also a trade-off between engine start minimization and maximal fuel efficiency. 
Acceleration phases allow the engine to operate for a short time in high efficiency re-
gions, but employing engine power in acceleration phases can lead to frequent engine 
starts. Therefore, a strategy minimizing the number of engine starts must operate the 
engine during trip sections which permit only sub-optimal operation (Chapter 5). How-
ever, short engine running periods also have adverse effects on engine efficiency, as 
following an engine start, for a period of time the engine operates below nominal opera-
tion temperature. Due to higher friction losses from cold lubricating oil, fuel consump-
tion can be up to twice as high compared with a engine at nominal operation tempera-
ture [18], [19]if additional measures are not taken [20]. 
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Fig. 1.11. Communication between EMS and powertrain components. 

SOE control depends on whether the battery is rechargeable via the electrical grid or, as 
in autonomous HEV, only by means of the electric motor operating in generator mode. 
Therefore, for autonomous HEV the battery energy balance of a trip should be neutral, 
i.e. the electrical energy consumed by the electric motor should be returned by regenera-
tive braking or by using charge mode. This mode of electrical energy use is called 
charge-sustaining mode (CS). By contrast, the battery in PHEV is preferably recharged 
via the electrical grid. Therefore, the aim is to deplete the battery across the trip, and 
recharge it at end of trip. This mode of operation is known as charge-depleting mode 
(CD). It must be considered that battery recharging times are much greater than refuel-
ling times, and recharging during short standstills is not possible. 

 
Fig. 1.12. Energy management problem for PHEV. For trips exceeding the all-electric range, 
the electrical energy is distributed over the entire trip for highest fuel efficiency. 

To achieve charge depletion, two different approaches exist. The simplest implementa-
tion is referred to as all-electric mode, which begins the trip driving electrically. At 
charge depletion corresponding with distance 𝑠𝑒𝑟 (Fig. 1.12), it switches to CS opera-
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tion. This strategy does not necessarily need trip foreknowledge. However, fuel effi-
ciency is lower than using blended mode strategies which employ engine use from trip 
start [21]. The SOC using an AER-focused strategy is depicted in Fig. 1.13, in which 
the SOC is managed such that it is equal at end of trip and trip start. At second 1117 the 
all-electric range (here defined when the SOC falls below 0.3) is reached and the engine 
is started (Fig. 1.15). In contrast, blended mode operation employs the engine from trip 
start (Fig. 1.16) and restricts engine use to high load trip sections (Fig. 1.18), whereas 
the all-electric mode has to operate the engine during low load sections in charge mode 
which causes additional electrical losses (Fig. 1.17). The result is 4.0% lower fuel con-
sumption for this cycle using the blended strategy. However, blended CD strategies 
depend more on the availability of trip prediction data. 

  
Fig. 1.13. SOC during the BCN-CTS cycle 
using an AER-focused strategy. 

Fig. 1.14. SOC during the BCN-CTS cycle 
using a blended strategy. 

 
Fig. 1.15. Operation modes during the driving cycle BCN-CTS using an AER-focused strategy. 
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Fig. 1.16. Operation modes during the driving cycle BCN-CTS using a blended strategy. 

  
Fig. 1.17. Engine operating points using an 
AER-focused strategy during BCN-CTS. 

Fig. 1.18. Engine operating points using a 
blended strategy during BCN-CTS. 

Focussing on the mathematical formulation of the control problem, the control of en-
gine, electric motor, and gear can be simplified to a control of the motor torque 𝑇𝑒𝑚 and 
the gear 𝑔. The resulting control vector 𝒖 is 

𝒖 = �𝑇𝑒𝑚𝑔 �   . (1.1) 

The combustion engine torque 𝑇𝑖𝑐𝑒 can be calculated using the torque demanded by the 
driver and the electric motor torque 𝑇𝑒𝑚 using 

𝑇𝑖𝑐𝑒 = 𝑇𝑟𝑒𝑞 − 𝑇𝑒𝑚   . (1.2) 

The engine state 𝑠𝑖𝑐𝑒 refers to whether the engine is running or switched off and is de-
fined by 
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𝑠𝑖𝑐𝑒 = �
0 engine off

1 engine on   ,
� (1.3) 

and can be defined with Eq. (1.2) as function of the control vector 𝒖: 

𝑠𝑖𝑐𝑒 = �
0 𝑇𝑖𝑐𝑒 = 0

1 𝑇𝑖𝑐𝑒 > 0   .
� (1.4) 

As engine speed 𝜔𝑖𝑐𝑒 and motor speed 𝜔𝑒𝑚 are defined by gear ratio and vehicle speed, 
the engine and electric motor operating points are entirely defined by 𝒖.  

The complexity of the control problem results from two key factors: Firstly, the chal-
lenge of solving a predictive fuel efficiency optimization in real time. Secondly, in addi-
tion to fuel economy, consideration must be given to engine starts and gear shifts. This 
explains why engine starts, gear shifting, and complete charge depletion are often ne-
glected in literature. 

1.4 State of the Art 
Owing to the external recharging capability of PHEVs, not all the electrical energy used 
in their operation must be generated by the powertrain itself. Thus EMS for PHEV dif-
fers from other EMS in that it targets CD operation with negative electrical energy bal-
ance. Therefore, for minimal fuel consumption PHEVs require predictive strategies 
which use information about power load and vehicle speed during the future trip. Once 
the trip destination has been indicated by the driver, using data of a geographic informa-
tion system (GIS) the optimal trajectory can be determined using path-finding algo-
rithms. From the known trajectory, the navigation system can deliver information about 
road type, legal speed limits, traffic, maximum possible speeds due to curves, and road 
grade to a load prediction algorithm which generates a load profile of the trip [22], [23]. 
Predicted trip speed 𝑣𝑐𝑦𝑐𝑙𝑒, required wheel power 𝑃𝑤ℎ and road grade 𝛼𝑟𝑜𝑎𝑑 are calcu-
lated by the load forecasting algorithm as a function of time (Fig. 1.19). 

In the future, predictive capabilities will be enhanced by the availability of additional 
traffic information from intelligent transportation system (ITS) or vehicle-to-vehicle 
communication (V2V) processed by traffic flow modelling such as gas-kinetic based 
models [24]. Driving style influences can also be considered by using neural networks 
for prediction [22].  
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Fig. 1.19. Information used by load forecasting algorithms for trip prediction. 

Many EMS concepts have been already studied; an overview of strategies for HEV can 
be found in [25] and for PHEV in [26]. EMS approaches can be classified into heuristic 
and optimization based strategies. Among heuristic strategies are rule-based strategies 
where operation mode is selected according to “if... then...” rules based on vehicle or 
engine speed and the power or torque requested by the driver. The rules determine the 
power distribution such that the operating points of engine and electric motor lie in high 
efficiency regions [18] and can be designed to imitate optimal behaviour during differ-
ent driving cycles calculated using optimization techniques [27]. The rules can also be 
based on fuzzy logic as presented in [28] for a parallel powertrain, and in [29] for a se-
ries PHEV.  

While early development of EMS focused on rule-based strategies, recent focus has 
been on optimization based EMS. Approaches are often based on Pontryagin’s mini-
mum principle, which was first used for HEVs [30] and later adapted to the require-
ments of PHEVs [31]. Using this strategy, SOC at end of trip depends on the initial 
conditions chosen for the Lagrange multipliers of the Hamiltonian function, which is 
minimized to obtain the optimal control policy.  

The same problem results from employing, instead of the Hamiltonian function, a La-
grange approach; where the costate is not known a priori and therefore has to be esti-
mated and then adapted during the trip depending on the SOC [32]–[34]. Under certain 
assumptions, the theory can be used as theoretical background [35] for a strategy using 
an instantaneous cost function using a weighting factor for electrical and fuel energy 
[36]. This approach has been used before in [37], where it was derived intuitionally. For 
optimality, this weighting factor has to be calculated before starting the trip to achieve 
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target SOE at end of trip. Therefore, even though the cost function is instantaneous, trip 
foreknowledge is still required.  

Alternative approaches adapt the weighting factor according to SOE development dur-
ing vehicle operation by using a penalty function [38]–[40]. For PHEV, an online adap-
tation of the weighting factor using trip foreknowledge has been presented in [41]. In 
[42] quadratic programming is used to optimize the weighting factor considering route 
prediction information with the aim of full battery depletion. 

Another common approach, based on the optimality principle of Bellman [43], is time-
discrete dynamic programming (DP) [44]. This approach is most often used as a 
benchmark for other EMS due to its high computational cost [45]. It is used in [46] for a 
parallel HEV and in [47] for a series HEV. Considering it yields the global optimum 
with the boundary condition of the SOE at trip start and end of trip, it is also used in 
combination with stochastic driving cycles for HEV component sizing [48]; deriving 
rule-based strategies [27]; and training neural networks which imitate the optimization 
results [49].  

Real-time DP implementation in combination with route prediction data has been de-
scribed in [50], where measures are taken to reduce DP computational cost (Section 
3.2). Another real-time implementation of DP is presented in [34], where gear optimiza-
tion is combined with a torque optimization based on Pontryagin’s minimum principle.  

Stochastic dynamic programming (SDP) can be employed when trip foreknowledge is 
not known. In [51] this technique is used with stochastic driver power demand gener-
ated by a Markov process which is optimized for an infinite time horizon to obtain a 
time-invariant CS strategy.  

In [52] SDP is used for a power-split powertrain configuration to implement both CS 
and CD operation, using as a cost function the ratio of fuel and the price of electrical 
energy. Using SDP, it is not possible to determine a target SOC at end of trip as the 
EMS is generic and is optimized for different driving cycles. SDP is also used in com-
bination with Markov chain modelled driving cycles to demonstrate that predictive 
strategies using trip foreknowledge can reduce fuel consumption in autonomous HEVs 
[53]. For PHEVs, predictive strategies are even more important, as in order to achieve 
maximum fuel economy full battery depletion must coincide with end of trip.  

Linear programming is used in [54] for the EMS of a series HEV due to its low compu-
tational cost. However, the extent of its use is limited due to the requirement of a linear 
vehicle model. Using mixed integer linear programming, engine starting/stopping can 
be considered and is used in [55] with a parallel HEV. Gear shifting, however, is not 
optimized in this study, and instead a standard gear shifting table for a conventional 
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powertrain has been used. This fast technique has not yet been used in combination with 
gear optimization due to the restrictions of linear models. Another technique yielding 
sub-optimal results is the ℋ∞ control [56], which does not use any a priori knowledge 
about speed and power of the future trip.  

The above mentioned studies mainly do not consider drivability aspects such as engine 
start/stop frequency and gear shifting due to the greater complexity of the vehicle model 
required. In [57] the mechanical energy required to start the engine from standstill to 
idle speed is considered. Engine start/stop control has been combined with the above 
described power weighting factor approach for CS operation [57]. In [58] SDP is em-
ployed and drivability aspects are included in the cost function. However, as trip fore-
knowledge is not used the final SOC cannot be controlled.  

In [59] gear shifting losses are considered, and gear shifting limited for a mild hybrid 
parallel structure. Owing to the challenges of optimizing fuel economy, engine starts 
and gear shift at low computational cost, the EMS developed in this work considers 
engine starts and gear shifts indirectly by embedding optimized power distribution and 
gear shifts within a rule-based strategy. 

Optimization results presented are given as torques 𝑇𝑒𝑚 and 𝑇𝑖𝑐𝑒 or their ratio. Problems 
arise when predicted trip data and real values do not coincide due to overtaking maneu-
vers, standstill caused by traffic lights, or erroneous traffic information. Erroneous pre-
diction data leads to erroneous torque calculations, and consequently vehicle speed does 
not correspond with the driver’s demand. Using the torque/power ratio instead, vehicle 
speed is controlled correctly, but resulting torques are no longer optimal. The influence 
of erroneous prediction data on fuel consumption for a weighting factor based EMS has 
been evaluated in [60]. 

1.5 Energy Management Strategy Proposal 
Evaluating the existing EMS approaches summarized above, the following requirements 
for the EMS have been identified: 

• use of predictive optimization 
• support for charge depletion across the trip using blended mode operation 
• consideration given to frequency of engine starts and gear shifts 
• robustness against inaccurate prediction data. 

To meet these requirements a three step based approach for the EMS is used. Each step 
is presented in its own chapter. EMS foreknowledge of the future trip regarding vehicle 
speed, acceleration and road slope is assumed. When the trip destination is known (i.e. 
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indicated by the driver), the vehicle speed, acceleration, and road grade 𝛼𝑟𝑜𝑎𝑑 can be 
predicted (see Section 1.4).  

As the focus is on gear and torque/power control, the trip prediction process is not con-
sidered in this study. For EMS development prediction data accuracy is assumed, and in 
Section 5.8 the robustness of the EMS against inaccurate prediction data is evaluated. 

Before starting the trip, the first step taken by the EMS is to calculate the optimal power 
distribution between engine and electric motor for the trip (Chapter 3). Calculation is 
based on a rapid MILP using a linear vehicle model. From optimal power distribution, 
the optimal battery power 𝑃𝑏𝑎𝑡 and thus the SOC during the trip are obtained (Fig. 1.13, 
Fig. 1.14). A necessary boundary condition of the optimization is the SOC at end of trip. 
As depth of discharge significantly effects the battery life cycle, it is recommended that 
a full discharge is avoided, and instead energy levels are kept within a limited SOC 
window. The SOC window adopted for this study is 𝑆𝑂𝐶(𝑡) ∈ [0.2; 0.9]. As the objec-
tive of the EMS is to substitute fuel for electrical energy as the power source, at end of 
trip the EMS should reach full battery depletion. In order to guarantee CS operation 
without recharging at end of trip, a target SOC of 0.3 is selected. Starting the trip with a 
fully charged battery, 2.4kWh of electrical energy corresponding to Δ𝑆𝑂𝐶 = 0.6, can be 
depleted (Fig. 1.20). 

 
Fig. 1.20. Use of stored electrical energy during a trip. The trip is considered to start with the 
maximum SOC of 0.9. At end of trip a buffer for CS mode remains. 

Knowing the optimal 𝑆𝑂𝐶∗(𝑡) for the trip and the power 𝑃𝑖𝑐𝑒 and 𝑃𝑒𝑚, the second step 
taken by EMS is to calculate the torque 𝑇𝑖𝑐𝑒, 𝑇𝑒𝑚 and the gear 𝑔 .These torques cannot 
be directly calculated from 𝑃𝑖𝑐𝑒 and 𝑃𝑒𝑚 without knowledge of motor or engine speed, 
due to 𝑃 = 𝜔𝑇. Both engine and motor speed depend on vehicle speed 𝑣 and gear 𝑔, 
which cannot retrieved from the MILP employed by the EMS in the first execution step. 
In order to determine the gear and torque, a second optimization is carried out using a 
nonlinear vehicle model (Chapter 3). This optimization is executed repeatedly during 
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the trip within a model predictive control (MPC) framework (Fig. 1.21). Computational 
load undergoes a rise due to the nonlinear vehicle model and the different optimization 
algorithm required, and therefore an MPC framework using a receding prediction hori-
zon is employed.  

The SOC boundary conditions of the optimization carried out within the MPC frame-
work are given by the function 𝑆𝑂𝐶∗(𝑡), calculated in the first execution process before 
trip start. From this second execution step optimal torque and gear in terms of fuel effi-
ciency are obtained. To provide robustness against inaccurate prediction data, results 
obtained are used to adapt a rule-based strategy online in a final execution step (Chapter 
5). To reduce engine start and gear shift frequency, the operation mode is controlled by 
the rule-based strategy. 

The above described approach combines the fuel efficiency of an optimization based 
strategy with the reduced number of gear shifts and engine starts of a heuristic ap-
proach. In the case of inaccuracy of the prediction data, operation in charge mode is 
controlled by prior calculated electric motor and engine torque lookup tables. The MPC 
approach is, when using an control horizon of 60s, capable of achieving the desired 
SOC at end of trip [61]. The EMS presented above can be used for both CS and CD 
operation. In both cases, results obtained demonstrate near high fuel efficiency, and 
reduced engine starts and gear shifts, in comparison with the global optimum. 

 
Fig. 1.21. The EMS uses trip prediction data and the current SOC, in an MPC framework, to 
calculate the optimal torque and gear of the trip within the prediction horizon. 
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2 Vehicle Model 
This chapter discusses, first the characteristics of the exemplary vehicle used in the 
simulations. Next, the linear and nonlinear model approaches are described, and finally 
the models are validated with measurements. 

The vehicle is a passenger car based on the SEAT Ibiza ST with conventional power-
train. To evaluate the EMS developed in the following chapters, fuel and electrical en-
ergy consumption of the vehicle is determined by simulating the longitudinal dynamics 
of this vehicle.  

For simulation of fuel and electrical energy consumption, a quasi-stationary approach is 
sufficient [62]. Simulation of fuel consumption of the engine and electrical energy con-
sumption of the electric motor is based on measured fuel mass flow and loss lookup 
tables, which describe the fuel mass flow and electrical losses in respect to the operating 
point. Carbon dioxide emissions can be calculated from engine fuel mass flow, their 
relationship being directly proportional. Other exhaust gases generated by the engine, 
however, cannot be considered using this approach. For detailed exhaust emissions 
simulation, a dynamic engine model would be necessary to simulate the engine’s tran-
sient behaviour.  

For the different optimization algorithms employed by the EMS proposal, two different 
vehicle models are necessary. The more complex nonlinear one is in the following re-
ferred to as forward model. The modelling approach of the forward model corresponds 
to a real driving situation: a driver, modelled mainly by a PI controller, acts on the ac-
celerator and brake pedal. The inclination of the accelerator pedal is translated by the 
EMS of a HEV, or by the engine control unit (ECU) in conventional vehicles, into a 
torque or throttle demand for the combustion engine model (Fig. 2.1).  

The DP algorithm (Chapter 3) performs optimization using a simplified backward 
model (Fig. 2.2). With the exception of the driver model, this model is based on the 
same component models of the forward model. Instead of a driver, the vehicle speed is 
assumed to correspond at every instant with the driving cycle speed. This assumption 
reduces the computational cost and hence is used as internal vehicle model for optimiza-
tion algorithms (as is used later in this work for the DP implementation). Another ad-
vantage of the vehicle model is that due to the coincidence of vehicle and cycle speed 
the model has one state less than the forward model, which greatly reduces the com-
plexity of DP optimization. While the forward model is computationally more intensive, 
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it can, in addition to vehicle fuel consumption simulations, also be used on hardware-in-
the-loop (HIL) test benches or for the validation of EMS. 

 
Fig. 2.1. Principle of the vehicle forward model. The driver model controls the pedal variables 
𝛼𝑎𝑐𝑐 and 𝛼𝑏𝑟𝑎𝑘𝑒 depending on the driving cycle speed 𝑣𝑐𝑦𝑐𝑙𝑒 and vehicle speed 𝑣. 

 
Fig. 2.2. Principle of the vehicle backward model. Vehicle speed corresponds exactly to the 
driving cycle speed. 

2.1 Vehicle Characteristics 
The exemplary HEV has vehicle body parameters similar to a conventional SEAT Ibiza 
ST passenger car and a parallel powertrain configuration in which the electric motor and 
the combustion engine are mounted on the same shaft. The engine can be separated by a 
clutch from the rest of the powertrain to avoid engine friction losses when driving elec-
trically (Fig. 2.3). The parallel configuration permits the use of a small engine, as the 
engine can be supported by the electric motor using boost mode. The exemplary vehicle 
has a 3cyl, 51kW naturally aspirated engine. The electric motor is a permanently excited 
synchronous machine with a power rating of 80kW. The high power rating is required 
to deliver sufficient torque in the field weakening range. The double clutch gearbox has 
seven gears, such that motor and engine can operate at all vehicle speed in high effi-
ciency regions. Due to the double clutch principle of the ATM transmission, fast gear 
shifting is assumed. Due to fast gear shifting, the interruption of the power transfer 
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when opening the clutch of a standard ATM is disregarded. Therefore, velocity tracking 
loss (i.e. the additional power required after shifting and closing the clutch to compen-
sate for the interruption) powershifting ATM does not occur [63] and shifting losses are 
neglected in the powertrain model. The battery with an energy capacity of 4kWh uses 
Li-ion technology. Its weight is estimated to be 150kg, taking into account mechanical 
protection and cooling components. When choosing the battery technology (Li-ion, 
NiMh), in addition to energy and power density [64], the cycle life as a function of the 
depth of discharge has to be considered. The total energy has to be chosen considering 
these parameters [65]. The battery can be recharged by operating the electric machine in 
generating mode or at end of trip by connecting the built-in charger to the electrical 
grid.  

The vehicle base mass corresponds to the vehicle weight of the SEAT Ibiza ST without 
the engine and transmission and is adapted regarding the additional components of the 
electric system as indicated in Table II. The sum of the estimated component masses of 
the hybrid powertrain yields a total vehicle weight including the driver of 1450kg. The 
complete simulation parameters are indicated in Table III. 

Due to direct mechanical connection of engine and electric motor to the wheels, the 
torque sum  𝑇Σ = 𝑇𝑖𝑐𝑒 + 𝑇𝑒𝑚 is transmitted to the gearbox input when closing the clutch. 
As engine and electric motor speed are equal, the sum of the mechanical power is ap-
plied to the transmission. As depicted in Fig. 2.4, the combination of both machines 
leads to a high maximal torque at every engine/motor shaft speed. As indicated in Fig. 
2.5, the available maximal power rises from 98.2kW at 1500min-1 up to a maximum 
power of 130.6kW at 4000min-1. 

 
Fig. 2.3. Variables of the parallel PHEV powertrain. 
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Table II: Estimated vehicle component mass. 
Base mass (SEAT Ibiza ST) 950kg 

Battery system (4kWh) 150kg 

Double clutch transmission (7 speed) 100kg 

Engine (3cyl., 51kW) 90kg 

Electric motor (80kW) 40kg 

Power electronic 40kg 

  
Fig. 2.4. Measured maximal torque of electric 
motor, combustion engine and its sum 𝑇𝛴,𝑚𝑎𝑥 
at the transmission input. 

Fig. 2.5. Measured maximal power of electric 
motor, combustion engine and the sum 𝑃𝛴,𝑚𝑎𝑥 
at the transmission input. 

The specific fuel consumption 𝑚̇𝑓,𝑠𝑝𝑐 of the engine is defined as 

𝑚̇𝑓,𝑠𝑝𝑐 = 𝑚̇𝑓 𝑃𝑖𝑐𝑒   ⁄ . (2.1) 

Minimal specific consumption is reached at a speed of 2000min-1 and a torque 𝑇𝑖𝑐𝑒 >
75Nm (Fig. 2.6). The optimal consumption line depicted is defined as 

𝑇𝑖𝑐𝑒,𝑠𝑝𝑐,𝑚𝑖𝑛(𝜔𝑖𝑐𝑒) = arg min
𝑇𝑖𝑐𝑒

𝑚̇𝑓(𝑇𝑖𝑐𝑒,𝜔𝑖𝑐𝑒)
𝑃𝑖𝑐𝑒(𝑇𝑖𝑐𝑒,𝜔𝑖𝑐𝑒)  . (2.2) 

The electric motor has highest efficiency at speeds between 1000min-1 and 4400min-1 
torque values above 60Nm (Fig. 2.7). 
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Fig. 2.6. Measured specific fuel consumption 
map and optimal consumption line 𝑇𝑖𝑐𝑒,𝑠𝑝𝑐,𝑚𝑖𝑛 
of the combustion engine. 

Fig. 2.7. Measured electric motor efficiency 
map. 

2.2 Simulation Tools 
There are several specialised simulation environments for the modelling of vehicle 
powertrains such as ADVISOR [66] or PSAT [67] and environments with specialised 
libraries such as MATLAB/SIMULINK and MODELICA/DYMOLA [68]. In this project, ow-
ing to their higher flexibility in the modelling process, MODELICA/DYMOLA and MAT-

LAB/SIMULINK are employed. Here, flexibility for adaptations is very important, as the 
models are also employed in a HIL real-time application. MATLAB/SIMULINK is a classi-
cal block orientated language, i.e. physical equations have to be transformed regarding 
the input/output direction of the respective block. The modelling language MODELICA 
supports acausal modelling, i.e. the blocks do not necessarily have an input/output ori-
entation. This is advantageous in that the physical systems are described in more simple 
terms. DYMOLA supports modelling with MODELICA by a graphic user interface (GUI) 
and represents a solver for the resulting differential algebraic equations (DAE). Due to 
this intuitive modelling and flexibility, it is also used for the design of HEV controllers 
[69]. The vehicle forward model is later integrated in a Simulink block for HIL valida-
tion (Section 2.6). In order to simplify communication with the optimization algorithm 
of Section 4.2, which has been written as MATLAB script, the linear model (Section 2.4) 
is directly modelled in MATLAB. 
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Table III: Values of the simulation parameters. 
Symbol Quantity Value Unit 

𝑚 vehicle total mass 1450 kg 

𝐴𝑓 vehicle frontal area 2.2  m² 

𝑎𝑔 gravitational acceleration 9.81 m/s² 

𝑐𝑤 drag coefficient 0.325 - 

𝜇𝑟 rolling resistance 0.01  - 

𝜌 air density 1.2 kg/m³ 

𝑟𝑤ℎ dynamic wheel radius 0.29 m 

𝐽𝑤ℎ total wheel inertia 4 kgm² 

𝑔 gear {1; 2; 3; 4; 5; 6; 7} - 

𝑔𝑟 gear ratio (including final ratio) {15.5; 10.1; 6.8; 5.0; 3.8; 3.1; 2.6} - 

𝑃𝑖𝑐𝑒,𝑚𝑎𝑥 max. mechanical power of ICE 51 kW 

𝑇𝑖𝑐𝑒,𝑚𝑎𝑥 max. torque of ICE 110 Nm 

𝑃𝑒𝑚,𝑚𝑎𝑥 max. mechanical power of EM  80 kW 

𝑇𝑒𝑚,𝑚𝑎𝑥 max. torque of EM 400 Nm 

𝐸𝑏𝑎𝑡,𝑛𝑜𝑚 nominal battery capacity 4 kWh 

𝐸𝑏𝑎𝑡,𝑚𝑎𝑥 max. battery energy level 3.6 kWh 

𝐸𝑏𝑎𝑡,𝑚𝑖𝑛 max. battery energy level 0.8 kWh 

𝑉0 battery nominal voltage 300 V 

𝑅𝑏𝑎𝑡 battery internal resistance 366.67 mΩ 

2.3 Quasti-Stationary Nonlinear Model 
In this section, a quasi-stationary vehicle model is described. Due to the use of meas-
ured consumption tables for engine and electric motor and the non-constant transmis-
sion ratio the model is nonlinear. The model is created in the environment MODE-

LICA/DYMOLA and used as a forward model for the EMS simulation and its HIL valida-
tion. An implementation as a backward model is used by the DP algorithm of Chapter 3. 
In the backward model, a driver model is omitted assuming that the vehicle speed 𝑣 
corresponds at every instance to the driving cycle speed 𝑣𝑐𝑦𝑐𝑙𝑒: 

𝑣(𝑡) = 𝑣𝑐𝑦𝑐𝑙𝑒(𝑡)   . (2.3) 

This assumption simplifies its use as internal vehicle model of optimization algorithms 
due to reduced complexity compared with a forward model, in which vehicle speed is 
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an additional state variable. The vehicle forward model instead includes a driver model 
based mainly on a PI controller which adapts the accelerator pedal inclination 𝛼𝑎𝑐𝑐 as a 
function of the deviation of vehicle speed from cycle speed. The demanded torque 𝑇𝑟𝑒𝑞 
by the driver is a function of the pedal inclinations and engine and electric motor speed: 

𝑇𝑟𝑒𝑞 = 𝑓𝑟𝑒𝑞(𝛼𝑎𝑐𝑐,𝛼𝑏𝑟𝑎𝑘𝑒,𝜔𝑒𝑚,𝜔𝑖𝑐𝑒)   . (2.4) 

This control of 𝑇𝑟𝑒𝑞 by means of a PI controller is required for HIL simulations, as the 
used ECU does not support torque control. In the following, the components of the for-
ward and backward models are described and differences indicated. While the forward 
model is modelled by time continuous equations, the backward model is time discrete. 
The wheel force 𝐹𝑤ℎ is calculated as a function of vehicle speed 𝑣 and horizontal road 
angle 𝛼𝑟𝑜𝑎𝑑 (Table III) by  

𝐹𝑤ℎ(𝑣,𝛼𝑟𝑜𝑎𝑑) = 𝜇𝑟𝑚𝑎𝑔 cos𝛼𝑟𝑜𝑎𝑑 + �𝑚 +
𝐽𝑤ℎ
𝑟𝑤ℎ2

� 𝑎 +
1
2
𝜌𝑐𝑤𝐴𝑓𝑣2

+ 𝑚𝑎𝑔 sin𝛼𝑟𝑜𝑎𝑑   , 
(2.5) 

where 𝑎𝑔 is the gravitational acceleration and 𝜌 the air density as indicated in Table III. 
The wheel torque during the driving cycle is obtained using Eq. (2.5): 

𝑇𝑤ℎ(𝑣,𝛼𝑟𝑜𝑎𝑑) = 𝐹𝑤ℎ(𝑣,𝛼𝑟𝑜𝑎𝑑) 𝑟𝑤ℎ   . (2.6) 

With Eq. (2.5), (2.6) and  

𝑃𝑤ℎ(𝑣,𝛼𝑟𝑜𝑎𝑑) = 𝑇𝑤ℎ(𝑣,𝛼𝑟𝑜𝑎𝑑) 𝑣/𝑟𝑤ℎ (2.7) 

results that also the wheel power 𝑃𝑤ℎ  transmitted to the wheels corresponds in the 
backward model at every instance the cycle power requirement 𝑃𝑐𝑦𝑐𝑙𝑒: 

𝑃𝑐𝑦𝑐𝑙𝑒�𝑣𝑐𝑦𝑐𝑙𝑒,𝛼𝑟𝑜𝑎𝑑� = 𝑃𝑤ℎ(𝑣,𝛼𝑟𝑜𝑎𝑑)   . (2.8) 

The torque 𝑇𝑟𝑒𝑞 stands in a direct relation with 𝑇𝑤ℎ as a function of gearbox efficiency 
𝜂𝑡𝑟𝑎𝑛𝑠  and gear ratio 𝑔𝑟  (which includes both speed ratio of both gearbox and final 
drive): 

𝑇𝑟𝑒𝑞 =

⎩
⎪
⎨

⎪
⎧
�

𝑇𝑤ℎ
𝜂𝑡𝑟𝑎𝑛𝑠 𝑔𝑟

𝑇𝑤ℎ > 0

𝑇𝑤ℎ 𝜂𝑡𝑟𝑎𝑛𝑠
𝑔𝑟

𝑇𝑤ℎ ≤ 0   .

�� (2.9) 

The transmission has 7 speeds from which follows the constraint 
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1 ≤ 𝑔 ≤ 7 (2.10) 

of the gear 𝑔. The electric motor speed 𝜔𝑒𝑚 depends on the vehicle speed 𝑣 and the 
gear ratio 𝑔𝑟 

𝜔𝑒𝑚 =
𝑣

 𝑟𝑤ℎ 𝑔𝑟
    , (2.11) 

while the engine speed 𝜔𝑖𝑐𝑒  corresponds to 𝜔𝑒𝑚  when the engine is started and the 
clutch is closed; otherwise it is 0s−1 

𝜔𝑖𝑐𝑒 = �
0s−1 engine off

𝜔𝑒𝑚 engine on    .
� (2.12) 

2.3.1 Combustion Engine 

The fuel mass flow 𝑚̇𝑓 of the engine is modelled using a measured fuel consumption 
table of a 1.2-litre, 3-cylinder, naturally aspirated engine with a maximal mechanical 
output power of 51kW. Using a fuel consumption map 𝑓𝑓𝑢𝑒𝑙, fuel mass flow 𝑚̇𝑓 is a 
function of engine torque 𝑇𝑖𝑐𝑒 and angular speed 𝜔𝑖𝑐𝑒 of the engine shaft  

𝑚̇𝑓 = 𝑓𝑓𝑢𝑒𝑙(𝑇𝑖𝑐𝑒,𝜔𝑖𝑐𝑒)   . (2.13) 

For simplicity, the engine inertia 𝐽𝑖𝑐𝑒 is not considered. The clutch between engine and 
powertrain is considered as a switch and the clutch power losses are ignored in this 
model due to its infrequent operation.  

2.3.2 Electric Motor and Inverter 

Similar to the engine, power losses in the electric motor are modelled by a measured 
loss table of the electric motor. Electric motor speed 𝜔𝑒𝑚 and torque 𝑇𝑒𝑚 are used to 
determine the electrical losses and thus the electrical power input 𝑃𝑖𝑛𝑣,𝐴𝐶 

𝑃𝑖𝑛𝑣,𝐴𝐶 = 𝑃𝑒𝑚 + 𝑓𝑙𝑜𝑠𝑠(𝑇𝑒𝑚,𝜔𝑒𝑚) =  𝑓𝑒𝑚(𝑇𝑒𝑚,𝜔𝑒𝑚)  . (2.14) 

Considering the inverter efficiency 𝜂𝑖𝑛𝑣 = 0.92 , the electrical power at the battery 
clamp 𝑃𝑖𝑛𝑣,𝐷𝐶 is 

𝑃𝑖𝑛𝑣,𝐷𝐶 = �
𝑃𝑖𝑛𝑣,𝐴𝐶

𝜂𝑖𝑛𝑣
𝑃𝑖𝑛𝑣,𝐴𝐶 > 0

𝑃𝑖𝑛𝑣,𝐴𝐶  𝜂𝑖𝑛𝑣 𝑃𝑖𝑛v,𝐴𝐶 ≤ 0    .

� (2.15) 
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2.3.3 Battery 

Energy losses in the battery of the charging and discharging process are modelled by an 
internal ohmic resistance 𝑅𝑖, which depends on number and configuration of the battery 
cells. In the backward model, the chemical battery power 𝑃𝑏𝑎𝑡 is calculated as a func-
tion of 𝑃𝑖𝑛𝑣,𝐷𝐶 based on [70]: 

𝑃𝑏𝑎𝑡 =
𝑉02 − 𝑉0�𝑉02 − 4𝑃𝑖𝑛𝑣,𝐷𝐶𝑅𝑖 

2𝑅𝑖
       

(2.16) 

where 𝑅𝑖  is a function of the internal resistance of every battery cell 𝑅𝑖 ,𝑐𝑒𝑙𝑙 and their 
number of in parallel 𝑛𝑝 and in series 𝑛𝑠 

𝑅𝑖 = 𝑅𝑖 ,𝑐𝑒𝑙𝑙 
𝑛𝑠
𝑛𝑝

 (2.17) 

The stored energy in the battery 𝐸𝑏𝑎𝑡 is a function of 𝑃𝑏𝑎𝑡. As the backward model is a 
time discrete model, the change of the battery energy state is described by 

𝐸𝑏𝑎𝑡(𝑘) = 𝐸𝑏𝑎𝑡(𝑘0) − 𝑃𝑏𝑎𝑡 Δ𝑡    , (2.18) 

where Δ𝑡 = 1s. The battery model of the forward model is modelled with additional 
variables of battery clamp voltage 𝑉𝑖𝑛𝑣,𝐷𝐶 and battery current 

𝐼𝑏𝑎𝑡 =
𝑃𝑖𝑛𝑣,𝐷𝐶  
𝑉𝑖𝑛𝑣,𝐷𝐶

 (2.19) 

yielding the mesh rule 

𝑉𝑖𝑛𝑣,𝐷𝐶 = 𝑉0 − 𝑅𝑖 𝐼𝑏𝑎𝑡     . (2.20) 

The stored chemical battery energy is 

𝐸𝑏𝑎𝑡(𝑡) = 𝐸𝑏𝑎𝑡(𝑡0) − 𝑉0 � 𝐼 𝑏𝑎𝑡(𝑡′)𝑑𝑡′ 
𝑡

0

      . (2.21) 

The normalized state of battery energy (SOE) is defined as 

𝑆𝑂𝐸(𝑡) =
𝐸𝑏𝑎𝑡(𝑡)
𝐸𝑏𝑎𝑡,𝑛𝑜𝑚

     . (2.22) 

In the following, instead of the SOE the state of charge (SOC) is indicated. The SOC in 
both models is a function of the battery charge 𝑄𝑏𝑎𝑡(𝑡) and the nominal battery charge 
𝑄𝑏𝑎𝑡,𝑛𝑜𝑚  
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𝑆𝑂𝐶 =
𝑄𝑏𝑎𝑡

𝑄𝑏𝑎𝑡,𝑛𝑜𝑚
      . (2.23) 

The open circuit voltage 𝑉0 of the battery cells is influenced by the SOC and drops by 
1.9% comparing a SOC of 0.9 and of 0.3. A lower 𝑉0 leads for the same transferred 
power to higher currents and thus to higher ohmic losses in the battery. Relationship 
between stored chemical power and clamp power is depicted in Fig. 2.9. Battery power 
during vehicle operation is due to its higher efficiency mostly in low power regions in 
which the efficiency difference is less than 0.002. For simplicity, 𝑉0 is therefore consid-
ered constant and not as a function of the SOC. With 𝑉0 assumed to be independent of 
the SOC, the SOC is equal to the state of energy of the battery: 

𝑆𝑂𝐶 =
𝑄𝑏𝑎𝑡

𝑄𝑏𝑎𝑡,𝑛𝑜𝑚
=

𝐸𝑏𝑎𝑡
𝐸𝑏𝑎𝑡,𝑛𝑜𝑚

= 𝑆𝑂𝐸    . (2.24) 

  

Fig. 2.8. Battery clamp power and chemical 
power for a SOC of 0.3 and 0.9. 

Fig. 2.9. Battery efficiency as a function of its 
chemical power. 

2.4 Quasi-Stationary Linear Model 

The proposed EMS calculates as a first step a set point function 𝑆𝑂𝐶∗(𝑡) of the neces-
sary constraint for the torque and gear optimization with receding prediction horizon. 
For calculation of 𝑆𝑂𝐶∗(𝑡) mixed integer linear programming (MILP) is employed, 
which requires a linear vehicle model (Section 4.1). The model of the previous section 
contains nonlinearities due to the lookup table 𝑓𝑓𝑢𝑒𝑙 of the engine fuel mass flow, the 
loss lookup table 𝑓𝑙𝑜𝑠𝑠 of the electric motor and the transmission ratio. In order to elimi-
nate these nonlinearities, a model of the power transfer in the powertrain is used based 
on linear descriptions of motor and engine. Such as in the nonlinear backward model, 
the vehicle speed is equal to the cycle speed. The wheel force 𝐹𝑤ℎ is calculated using 
Eq. (2.5) and the corresponding wheel power is 
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𝑃𝑤ℎ = 𝐹𝑤ℎ 𝑣      . (2.25) 

In order to calculate the mechanical power 𝑃𝑟𝑒𝑞 = 𝑇𝑟𝑒𝑞𝜔𝑒𝑚, combined drivetrain and 
gearbox efficiency 𝜂𝑡𝑟𝑎𝑛𝑠 is taken into account by 

𝑃𝑟𝑒𝑞 = �

𝑃𝑤ℎ
𝜂𝑡𝑟𝑎𝑛𝑠

𝑃𝑤ℎ > 0

𝑃𝑤ℎ 𝜂𝑡𝑟𝑎𝑛𝑠 𝑃𝑤ℎ ≤ 0     .

� (2.26) 

The sign of the power variables are defined as indicated by the arrows in Fig. 2.10. 

 
Fig. 2.10. Linear vehicle model variables. 

2.4.1 Combustion Engine 

To model the fuel mass flow 𝑚̇𝑓, from the measured engine fuel consumption table the 
Willans line is generated [71], which describe fuel rate 𝑚̇𝑓 as a function of speed 𝜔𝑖𝑐𝑒 
and mechanical output power 𝑃𝑖𝑐𝑒 = 𝜔𝑖𝑐𝑒 𝑇𝑖𝑐𝑒. From the Willans line for different en-
gine speeds a set of linear functions  

𝑚̇𝑓 = 𝑎(𝜔𝑖𝑐𝑒) + 𝑏(𝜔𝑖𝑐𝑒) 𝑃𝑖𝑐𝑒  (2.27) 

is approximated. For simplification, it is assumed that the engine operates at every out-
put power 𝑃𝑖𝑐𝑒 at its highest efficiency, i.e. with minimal fuel consumption. From the 
linear functions for different engine speeds a convex approximation  

𝑚̇𝑓(𝑃𝑖𝑐𝑒) = min
𝑖

(𝑎𝑖 + 𝑏𝑖𝑃𝑖𝑐𝑒) 

𝑖 ∈ {1; 2; 3} 
(2.28) 

is used [54]. The Willans lines for different speeds and the approximation are indicated 
in Fig. 2.11. 

Engine
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Fig. 2.11. Willans lines of the engine at different engine speeds. The modelled fuel consumption 
is the approximately the minimum of the Willans lines. 

2.4.2 Electric Powertrain Components 

The electric machine is modelled by a similar approach as used for the engine model 
[62], i.e. a set of linear equations. The equation set depends on whether the machine 
operates in motoring mode 𝑃𝑒𝑚 = 𝜔𝑒𝑚𝑇𝑒𝑚 > 0, (electric mode or boost mode of the 
vehicle) or in generating mode (charge mode/regenerative braking mode of the vehicle). 
In motoring mode, the linear power based model is 

𝑃𝑒𝑚 = 𝑎𝑒𝑚,𝑚𝑜𝑡(𝜔𝑒𝑚) 𝑃𝑖𝑛𝑣,𝐴𝐶     . (2.29) 

For simplicity, the speed dependence is not considered, such that 𝑎𝑒𝑚,𝑚𝑜𝑡(𝜔𝑒𝑚) corre-
sponds to the approximated electric motor efficiency of 𝑎𝑒𝑚,𝑚𝑜𝑡 = 𝜂̅𝑒𝑚. The approxi-
mation is pictured in Fig. 2.12. In generating mode, 

𝑃𝑖𝑛𝑣,𝐴𝐶 = 𝑎𝑒𝑚,𝑔𝑒𝑛(𝜔𝑒𝑚) 𝑃𝑒𝑚 (2.30) 

results (Fig. 2.13). Taking into account the battery efficiency (𝜂𝑏𝑎𝑡,𝑐ℎ  in generating 
mode and 𝜂𝑏𝑎𝑡,𝑑𝑖𝑠 in traction mode), defined by 

𝜂𝑏𝑎𝑡,𝑐ℎ = 𝑃𝑖𝑛𝑣,𝐷𝐶 𝑃𝑏𝑎𝑡⁄  

𝜂𝑏𝑎𝑡,𝑑𝑖𝑠 = 𝑃𝑏𝑎𝑡 𝑃𝑖𝑛𝑣,𝐷𝐶⁄  
(2.31) 

and inverter efficiency 𝜂𝑖𝑛𝑣, the electric system model in motoring mode is 

𝑃𝑒𝑚 = 𝑎𝑒𝑚,𝑚𝑜𝑡(𝜔𝑒𝑚)  𝜂𝑖𝑛𝑣 𝜂𝑏𝑎𝑡,𝑑𝑖𝑠 𝑃𝑏𝑎𝑡   . (2.32) 

In generating mode, from Eq. (2.30) results 

𝑃𝑏𝑎𝑡 = 𝑎𝑒𝑚,𝑔𝑒𝑛(𝜔𝑒𝑚) 𝜂𝑖𝑛𝑣 𝜂𝑏𝑎𝑡,𝑐ℎ 𝑃𝑒𝑚   . (2.33) 
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Fig. 2.12. Approximation of the electric ma-
chine efficiency in motoring mode (𝑃𝑒𝑚 ≥ 0). 

Fig. 2.13. Approximation of the electric ma-
chine efficiency in generating mode (𝑃𝑒𝑚 < 0) 

2.5 Driving Cycles 
To evaluate EMS for PHEV, trip length is an essential factor; a trip being defined trip as 
a journey made by the vehicle between two recharging stops. For short trips within the 
all-electric range, the vehicle does not have to use the engine. In this case, the power 
distribution optimization by the EMS is not necessary. In addition to the trip length, for 
consumption simulation, the key characteristics of a cycle are traction power and speed. 
Cycle speed, acceleration and road slope can be summarized by the cycle power 𝑃𝑐𝑦𝑐𝑙𝑒 
using Eq. (2.8). In addition to its impact on required traction power, cycle speed influ-
ences electric motor and engine speed. Another important cycle characteristic is road 
elevation. The additional traction power required by the potential energy change when 
driving uphill and the energy generated when driving downhill is an important consid-
eration. For the exemplary vehicle with a mass 𝑚 = 1450kg and a driving cycle height 
difference of ΔℎΣ = 100m results in a potential energy difference of 

𝐸𝑝𝑜𝑡 = 𝑚 𝑔 ΔℎΣ = 1,422MJ = 0.395kWh     . (2.34) 

Therefore, driving cycles used for simulation are chosen in respect of power distribu-
tion, road slope and velocity. The slope is either described by the inclination angle 
𝛼𝑟𝑜𝑎𝑑 or the normalized rise Δℎ (Fig. 2.14). 

 
Fig. 2.14. Road slope 𝛥ℎ and angle of inclination 𝛼𝑟𝑜𝑎𝑑. 
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To evaluate CD operation, driving cycles longer than NEDC and FTP-72 cycles are 
used, as for the exemplary vehicle both are within its electric range. The FTP-72, being 
a typical real world urban driving pattern with short motorway parts in the USA (Fig. 
2.17), is used for CS operation. Due to its short distance of only 12 km and its low 
power demand, for the exemplary vehicle the cycle is within its all-electric range. This 
cycle is used to demonstrate the CS capability of the algorithm, which is also a require-
ment for PHEV, as it cannot always be assured that the battery is charged at trip start. 
The European official driving cycle NEDC is due its synthetic structure used only for 
model validation (Section 2.6). The NEDC has periods with constant speed and constant 
acceleration, which in real driving situations do not occur. For validation, these constant 
speed phases are very suitable as model and steady state of real components can be 
compared. For EMS simulation, instead of synthetic driving cycles, real world cycles 
are used. Real world cycles include more operating points for the powertrain, which is 
important for evaluation of rule-based strategies, as otherwise there is the risk that it 
performs well only with the limited number of operating points tested. 

In addition to the FTP-72, three other driving cycles which exceed the all-electric range 
are employed to depict different usage patterns of the vehicles. The challenge is to de-
pict realistic driving cycles on the one hand regarding the vehicle operation at different 
speed and power, while on the other hand consider length and road elevation. The 
European Union’s ARTEMIS project [72] led to the development of the CADC (Com-
mon Artemis Driving Cycle), which includes realistic accelerations separated into ur-
ban, rural and motorway sections.  

Driving cycles are selected considering that a common trip driven in passenger cars is 
from home to work. As for inner city trips the electric range is sufficient, trips from a 
nearby city are chosen. To simulate a typical trip in a nearby city without motorway 
connection, the CADC rural section is combined with the urban section. Trips including 
a motorway section are the recorded driving cycles from Barcelona to a nearby city, e.g. 
driving cycle BCN-CTS, Fig. 2.15 and its return trip, driving cycle CTS-BCN, Fig. 
2.16. In these driving cycles road slope information is also considered, which leads to 
an additional energy requirement in the case of the BCN-CTS cycle. The very low 
power demand during the second half of the CTS-BCN cycle caused by low speeds and 
negative road slope makes the cycle of special interest for CD mode. The cycle charac-
teristics are summarized in Table IV. 
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Table IV: Simulated driving cycles characteristics. 
 BCN-CTS CTS-BCN FTP-72 CADC ( Rural/Urban) 

duration /s 1903 2231 1372 2075 

length / km 33.1 33.3 12.0 22.1 

𝑣̅ / km/h 62.6 53.8 31.4 38.4 

𝑣𝑚𝑎𝑥  /km/h 117.4 115.1 91.2 111.5 

∆h /m 107.6 138.4 0 0 

 
Fig. 2.15. Speed and elevation profile of the driving cycle BCN-CTS. 

 
Fig. 2.16. Speed and elevation profile of the driving cycle CTS-BCN. 

 
Fig. 2.17. Speed profile of the driving FTP-72 cycle. 
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Fig. 2.18. Speed profile of combined rural and urban part of the CADC. 

2.6 Model Validation 
The used quasi-stationary vehicle model is based on a common approach for vehicle 
consumption simulation which is described in [62], [73]. Therefore, model validation is 
not necessary to validate the modelling principle, but to exclude implementation errors. 
In order to validate the different component models, the nonlinear forward model is 
compared in terms of fuel consumption and electrical energy consumption to measure-
ments on a hardware-in-the-loop (HIL) engine/electric motor dynamometer and on a 
chassis dynamometer. The engine/electric motor dynamometer test bench is used for 
validation of combustion engine, electric motor and inverter models, while the chassis 
dynamometer is used for validation of gearbox, drivetrain, and vehicle resistance. The 
nonlinear vehicle forward model is validated against the measurement results, while the 
backward model and linear vehicle model are validated against this model. 

For simplicity, electric motor and combustion engine models are validated separately by 
adapting the HEV model to a conventional vehicle and an electric vehicle model. In 
order to validate the electric vehicle model, the clutch between combustion engine and 
electric motor in the test bench is opened, resulting in the configuration depicted in Fig. 
2.26. For validation of the conventional vehicle the clutch is closed, resulting in the con-
figuration of Fig. 2.23. The electric motor remains mounted in the test bench and is con-
sidered in the model as an additional inertia and friction element between clutch and 
drivetrain. In order to validate the remaining components of the powertrain (gearbox, 
vehicle resistance), offline simulation results of the complete conventional vehicle 
model are compared to the results from a chassis dynamometer measurement of a com-
plete vehicle (Section 2.6.2).  
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2.6.1 Test Bench Validation 

In order to connect the MODELICA/DYMOLA vehicle model with the test bench for HIL 

measurements, it is embedded in a SIMULINK model (Fig. 2.19). The model is compiled 

using MATLAB Real Time Workshop and executed on a dSPACE real time platform. 

The dSPACE real time platform is based on a DS1006 processor board and has CAN 

and digital/analogue input/output interfaces. The real time platform communicates with 

the ECU and the dynamometer load machine through the test bench supervision system 

(PUMA). Control of clutch and electric motor is handled directly by dSPACE through a 

CAN connection with the inverter of the electric motor and through a digital signal con-

nection with the clutch (Fig. 2.20). The battery simulator is controlled by a separate 

control station.  

 

Fig. 2.19. Vehicle model communication with dynamometer test bench. 

 

Fig. 2.20. Control structure of the test bench. 
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The nonlinear forward vehicle model from Section 2.3 is adapted to the respective test 
bench configuration (conventional or electric powertrain). The respective model of the 
device under test, i.e. the electric powertrain or the engine, is removed from the vehicle 
model and substituted with signal connections to the real component mounted in the test 
bench (see Fig. 2.21 for the conventional powertrain). The engine torque signal 𝑇𝑖𝑐𝑒 
measured by the test bench torquemeter is used as model input. The model sends the 
engine speed set point 𝜔𝑖𝑐𝑒

∗  to the load machine and the accelerator pedal position 𝛼𝑎𝑐𝑐 
to the engine to control the throttle. In the case of the electric vehicle, instead of 𝛼𝑎𝑐𝑐 
the torque requested by the driver 𝑇𝑟𝑒𝑞 is sent to the test bench (Eq. (2.4)). Due to its 
constant speed phases which permit a comparison of model and measurements in steady 
state, the NEDC driving cycle is simulated (Fig. 2.22). In the following, the measure-
ment results and the offline simulation results are referred to as HIL and offline respec-
tively. 

 
Fig. 2.21. Conventional vehicle model structure for HIL simulation. 

 

Fig. 2.22. NEDC speed profile. 

2.6.1.1 Conventional Powertrain 

For validation of the combustion engine model, the engine mounted in the test bench is 
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(Fig. 2.23). Inertia and drag torque of clutch and electric motor are considered in the 
offline model. For validation, the engine fuel mass flow 𝑚̇𝑓 during HIL simulation and 
the corresponding offline simulation is compared for the urban (Fig. 2.24) and extra 
urban section (Fig. 2.25). The time axes in the figures indicate the time of the NEDC. 
As an indicator for the deviation between simulated and measured fuel mass flow, the 
average absolute error 

𝑒̅𝑎𝑏𝑠 =
1
𝑛
��𝑚𝑓,𝐻𝐼𝐿(𝑖) −𝑚𝑓,𝑜𝑓𝑓𝑙𝑖𝑛e(𝑖)�
𝑛

𝑖=1

 (2.35) 

and the root mean square error  

𝑒̅𝑅𝑀𝑆 = �
1
𝑛
��𝑚𝑓,𝐻𝐼𝐿(𝑖) −𝑚𝑓,𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑖)�2
𝑛

𝑖=1

 (2.36) 

are calculated. For the urban section in Fig. 2.24 the average absolute error is 𝑒̅𝑎𝑏𝑠 =
0.047g/s and the root mean square error is 𝑒̅𝑅𝑀𝑆 = 0.036g/s. The torque deviation dur-
ing the urban section stems from the recorded time resolution of the signal. The extra 
urban section has a higher torque load than the urban part, what results in a higher de-
viation of fuel consumption with an average absolute error 𝑒̅𝑎𝑏𝑠 = 0.072g/s and an av-
erage root mean square error 𝑒̅𝑅𝑀𝑆 = 0.050g/s. The NEDC permits, due to its constant 
speed phases, a direct comparison of consumption at constant engine load points (Table 
V). During these constant load sections the error decreases with the engine speed. As 
this operating condition corresponds to the same condition when recording the fuel con-
sumption map of the engine, the difference between measurements and simulation at 
constant operating points can be partly attributed to a deviation in the real drag torque of 
the components between torquemeter and engine, i.e. the clutch and the electric motor, 
and the value introduced in the models. This drag torque is a function of the speed and 
results indicate that the modelled drag torque underestimates the real component drag 
torque. As can be seen later, these deviations do not occur with measurements made by 
the chassis dynamometer. 

Table V: Deviation at specific operating points of the engine. 
𝜔𝑙𝑜𝑎𝑑 min−1⁄  𝑇𝑙𝑜𝑎𝑑  / Nm 𝑚𝑓𝑜𝑓𝑓𝑙𝑖𝑛𝑒

 / kg 𝑚𝑓𝐻𝐼𝐿
 / kg Δ𝑚𝑓𝑟𝑒𝑙  

1880 28 0.64 0.70 8,6% 

2100 21 0.46 0.50 8% 

2600 33 0.74 0.79 6,3% 
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Fig. 2.23. Dynamometer test bench configuration for the conventional powertrain. 

 
Fig. 2.24. Comparison between HIL measurements of the conventional powertrain and offline 
simulation results during the urban section of the NEDC. 

 
Fig. 2.25. Comparison between HIL measurements of the conventional powertrain and offline 
simulation results during the extra urban section of the NEDC. 
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Fig. 2.26. Test bench configuration of the electric powertrain system with the engine decoupled 
from the powertrain. 

2.6.1.2 Electric Powertrain Components 

For validation of the electric powertrain components the clutch between engine and 
electric motor remains open (Fig. 2.26). This test bench configuration corresponds to 
the powertrain in electric mode of the PHEV and of an electric vehicle. For simplicity, 
clutch disc inertia has been neglected in the offline simulation. As the motor used in the 
EMS simulations in the following chapters was not available, HIL measurements are 
carried out with a different permanently excited synchronous machine with a lower 
power rating of 𝑃𝑒𝑚,𝑚𝑎𝑥 = 50kW. For validation, the voltage 𝑣𝑖𝑛𝑣,𝐷𝐶 , current 𝑖𝑖𝑛𝑣,𝐷𝐶 
and battery clamp power 𝑃𝑖𝑛𝑣,𝐷𝐶  are compared with offline simulation results. Due to 
restrictions of the experimental electric motor control, only the motoring mode is vali-
dated. The battery output voltage 𝑣𝑖𝑛𝑣,𝐷𝐶  of the offline and HIL simulation is set to 
300V. The battery simulator maintains the set point to within 1V deviation including at 
higher load points towards the end of the NEDC (Fig. 2.27 bottom).  

 
Fig. 2.27. Comparison of output current and voltage of the battery simulator and offline model 
during the NEDC. 
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Fig. 2.28. Measured and simulated battery output power 𝑃𝑖𝑛𝑣,𝐷𝐶 , electric motor torque 𝑇𝑒𝑚 and 
electric motor speed 𝜔𝑒𝑚. 

As deviations in the battery simulator output voltage are below 0.5V in the (Fig. 2.27 
bottom), measured output current 𝑖𝑖𝑛𝑣,𝐷𝐶  (Fig. 2.27 above) and output power 𝑃𝑖𝑛𝑣,𝐷𝐶 
(Fig. 2.28 above) are proportional. The average absolute error 𝑒̅𝑎𝑏𝑠 is given by 

𝑒̅𝑎𝑏𝑠 =
1
𝑛
��𝑃𝑖𝑛𝑣,𝐷𝐶,𝐻𝐼𝐿(𝑖) − 𝑃𝑖𝑛𝑣,𝐷𝐶,𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑖)�
𝑛

𝑖=1

 (2.37) 

and the root mean square error by 

𝑒̅𝑅𝑀𝑆 = �
1
𝑛
��𝑃𝑖𝑛𝑣,𝐷𝐶,𝐻𝐼𝐿(𝑖) − 𝑃𝑖𝑛𝑣,𝐷𝐶,𝑜𝑓𝑓𝑙𝑖𝑛𝑒(𝑖)�2
𝑛

𝑖=1

   . (2.38) 

For the NEDC, an average error of 𝑒̅𝑎𝑏𝑠 = 217.0W and a root mean square error of 
𝑒̅𝑅𝑀𝑆 = 123.5W results. The SOC at end of trip has a deviation of 0.0014 (Fig. 2.29), 
corresponding to 5.6Wh. This deviation, results in a relative difference of -1.2% of the 
electrical energy consumption per km (Table VI).  
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Fig. 2.29. SOC of HIL measurement and offline simulation during NEDC. 

Table VI: Average electrical energy consumption of the electric vehicle model for the NEDC. 
 HIL Offline difference / % 

Δ𝐸𝑏𝑎𝑡 kWh/100km⁄  Total 12.798 12.585 -1.20 

Δ𝐸𝑏𝑎𝑡 kWh/100km⁄  Urban 11.006 10.818 -1.70 

Δ𝐸𝑏𝑎𝑡 kWh/100km⁄  Extra urban 13.750 13.618 -0.96 

2.6.2 Chassis Dynamometer Validation 

After validating electric system and engine models, the remaining vehicle model com-
ponents are validated against measurement results from a chassis dynamometer. The 
front wheels of a complete vehicle are mounted on rollers which are controlled in terms 
of torque by the chassis dynamometer. The counter torque of the rollers is programmed 
according to the vehicle resistance. Fuel consumption of the vehicle is measured indi-
rectly by measuring the CO2 emissions of the vehicle 

𝑉𝑓
𝑙

=
𝑚CO2 kg⁄

2.380
     . (2.39) 

CO2 emissions are collected inside a bag and measured by means of a spectrometer. 
Therefore, CO2 gas has to reach the bag to be measured and consequently measured 
values have a delay and integral behaviour, and cannot directly be compared to the 
simulated results (Fig. 2.30 left column). The delay depends on the emitted gas volume 
of the engine, which depends on the load point. Equipment which measures transient 
emissions by taking into account the integral behaviour and dead times [74] was not 
available. Therefore, comparison can only be made of the total consumption during a 
cycle and the value at constant load parts, e.g. during the extra urban cycle section of 
the NEDC (Fig. 2.30 right column). The vehicle characteristics of the simulation model 
are adapted to the SEAT Leon used for the measurements (Table VII) for a direct com-
parison.  
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Table VII: Test vehicle characteristics measured on the chassis dynamometer. 
Gearbox 6 gears, manual 

Engine 4cyl, 92kW 

Mass 1470kg 

Chassis SEAT Leon passenger car 

 
Fig. 2.30. Comparison of simulated and measured fuel mass flow during the fourth urban sec-
tion and the extra urban section of the NEDC. 

At cycle start the engine in the measured vehicle is still at ambient temperature, which 
leads to higher consumption before nominal operating temperature is reached. Being at 
operating temperature during the fourth urban cycle section of the NEDC, the fuel mass 
flow goes down (Fig. 2.31). While the simulated total consumption during the urban 
part is 8.2% lower than the measured one, during the fourth repetition of the urban pat-
tern it is, by contrast, 1.4% higher. The fuel map in the model is measured with the en-
gine at nominal operating temperature, so comparison must be made with the latter. 

The results demonstrate that during the extra urban section the consumption simulation 
is very accurate for torque values up to 30Nm, while for higher torque demand in the 
last part of the extra urban cycle, difference in torque increase. This can partly result 
from using a model with constant gearbox efficiency, while in reality efficiency in-
creases with higher torques. The vehicle resistance on the chassis dynamometer is con-
trolled by a polynomial term as a function of the vehicle speed 

𝐹𝑤ℎ = 𝑐1 + 𝑐2𝑣 + 𝑐3𝑣2   . (2.40) 

This introduces an additional speed-dependent deviation given by the term 𝑐2𝑣 com-
pared to describing 𝐹𝑤ℎ using Eq. (2.5). The mentioned deviation leads to a simulated 
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consumption during the extra urban part which differs by 4.3% from measurement. The 
last urban part only differs by 0.2%, while due to the cold engine start, the overall urban 
results differ by -9%. 

 
Fig. 2.31. Comparison of measured fuel mass flow on chassis dynamometer during first (engine 
cold) and fourth urban part (engine warm) of the NEDC cycle. 

Table VIII: Comparison of fuel consumption for the NEDC. 
 𝑉𝑓,𝑚𝑒𝑎𝑠 / l/100km 𝑉𝑓,𝑜𝑓𝑓𝑙𝑖𝑛𝑒  / l/100km difference / % 

Urban 9.38 8.52 -9.1 

Urban (only 4. section) 8.47 8.48 0.2 

Extra urban 5.83 6.08 4.3 

Total 7.13 6.98 -2.1 
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3 Predictive Optimization 
Predictive optimization in the context of EMS for HEV is the calculation of optimal 
torque and gear for a known trip. The calculation is therefore based on the assumption 
that trip forecast data is available. Predictive optimization provides the time-varying 
function gear 𝑔, electric motor power 𝑃𝑒𝑚  and engine power 𝑃𝑖𝑐𝑒  for the future trip. 
Knowing gear 𝑔 and vehicle speed, engine and electric motor speed are also known (see 
Eq. (2.11)) and thus the mechanical power can be calculated using 𝑃 = 𝜔𝑇. Consider-
ing this, it can be seen that control vector  

𝒖𝑃(𝑘) = �
𝑃𝑒𝑚(𝑘)
𝑃𝑖𝑐𝑒(𝑘)
𝑔(𝑘)

� (3.1) 

is equivalent the control vector 

𝒖𝑇(𝑘) = �
𝑇𝑒𝑚(𝑘)
𝑇𝑖𝑐𝑒(𝑘)
𝑔(𝑘)

�   . (3.2) 

For parallel powertrain configurations, with Eq. (1.2) the control vector can be simpli-
fied to 

𝒖(𝑘) = �
𝑇𝑒𝑚(𝑘)
𝑔(𝑘) �   . (3.3) 

The control problem is solved using an algorithm based on a discrete-time dynamic 
program (DP). As the control problem is time-continuous, a discretization is necessary; 
however, precise optimization results can be obtained using adequate grid spacing. DP 
makes possible the use of a control plant model, which is not restricted in terms of line-
arity or convexity. Furthermore, the model description does not have to be a closed-
form expression. One disadvantage of DP, however, is the high computational cost, 
requiring that measures be taken to reduce the computational load. Due to its global 
optimal solution finding capability, DP is frequently used for benchmarking purposes – 
however, it has also been successfully employed for real time use [75]. The algorithm 
proposed here reduces the computational cost further.  

The input values of the DP algorithm are the predicted vehicle speed 𝑣(𝑘), vehicle ac-
celeration 𝑎(𝑘), road inclination 𝛼𝑟𝑜𝑎𝑑(𝑘) and the target SOC at the prediction horizon 
end 𝑆𝑂𝐶∗(𝑘𝑝). Prediction data is assumed to be accurate. Output values are the engine 
and electric motor torque and the gear of the control vector 𝒖𝑇 (Fig. 3.1). 
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Fig. 3.1. Optimization of torque and gear for a trip (DP input/output). 

This chapter introduces in Section 3.1 the basic principle of DP and its implementation 
for benchmarking purposes. In order to reduce computational cost for real time applica-
tions, in Section 3.2 and Section 3.3 an adaptation aimed at accelerating the calculation 
process is presented. Results of this algorithm applied to a driving cycle are given in 
Section 3.4. 

3.1 Dynamic Programming 
Dynamic programming (DP) based algorithms are commonly used to calculate the op-
timal solution of stochastic or deterministic control problems. Its use for optimal control 
in HEV for maximal fuel efficiency has been investigated in several publications (e.g. in 
[76]–[78]), therefore in this section only a short summary of the basic principle is given. 
DP is based on the optimality principle formulated by Bellman [43], [79]. It states that 
considering the optimal solution of a problem, every solution of a subproblem also 
solves this subproblem optimally. With deterministic time-discrete control problems, a 
shortest path problem [79] results. The computational cost of the shortest path search 
increases exponentially with the number of states of the optimization problem (model 
states arise usually from energy stores as inertias or the battery). In order to limit com-
putational cost, the only state (quasi-stationary) backward model employed is the SOC. 
Even with a single state, computational cost is high compared with algorithms based on 
quadratic programming (QP) or Pontryagin’s minimum principle without additional 
measures. However, an important advantage of using a time-discrete DP algorithm is 
more freedom in the area of vehicle modelling, as the model does not have be in closed-
form. More importantly, in contrast to approaches based on Pontryagin’s minimum 
principle, it is capable of achieving a defined target SOC at end of the trip. 
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3.1.1 Algorithm 

In the following, calculation is based on the nonlinear backward model described in 
Section 2.3. In order to simplify notation, the model is described by different functions 
𝑓𝐵𝑊 which are named by the respective model output such that 𝑓𝐵𝑊,𝑚𝑓 symbolizes the 

function for the fuel mass. The functions 𝑓𝐵𝑊𝑢  thereby describe the backward model as a 
function of the control vector 𝒖, while the notation 𝑓𝐵𝑊 is used for an adaptation which 
is introduced in the next subsection and uses the control input 𝒖Δ𝐸. The discrete system 
to which the optimization is applied is described by 

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑓𝐵𝑊,𝑥
𝑢 �𝒖(𝑘), 𝑣(𝑘), 𝑎(𝑘),𝛼𝑟𝑜𝑎𝑑(𝑘)� 

with 𝑘 = 0,1,2, … ,𝑁

𝒖(𝑘) ∈ 𝑈   ,
 

(3.4) 

where 𝑥(𝑘) is the state variable and 𝒖(𝑘) the control vector at time step 𝑘 of the set 𝑈 
of all possible control vectors. The control variable 𝒖 is the control vector from Eq. 
(3.3) containing the torque of the electric machine 𝑇𝑒𝑚 and the gear 𝑔. Using these con-
trol variables, the engine torque 𝑇𝑖𝑐𝑒 is indirectly defined by Eq. (1.2) and the engine 
state by Eq. (1.4). To simplify notation, in this chapter the variable 𝑥 is used for the bat-
tery SOC. The control problem is finding the optimal control sequence 

�𝒖i
𝑜𝑝𝑡(𝑥0)� = (𝒖(1),𝒖(2), …𝒖(𝑁)) (3.5) 

from all possible control sequences �𝒖𝑖(𝑥0)� which minimize the general cost function 

𝐽(�𝑥0�) = 𝑔𝑁(𝑥𝑁) + �𝑔𝑘�𝑥(𝑘),𝒖(𝑘)�
𝑁−1

𝑘=0

    , (3.6) 

where 𝑥0 = 𝑥(0) is the initial system state at time step 0 and 𝑥𝑁 = 𝑥(𝑁) is the final 
system state. The term 𝑔𝑘�𝑥(𝑘),𝒖(𝑘)� defines the cost at time step 𝑘 as a function of 
state and control vector. Here the cost function minimizes fuel consumption during the 
trip, 

𝐽(�𝑥0�) = 𝑔𝑁(𝑥𝑁) + �𝑓𝐵𝑊,𝑚𝑓
𝑢 (𝒖(𝑘), 𝑣(𝑘), 𝑎(𝑘),𝛼𝑟𝑜𝑎𝑑(𝑘))    

𝑁−1

𝑘=0

, (3.7) 

where 𝑔𝑁(𝑥𝑁) is a terminal cost of the last state. The application of the optimal control 

sequence �𝒖𝑖
𝑜𝑝𝑡� results in the minimal value of the cost function  

𝐽𝑜𝑝𝑡(�𝑥0�) = min�𝑢∈𝑈�
𝐽𝑢(𝑥0)   , (3.8) 
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where Π  is the set of all possible control sequences and 𝐽𝑢 the sum of the fuel con-
sumption at every time step 𝑘 when applying the control sequence (𝒖𝑖). The DP algo-
rithm generally proceeds backward in time, but in deterministic cases it can also pro-
ceed forward due to its similarity to a shortest path problem [79]: 

𝐽𝑜𝑝𝑡( �𝑥𝑘 �) = min�𝒖(𝑘) �
�𝑔𝑘(𝑥(𝑘),𝒖(𝑘)) + 𝐽𝑘−1

𝑜𝑝𝑡 (�𝑥�(𝑘 − 1))�    . (3.9) 

In order to achieve the target 𝑆𝑂𝐶∗(𝑁), terminal cost is set to 

𝑔𝑁(𝑥𝑁) = �
0 𝑥𝑁 ≥ 𝑆𝑂𝐶∗(𝑁) 

∞ 𝑥𝑁 < 𝑆𝑂𝐶∗(𝑁)     .
� (3.10) 

 
Fig. 3.2. Dynamic programming shortest path search for CD operation. For each time step the 
transition values 𝑚𝑓,𝑡

𝑘  are calculated, 𝑡 being the multiple of the smallest possible state change. 

Depicted is 𝐸𝑏𝑎𝑡(𝑘) which corresponds to the state 𝑥(𝑘) = 𝑆𝑂𝐶(𝑘). 

3.1.2 Control Input Adaptation of the Internal Model 

In order to use the time-discrete dynamic program, a grid spacing of time and model 
states (here the SOC) has to be defined. A narrower grid means on one hand higher ac-
curacy, but requires on the other hand more computation time. The SOC grid is defined 
by defining the grid of 𝐸𝑏𝑎𝑡 by the relationship 𝑆𝑂𝐶 ∙ 𝐸𝑏𝑎𝑡,𝑛𝑜𝑚 = 𝐸𝑏𝑎𝑡. For discretiza-
tion of 𝐸𝑏𝑎𝑡 a grid spacing of 1kJ is used: 

𝐸𝑏𝑎𝑡 = 𝑛 ∙ 1kJ (3.11) 
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where 𝑛 ∈ ℤ such that 𝐸𝑏𝑎𝑡,𝑚𝑖𝑛 ≤ 𝐸𝑏𝑎𝑡 ≤ 𝐸𝑏𝑎𝑡,𝑚𝑎𝑥. For time discretization a spacing of 
Δ𝑡 = 1s is used. Considering the grid spacing of time and battery energy, the resulting 
spacing of the battery power is Δ𝑃𝑏𝑎𝑡 = 1kW. Therefore, the resulting average grid 
spacing of the electric motor power 𝑃𝑒𝑚 is approximately 0.83kW in boost mode (as-
suming efficiencies of 𝜂𝑏𝑎𝑡 = 0.95, 𝜂𝑖𝑛𝑣 = 0.92, 𝜂𝑒𝑚 = 0.95). In regenerative braking 
mode and charge mode it is about 1.2kW due to the inverse efficiency chain of battery, 
inverter and electric motor. When applying the control vector 𝒖(𝑘) from Eq. (3.3), the 
resulting battery energy at the next step 𝐸𝑏𝑎𝑡(𝑘 + 1) does not necessarily correspond 
with the grid spacing of 𝐸𝑏𝑎𝑡. Therefore, the value has to be rounded which causes inac-
curacy. In order to avoid this rounding error and to simplify the algorithm implementa-
tion, instead of 𝒖 the control vector , 

𝒖Δ𝐸(𝑘) = �Δ𝐸𝑏𝑎𝑡
(𝑘)

𝑔(𝑘) �   (3.12) 

is used. Using 𝒖Δ𝐸 guarantees that the next state 𝐸𝑏𝑎𝑡(𝑘 + 1) coincides with the grid. 
Using Δ𝐸𝑏𝑎𝑡 as control input, the electric motor lookup table 𝑓𝑒𝑚 from Eq. (2.14) has to 
be inverted in order to calculate 𝑇𝑒𝑚 as a function of 𝜔𝑒𝑚 and Δ𝐸𝑏𝑎𝑡. The lookup table  

𝑓𝑒𝑚: (𝜔𝑒𝑚,𝑇𝑒𝑚) → 𝑃𝑖𝑛𝑣,𝐴𝐶  

𝜔𝑒𝑚/min−1 ∈ {0,100, … ,6000} 

𝑇𝑒𝑚 / Nm ∈ {−600, … ,600} 

(3.13) 

based on measurement is given. For the calculation of the inverse function 
𝑓𝑒𝑚

−1�𝜔𝑒𝑚,𝑃𝑖𝑛𝑣,𝐴𝐶� the set 𝜔𝑒𝑚𝑠  is defined as 

𝜔𝑒𝑚𝑠  / min−1 = {10,100,200, … ,6000}    . (3.14) 

This set defines the input parameter which 𝑓𝑒𝑚 has in common with its inverse. For 
every 𝜔𝑒𝑚,𝑖 ∈ 𝜔𝑒𝑚𝑠  a corresponding function 𝑓𝜔𝑒𝑚,𝑖 can be written as 

𝑓𝜔𝑒𝑚,𝑖: �𝑇𝑒𝑚� → 𝑃𝑖𝑛𝑣,𝐴𝐶    . (3.15) 

As 𝑓𝜔𝑒𝑚,𝑖 monotonically increases for 𝑇𝑒𝑚 > 0, the inverse function 

𝑓𝜔𝑒𝑚,𝑖
−1 :  𝑃𝑖𝑛𝑣,𝐴𝐶,𝑖𝑛 → �𝑇𝑒𝑚� (3.16) 

can be interpolated for the new support values of 𝑃𝑖𝑛𝑣,𝐴𝐶,𝑖𝑛. Composing the obtained 
functions 𝑓𝜔𝑒𝑚

−1  of all 𝑓𝜔𝑒𝑚,𝑖
−1 , the function 
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𝑇𝑒𝑚 = 𝑓𝑒𝑚
−1(𝜔𝑒𝑚,𝑃𝑖𝑛𝑣,𝐴𝐶) 

𝑃𝑖𝑛𝑣,𝐴𝐶 ∈ 𝑃𝑖𝑛𝑣,𝐴𝐶,𝑖𝑛 
(3.17) 

results. To test the accuracy of the inversion, the function composition  

𝑓𝑒𝑚 ∘ 𝑓𝑒𝑚
−1  (3.18) 

is calculated (Fig. 3.5, Fig. 3.3) and the difference ΔP𝑖𝑛𝑣,𝐴𝐶of output and input values 
compared (Fig. 3.4). The peaks of the error ΔP𝑖𝑛𝑣,𝐴𝐶 can be disregarded, as they occur in 
generating mode at low speed with maximum torque. This operating region is not sig-
nificant for charge mode, as it is below engine idle speed. In regenerative braking mode, 
𝑓𝑒𝑚

−1 is not employed due to using the backward model with 𝑓𝑒𝑚 using Eq. (3.20). Dis-
regarding the peaks, the operating points show an error of ΔP𝑖𝑛𝑣,𝐴𝐶 < 0.2kW for most 
operating points. This error is smaller than the maximum possible error of 0.5kJ which 
can be generated if using the control vector 𝒖(𝑘) instead of 𝒖Δ𝐸(𝑘), as the obtained 
energy change Δ𝐸𝑏𝑎𝑡 from the vehicle model has to be rounded to the grid spacing de-
fined by Eq. (3.11). Therefore, accuracy increases. 

  
Fig. 3.3. Combination of the electric motor 
loss table and its inverse. With accurate inver-
sion, the plane 𝑃𝑖𝑛𝑣,𝐴𝐶,𝑖𝑛 = 𝑃𝑖𝑛𝑣,𝐴𝐶,𝑜𝑢𝑡 results. 

Fig. 3.4. Error 𝛥𝑃𝑖𝑛𝑣,𝐴𝐶  of composition 

𝑓𝑒𝑚 ∘ 𝑓𝑒𝑚
−1 (measured table with its inverse). 
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Fig. 3.5. Validation of the inverse 2D lookup table by connecting both tables in series and com-
paring the input and output value. 

The discrete battery energy changes Δ𝐸𝑏𝑎𝑡 = 𝑛 ∙ 1kJ during one time step (Eq. (3.11)) 
usually does not coincide with the change Δ𝐸𝑏𝑎𝑡,𝑒−𝑚𝑜𝑑𝑒 when driving electrically. To 
support electric mode (𝑇𝑖𝑐𝑒 = 0), i.e. to ensure that one value of the discrete points 
Δ𝐸𝑏𝑎𝑡 = 𝑛 ∙ 1kJ coincides with electric mode, a displacement  

𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡 (𝑘) = Δ𝐸𝑏𝑎𝑡,𝑒−𝑚𝑜𝑑𝑒(𝑘) − 𝑛1 ∙ 1kJ  , (3.19) 

where 𝑛1 such that �𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡 � ≤ 0.5kW, is introduced. With 𝒖 = �𝑇𝑟𝑒𝑞,𝑔�𝑇  

Δ𝐸𝑏𝑎𝑡,𝑒−𝑚𝑜𝑑𝑒(𝑘) = min
𝑔
𝑓𝐵𝑊,Δ𝐸𝑏𝑎𝑡
𝑢 (𝒖(𝑘), 𝑣(𝑘),𝑎(𝑘),𝛼𝑟𝑜𝑎𝑑(𝑘))  (3.20) 

results. Using this displacement 𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡 , Eq. (3.11) changes to 

𝐸𝑏𝑎𝑡(𝑘) = 𝑛 ∙ 1kJ + 𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡(𝑘)     . (3.21) 

This ensures that the grid of 𝐸𝑏𝑎𝑡(𝑘) at every time step coincides with the change of 
battery energy when driving electrically. This measure decreases the inaccuracy gener-
ated by discretization [38]. For the DP shortest path search algorithm of Eq. (3.9), the 
corresponding fuel consumption for every energy state change Δ𝐸𝑏𝑎𝑡 of two subsequent 
time steps, i.e. the cost 𝑔𝑘�𝑥(𝑘),𝒖Δ𝐸(𝑘)�, is 

𝑚𝑓(Δ𝐸𝑏𝑎𝑡,𝑘) = min
𝑔
𝑓𝐵𝑊,𝑚𝑓

(Δ𝐸𝑏𝑎𝑡 ,𝑣(𝑘),𝑎(𝑘),𝛼𝑟𝑜𝑎𝑑(𝑘),𝑔)    . (3.22) 

The gear and engine and electric motor torque are calculated using 

𝑔(Δ𝐸𝑏𝑎𝑡,𝑘) = arg min
𝑔

𝑓𝐵𝑊,𝑚𝑓
(Δ𝐸𝑏𝑎𝑡 ,𝑣(𝑘), 𝑎(𝑘),𝛼𝑟𝑜𝑎𝑑(𝑘),𝑔) (3.23) 

and the engine and electric motor torque using 

𝑇𝑖𝑐𝑒(Δ𝐸𝑏𝑎𝑡,𝑘) =  𝑓𝐵𝑊,𝑇𝑖𝑐𝑒(Δ𝐸𝑏𝑎𝑡, 𝑣(𝑘),𝑎(𝑘),𝛼𝑟𝑜𝑎𝑑(𝑘),𝑔)     

𝑇𝑒𝑚(Δ𝐸𝑏𝑎𝑡 ,𝑘) =  𝑓𝐵𝑊,𝑇𝑒𝑚(Δ𝐸𝑏𝑎𝑡, 𝑣(𝑘),𝑎(𝑘),𝛼𝑟𝑜𝑎𝑑(𝑘),𝑔)   . 
(3.24) 
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Calculating these values, the cost matrix and the corresponding control vector of the 
transitions can be generated and DP algorithm executed (Fig. 3.2). The control sequence 

�𝒖i
𝑜𝑝𝑡� obtained by this optimization can be introduced in the forward model for valida-

tion of results. In the following, results of applying the optimal control sequence to the 
forward model simulation, is referred to as global optimum.  

3.2 Computational Load Reduction (A-DP) 
DP is a generally computational intensive algorithm and thus is often used as bench-
mark for other real time implementable approaches. Due to its ability to calculate the 
global optimal solution, in recent years approaches have been presented to increase 
computation speed for real time implementation. In [80], an optimal set point function 
𝑆𝑂𝐶∗(𝑡) for a trip is calculated using DP (which in this work is obtained by using MILP 
in Section 4.3). During the trip, an optimization with reduced prediction horizon based 
on 𝑆𝑂𝐶∗(𝑡) is executed. Another acceleration method is state space reduction by disre-
garding SOC states which are not reachable by the shortest path search from the actual 
𝑆𝑂𝐶(𝑘) and final 𝑆𝑂𝐶(𝑁) [45], [50] (i.e. excluding the SOC points which are greyed 
out in Fig. 3.2). Also in [50] the proposal was made to use a coarser time grid spacing 
for more distant points of the trip, which could be done in combination with a segmen-
tation of the cycle by road grade or speed changes [81]. This approach is not imple-
mented in this work, as instead a receding prediction horizon (Section 4.5) is used.  

In addition to using a receding prediction horizon to accelerate DP, the cost 𝑔(𝒖Δ𝐸  ) of 
Eq. (3.22), (3.23) is calculated as a function of wheel power 𝑃𝑤ℎ  and vehicle speed 
𝑣 and stored in lookup tables. The approach of using 𝑃𝑤ℎ  and 𝑣  instead of 𝑣 , 𝑎  and 
𝛼𝑟𝑜𝑎𝑑 makes the use of lookup tables possible, as otherwise significantly more values 
have to be stored. 

Using lookup tables, the DP algorithm has only to extract the corresponding cost matrix 
from the lookup tables for a specific trip and execute the shortest path search. Using Eq. 
(2.5), (2.6), (2.7), (2.8) the vehicle backward model described by 𝑓𝐵𝑊(Δ𝐸𝑏𝑎𝑡 ,𝑣,
𝑎,𝛼𝑟𝑜𝑎𝑑 ,𝑔) can be changed to 𝑓𝐵𝑊(Δ𝐸𝑏𝑎𝑡 ,𝑣,𝑃𝑤ℎ,𝑔). A set of wheel power 𝑃𝑤ℎ with a 
spacing of 1kW 

{𝑃𝑤ℎ,𝑡𝑎𝑏𝑙𝑒}
kW

= {−45,−39, … ,0, … ,45} (3.25) 

and a set of vehicle speed 𝑣 with a spacing of 1km/h 

{𝑣𝑡𝑎𝑏𝑙𝑒}
km/h

= {0,1,2, … ,160}     (3.26) 
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are defined. Taking into account the drivetrain and gearbox efficiency, the maximum of 
𝑃𝑤ℎ = 45kW  corresponds here in ICE mode to the maximum engine power 𝑃𝑖𝑐𝑒 =
52kW . For all combinations (𝑃𝑤ℎ ,  𝑣 ) with 𝑃𝑤ℎ ∈ {𝑃𝑤ℎ,𝑡𝑎𝑏𝑙𝑒}  and  𝑣 ∈ {𝑣𝑡𝑎𝑏𝑙𝑒} , the 
minimal fuel consumption is calculated for Δ𝐸𝑏𝑎𝑡 defined by Eq. (3.11) using 

𝑚𝑓(Δ𝐸𝑏𝑎𝑡 ,𝑣,𝑃𝑤ℎ) = min
𝑔
𝑓𝐵𝑊,𝑚𝑓

(Δ𝐸𝑏𝑎𝑡, 𝑣,𝑃𝑤ℎ,𝑔) (3.27) 

just as the gear by 

𝑔(Δ𝐸𝑏𝑎𝑡 ,𝑣,𝑃𝑤ℎ) = arg min
𝑔

𝑓𝐵𝑊,𝑚𝑓
(Δ𝐸𝑏𝑎𝑡, 𝑣,𝑃𝑤ℎ,𝑔)    . (3.28) 

With the gear 𝑔 from Eq. (3.28) the corresponding torques of the electric motor and the 
combustion engine are calculated using 

𝑇𝑖𝑐𝑒(Δ𝐸𝑏𝑎𝑡, 𝑣,𝑃𝑤ℎ) =  𝑓𝐵𝑊,𝑇𝑖𝑐𝑒(Δ𝐸𝑏𝑎𝑡, 𝑣,𝑃𝑤ℎ,𝑔)       

𝑇𝑒𝑚(Δ𝐸𝑏𝑎𝑡 ,𝑣,𝑃𝑤ℎ) =  𝑓𝐵𝑊,𝑇𝑒𝑚(Δ𝐸𝑏𝑎𝑡, 𝑣,𝑃𝑤ℎ,𝑔)    . 
(3.29) 

The calculated values of fuel mass flow 𝑚𝑓, gear 𝑔, 𝑇𝑖𝑐𝑒 and 𝑇𝑒𝑚 as a function of 𝑃𝑤ℎ, 𝑣 
and Δ𝐸𝑏𝑎𝑡 are saved in lookup tables. The resulting lookup tables are the 3-dimensional 
arrays  𝑭𝑚𝑓

(Δ𝐸𝑏𝑎𝑡, 𝑣,𝑃𝑤ℎ) , 𝑭𝑇𝑖𝑐𝑒(Δ𝐸𝑏𝑎𝑡 ,𝑣,𝑃𝑤ℎ) , 𝑭𝑇𝑒𝑚 (Δ𝐸𝑏𝑎𝑡 ,𝑣,𝑃𝑤ℎ) , and 𝑭𝑔 (Δ𝐸𝑏𝑎𝑡 ,

𝑣,𝑃𝑤ℎ)  as indicated in Fig. 3.6. For every pair ( 𝑃𝑤ℎ ,  𝑣 ) the corresponding value 
𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡(𝑃𝑤ℎ,𝑣) is saved in the 2-dimensional lookup table  𝒇𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡

(𝑃𝑤ℎ,𝑣). The 

total number of table elements for the proposed grid defined in Eq. (3.25) and (3.26) is 

𝑛𝑒,𝑭 = 91 ∙ 161 ∙ 119 = 1′743′469     . (3.30) 

Considering that a total of four tables are necessary, 𝑛𝑒,𝑭 has to be multiplied by a factor 
of 4. Including the 91 ∙ 161 elements of 𝒇𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡 and saving them in a single precision 

floating point format which occupies 4 byte per value, a total lookup table size of about 
26.6MB results. For use in vehicle onboard units, lookup table size can be significantly 
reduced using a different variable format. For the gear lookup table 𝑭𝑔 (𝑃𝑤ℎ, 𝑣,Δ𝐸𝑏𝑎𝑡) 
an entry size of 1 byte instead of 4 byte is sufficient. A further reduction can be 
achieved by not storing the table entries of 𝑭𝑇𝑖𝑐𝑒, 𝑭𝑚𝑓 for 𝑃𝑤ℎ < 0, as in that driving 

condition the engine is not used. Additionally, many entries of the tables are empty, 
such as entries for low vehicle speed, which do not occur in combination with high cy-
cle power. 
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Fig. 3.6. 3-dimensional lookup table array 𝑭𝑚𝑓  for the accelerated DP algorithm (A-DP). 

3.3 Application for Real Time Implementation 
After calculating and saving the lookup tables for a certain vehicle, the precalculated 
values are used online by the shortest path search. Therefore, in this section the prepara-
tion of the optimal cost matrix is described. The cost-to-go matrix describes the cost 
𝑔𝑘(𝒖Δ𝐸(𝑘) ) for the cycle time steps which are used by the shortest path search. 

At first, to take into account the speed 𝑣 and slope change during two time points 𝑘 and 
𝑘 + 1, the cycle speed is averaged by 

𝑣̅(𝑘) =
𝑣(𝑘) + 𝑣(𝑘 + 1)

2
  . (3.31) 

Road slope is expressed for averaging by Δℎ (Fig. 2.14) instead of 𝛼𝑟𝑜𝑎𝑑, as the poten-
tial energy required is directly proportional to Δℎ: 

Δℎ����(𝑘) =
Δℎ(𝑘) + Δℎ(𝑘 + 1)

2
    . (3.32) 

Calculating 𝐹�𝑤ℎ(𝑘) from the values 𝑣̅(𝑘),Δℎ����(𝑘) and 𝑎(𝑘) using Eq. (2.5), the wheel 
power  

𝑃�𝑤ℎ(𝑘) = 𝐹�𝑤ℎ(𝑘)  𝑣̅(𝑘) (3.33) 
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results. To access the lookup tables, 𝑃�𝑤ℎ(𝑘) and 𝑣̅(𝑘) are rounded to multiples of 1km/h 
and 1kW defined by Eq. (3.25) and (3.26): 

𝑣𝑐𝑦𝑐𝑙𝑒 
′ (𝑘) = round�

𝑣̅(𝑘)
1km/h

� km/h 

𝑃𝑤ℎ′ (𝑘) = round(𝑃�𝑤ℎ (𝑘)/1kW) kW    . 
(3.34) 

The cost-to-go matrix for the shortest path search 𝒎𝑓  and the matrices of the corre-
sponding transition values 𝑇𝑖𝑐𝑒, 𝑇𝑒𝑚, 𝑔 are extracted from the respective lookup tables 
𝑭𝑚𝑓, 𝑭𝑇𝑖𝑐𝑒, 𝑭𝑇𝑒𝑚, 𝑭𝑔 as a function of time step and battery energy change: 

𝒎𝑓 (𝑘,Δ𝐸𝑏𝑎𝑡) = 𝑭𝑚𝑓
(𝑃𝑤ℎ′ (𝑘), 𝑣′(𝑘),Δ𝐸𝑏𝑎𝑡) 

𝒕𝑖𝑐𝑒(𝑘,Δ𝐸𝑏𝑎𝑡) = 𝑭𝑇𝑖𝑐𝑒(𝑃𝑤ℎ′ (𝑘), 𝑣′(𝑘),Δ𝐸𝑏𝑎𝑡) 

𝒕𝑒𝑚 (𝑘,Δ𝐸𝑏𝑎𝑡) = 𝑭𝑇𝑒𝑚 (𝑃𝑤ℎ′ (𝑘), 𝑣′(𝑘),Δ𝐸𝑏𝑎𝑡) 

𝒕𝑔 (𝑘,Δ𝐸𝑏𝑎𝑡) = 𝑭𝑔 (𝑃𝑤ℎ′ (𝑘), 𝑣′(𝑘),Δ𝐸𝑏𝑎𝑡)    . 

(3.35) 

The displacement 𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡(𝑘)  of Eq. (3.19) is extracted from the lookup table 
𝒇𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡 

𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡(𝑘) = 𝒇𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡
(𝑃𝑤ℎ′ (𝑘), 𝑣′(𝑘)) (3.36) 

which is later adapted to compensate for the rounding error generated by rounding 𝑃𝑤ℎ′ . 
To evaluate the effect of the rounding errors generated by Eq. (3.34), error 

𝑒𝑃(𝑘) = 𝑃𝑤ℎ(𝑘) − 𝑃𝑤ℎ′ (𝑘) (3.37) 

and 

𝑒𝑣(𝑘) = 𝑣(𝑘) − 𝑣′(𝑘) (3.38) 

are defined. The maximal deviation the wheel torque 𝑇𝑤ℎ, 𝑒𝑇 = |𝑇𝑤ℎ′ − 𝑇𝑤ℎ| caused by 
𝑒𝑃(𝑘) is given for 𝑃𝑤ℎ > 0 by 

𝑒𝑇,𝑚𝑎𝑥(𝑣,  𝑔𝑟) =  
1

𝜂𝑡𝑟𝑎𝑛𝑠 𝑔𝑟
𝑣
𝑟 

500W    . (3.39) 

In regenerative braking mode (𝑃𝑤ℎ < 0), the error is smaller by the factor 𝜂𝑡𝑟𝑎𝑛𝑠2 : 

𝑒𝑇,𝑚𝑎𝑥(𝑣,  𝑔𝑟) = max �
𝜂𝑡𝑟𝑎𝑛𝑠
 𝑔𝑟

𝑣
𝑟 

(𝑃𝑤ℎ′ − 𝑃𝑤ℎ)�  =  
𝜂𝑡𝑟𝑎𝑛𝑠
 𝑔𝑟

𝑣
𝑟 

500W   . (3.40) 
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The maximal rounding error depends heavily on the gear, as at higher gears the motor 
torque is translated in a higher wheel torque (Fig. 3.7). Taking into account that high 
gears are not used in hybrid mode at low vehicle speeds, (gear 7 at a vehicle speed of 
50km/h results in 𝜔𝑖𝑐𝑒 = 1170min−1) the error exceeds values of 5Nm only for vehicle 
speeds below 9km/h.  

 
Fig. 3.7. Maximal influence of the rounding error 𝑒𝑃 on the torque 𝑇𝑤ℎ. 

An additional torque error results from 𝑒𝑣(𝑘), whose maximum is for 𝑃𝑤ℎ > 0 

𝑒𝑇,𝑚𝑎𝑥(𝑃𝑤ℎ,  𝑔𝑟) = max �
𝑃𝑤ℎ

𝜂𝑡𝑟𝑎𝑛𝑠 𝑔𝑟
�
𝑣 − 𝑣′

𝑣 𝑣′
�� =

𝑃𝑤ℎ
𝜂𝑡𝑟𝑎𝑛𝑠 𝑔𝑟

0.7 ∙ 10−5 (3.41) 

In regenerative braking mode (𝑃𝑤ℎ < 0), the error is by the factor 𝜂𝑡𝑟𝑎𝑛𝑠2  smaller: 

𝑒𝑇,𝑚𝑎𝑥(𝑃𝑤ℎ,  𝑔𝑟) =
𝑃𝑤ℎ𝜂𝑡𝑟𝑎𝑛𝑠

 𝑔𝑟
0.7 ∙ 10−5 . (3.42) 

The rounding of 𝑣 has a smaller effect on the torque error 𝑒𝑇 and is negligible as the 
maximal error is below 0.5Nm (Fig. 3.8). Therefore, only a compensation for the round-
ing error 𝑒𝑃 is introduced. 

 
Fig. 3.8. Effect of the rounding error 𝑒𝑣 on the torque 𝑇𝑤ℎ. 

To compensate the effect of 𝑒𝑃 on torque and battery energy consumption, a compensa-
tion for the electric motor torque 𝑇𝑒𝑚  and the energy offset 𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡  is calculated 
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which is applied every time step by using average component efficiencies. The effect on 
the battery energy is approximated by 

𝐸𝑠ℎ𝑖𝑓𝑡,𝑐𝑜𝑟𝑟(𝑘) =  �

𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡(𝑘) + 𝑒𝑃(𝑘) Δ𝑡 𝜂�𝑡𝑟𝑎𝑛𝑠� 𝜂�𝑒𝑚𝜂𝑖𝑛𝑣 𝑃𝑤ℎ < 0

𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡(𝑘) +
𝑒𝑃(𝑘) Δ𝑡

 𝜂�𝑡𝑟𝑎𝑛𝑠� 𝜂�𝑒𝑚𝜂𝑖𝑛𝑣
𝑃𝑤ℎ ≥ 0

� (3.43) 

where Δ𝑡 = 1s is the time grid spacing and 𝜂�𝑒𝑚 = 0.8. The torque 𝑇𝑒𝑚 is corrected by 

𝑇𝑒𝑚,𝑐𝑜𝑟𝑟(𝑘) = 𝑇𝑒𝑚 + 𝑒𝑃(𝑘)
𝜂𝑡𝑟𝑎𝑛𝑠
𝑔𝑟𝑣
𝑟𝑤ℎ

𝑃𝑤ℎ < 0    . (3.44) 

Adapting 𝐸𝑠ℎ𝑖𝑓𝑡,𝑐𝑜𝑟𝑟 and 𝑇𝑒𝑚,𝑐𝑜𝑟𝑟 by Eq. (3.43) and (3.44), achieved results are close to 
standard DP results from Section 3.1 (Table X, Table XI), but with significantly re-
duced computational costs. 

3.4 Results of the Accelerated DP (A-DP) 
The lookup table based accelerated DP (A-DP) algorithm of Section 3.2 is validated 
with the FTP-72 cycle, employing CS operation, and the BCN-CTS cycle, employing 
CD operation. The obtained results are compared to the global optimal results obtained 
by standard DP (S-DP) from Section 3.1. For comparison, the obtained control sequence 

�𝒖i
𝑜𝑝𝑡� is applied to the vehicle forward model. The driver model of the vehicle forward 

model corrects differences between vehicle and cycle speed of the A-DP caused by the 
rounding error 𝑒𝑇 by adjusting 𝑇𝑒𝑚 by means of a PI controller. Rounding errors of the 
cycle power 𝑒𝑃 and speed 𝑒𝑣 generated by the lookup tables result in slightly different 
costs at every time step, despite their correction by Eq. (3.43). The difference in the cost 
𝑔𝑘�𝒖(𝑘)�, i.e. the fuel mass 𝑚𝑓 at time steps 𝑘, leads to different decisions of the short-
est path search algorithm. The torque differences between both algorithms are defined 
as follows: 

Δ𝑇𝑒𝑚 = 𝑇𝑒𝑚𝐴−𝐷𝑃 − 𝑇𝑒𝑚𝑆−𝐷𝑃 

Δ𝑇𝑖𝑐𝑒 = 𝑇𝑖𝑐𝑒𝐴−𝐷𝑃 − 𝑇𝑖𝑐𝑒𝑆−𝐷𝑃 

Δ𝑇𝑟𝑒𝑞 = 𝑇𝑟𝑒𝑞𝐴−𝐷𝑃 − 𝑇𝑟𝑒𝑞𝑆−𝐷𝑃 

(3.45) 

𝑇𝐴−𝐷𝑃 being the result of lookup tabled based DP, and 𝑇𝑆−𝐷𝑃 the result of S-DP. Dif-
ferent decisions of the shortest path algorithm lead to different values for the electric 
motor torques 𝑇𝑒𝑚𝐴−𝐷𝑃(𝑘) and 𝑇𝑒𝑚𝑆−𝐷𝑃(𝑘) of the A-DP and S-DP (Fig. 3.11), and the en-
gine torque (Fig. 3.12). While smaller deviations of Δ𝑇𝑒𝑚 and Δ𝑇𝑖𝑐𝑒 can result from the 
error 𝑒𝑇, the peaks indicate that another control input 𝒖 is chosen by the shortest path 
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algorithm. This leads to engine starts at different time points as indicated in Fig. 3.9 for 
the FTP-72 cycle. While at second 43 of the FTP-72 driving cycle only the S-DP algo-
rithm starts the engine, at second 80 only the A-DP algorithm starts the engine. This 
leads to the peaks of Δ𝑇𝑒𝑚 in Fig. 3.9. These different decisions do not necessarily have 
huge impact on the overall results, as already small cost differences can result in the 
choice of another path through the battery energy states. The same peaks observed dur-
ing the FTP-72 cycle occur also during the BCN-CTS cycle (compare Fig. 3.11 bottom, 
Fig. 3.12 bottom).  

Differences of Δ𝑇𝑟𝑒𝑞 (Fig. 3.9 bottom) are either caused by a rounding error or by a dif-
ferent gear choice. Therefore, strong deviations of 𝑇𝑖𝑐𝑒 and 𝑇𝑒𝑚 , such as during engine 
starts can lead, at the same time point, to a peak of Δ𝑇𝑟𝑒𝑞, as the engine start at second 
43 results in the selection of a different gear. The rounding error 𝑒𝑝 of the wheel power 
𝑃𝑤ℎ affects the torque difference �Δ𝑇𝑟𝑒𝑞� more at low vehicle speeds than at high vehicle 
speeds (Fig. 3.10). Between seconds 1450-1500, at a vehicle speed between 119.2 and 
127.4km/h, the torque difference �Δ𝑇𝑟𝑒𝑞� is smaller than 2Nm. In the cycle section with 

smaller vehicle speed the torque difference rises shortly to values �Δ𝑇𝑟𝑒𝑞� < 12.6Nm 

and changes from second 212 to values �Δ𝑇𝑟𝑒𝑞� < 5Nm. It must be considered that the 
effect of the rounding errors 𝑒𝑃 and 𝑒𝑣 on battery energy level is partly compensated 
across the cycle, considering the alternating nature of the sign of the error value (Fig. 
3.13, Fig. 3.14).  

 
Fig. 3.9. Difference between torque obtained by S-DP and A-DP for the FTP-72 cycle at sec-
onds 35-50 and 70-90. 
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Fig. 3.10. Difference between torque obtained by S-DP and A-DP for the BCN-CTS cycle dur-
ing seconds 200-250 and 1450-1500. 

Using the A-DP algorithm, a drastic reduction in calculation time is achieved. A compu-
tation time improvement by a factor of between 49 and 55 is achieved by the A-DP 
when not considering the calculation time of the lookup tables (Table IX). This is rea-
sonable, as the purpose of the algorithm is for use in vehicle onboard units for real time 
implementation, and calculation of the lookup tables has only to be executed once for a 
specific vehicle. The relatively high calculation times of S-DP stem from the implemen-
tation of the backward model in Dymola, which is called from the DP algorithm imple-
mentation in Matlab. Using the Dymola implementation, calculation time increases on 
one hand, but on the other hand more complex component models can be used such as 
lookup table based loss models for gearbox and inverter. Furthermore, A-DP can benefit 
from improved models without any increase in computation time. A further reduction of 
the computational cost can be achieved by the reduction of the prediction horizon length 
[82]. A method using a receding prediction horizon is presented in the following chap-
ter. 

Table IX: Calculation times on an Intel i3 (1.8GHz) running Windows x64 
 FTP-72 BCN-CTS 

S-DP 18906s 44732s 

A-DP 387s 808s 

Computation time improvement factor 49 55 

 

Evaluating EMS for PHEV is not straightforward when comparing results with different 
SOC at end of trip. Having consumption of both fuel and electrical energy, as an indica-
tor, consumption weighted against the respective CO2 emissions is compared. The fuel 
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is weighted against the CO2 emissions when consumed by the engine, while the electri-
cal energy is weighted against the CO2 emitted at the power plant. As electrical energy 
generation varies considerably between regions, data on the average emissions caused 
in the EU in 2009 are used (396g/kWh [7]). The resulting CO2 mass is 

𝑚CO2 = 𝑚CO2,𝑒𝑙𝑒𝑐 + 𝑚CO2,𝑓 =

110g
MJ Δ𝐸𝑏𝑎𝑡
𝜂𝑐ℎ

+
31.733g

kg
𝑚𝑓     . 

(3.46) 

For battery recharging via the electrical grid a charging efficiency 𝜂𝑐ℎ = 0.95 is as-
sumed. The difference of the CO2 emissions per km between standard and A-DP is 
0.08% for both the BCN-CTS and FTP-72 cycles (Table X, Table XI). The SOC during 
the cycles obtained by A-DP is close to the results achieved with S-DP (Fig. 3.13 and 
Fig. 3.14). The SOC at the end of trip is close to the S-DP, reaching a final SOC of 
0.299 for the BCN-CTS cycle and 0.298 for the FTP-72 cycle and thus the electrical 
energy consumption is slightly higher. The difference in the results of the S-DP applied 
to the forward model (compare Table X, Table XI) stem from the discretization of the 
change of the energy levels at every step and the discrete time steps (Fig. 3.2), and can 
be reduced by a finer grid spacing of time and battery energy level.  

Table X: Simulation results for the BCN-CTS cycle. 
 S-DP  A-DP  difference / % 

SOC𝑒𝑛𝑑 0.3007 0.2988 - 

𝑉𝑓 / l/100km 3.35 3.35 0.03 

Δ𝐸𝑏𝑎𝑡 / kWh 100km⁄  7.249 7.264 0.20 

𝑚CO2 / g km⁄  108.0 108.1 0.07 

Table XI: Simulation results for the FTP-72 cycle. 
 S-DP A-DP difference / % 

SOC𝑒𝑛𝑑 0.2999 0.2979 - 

𝑉𝑓 / l/100km 3.63 3.62 -0.22 

Δ𝐸𝑏𝑎𝑡 / kWh 100km⁄  0.005 0.071 - 

𝑚CO2  / g km⁄  87.5 87.6 0.07 
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Fig. 3.11. Electric motor torque 𝑇𝑒𝑚 obtained by A-DP (above), S-DP (middle) and the differ-
ence 𝛥𝑇𝑒𝑚 (bottom) during the BCN-CTS cycle. 

 
Fig. 3.12. Engine torque 𝑇𝑖𝑐𝑒  obtained by A-DP (above), S-DP (middle) and the difference 𝛥𝑇𝑖𝑐𝑒 
(bottom) for the BCN-CTS cycle. 

 
Fig. 3.13. SOC during driving cycle FTP-72 obtained by S-DP and A- DP. 
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Fig. 3.14. SOC during driving cycle BCN-CTS obtained by S-DP and A-DP. 

3.5 Conclusions 
DP algorithms have been already employed with success in various publications. Due to 
the high computational cost of the DP algorithms, they are typically either employed 
offline for benchmarking purposes or online for HEV with a small energy store and CS 
operation. The computational cost of DP is reduced considerably by a small energy 
store and CS operation due to the relatively short prediction horizon, and the fewer bat-
tery energy states which need to be considered by the algorithm.  

For online EMS, a reduction in computational cost is achieved by using less complex 
closed-form models. In order to decouple model complexity and accuracy from compu-
tational cost, a lookup table based algorithm for DP is proposed. The lookup tables are 
calculated once for a specific vehicle configuration. To reduce calculation time, the pro-
posed algorithm combines the use of lookup tables with known approaches such as state 
space limiting. The main task of the DP algorithm is execution of the shortest path 
search, while lookup tables are used to obtain the required cost 𝑔𝑘. As such, the pro-
posed algorithm is considerably faster than a standard DP. Calculation time is reduced 
by a factor of 49, and by a factor of 55 for the FTP-72 and BCN-CTS cycles respec-
tively. 

As the use of lookup tables generates rounding errors, these errors are compensated for 
online when applying the extracted lookup table values. Using this compensation, simu-
lation results are close to standard DP. Fuel consumption deviation is 0.22% for the 
FTP-72 cycle and 0.03% for the BCN-CTS cycle. Deviation of CO2 emissions is 0.07% 
for both cycles. The reduction in computational cost achieved by the proposed algo-
rithm is not affected by the complexity of the vehicle model. As such, more precise sta-
tionary loss models for electric motors, combustion engines, inverters and transmissions 
can be used. As the calculation time for DP algorithm shortest path search increases 
exponentially with prediction horizon length, to further reduce calculation time the al-
gorithm is used within an MPC framework with a receding prediction horizon in the 
following chapter. 
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4 Implementation of a Receding Prediction Horizon 
For PHEVs to achieve highest fuel efficiency, full battery depletion must coincide with 
end of trip. The most fuel efficient method for operating in charge-depleting (CD) mode 
is to employ a predictive EMS using a blended strategy (compare Section 1.3). How-
ever, while potential fuel saving increases with predictive strategies, this does cause a 
considerable increase in computational load. For predictive real time implementable 
EMS, it is therefore desirable to use a prediction horizon which is shorter than the total 
trip length. Therefore, in this chapter the implementation of a receding prediction hori-
zon inside a model predictive control (MPC) framework is proposed.  

When using an MPC framework as indicated in Fig. 1.21, the optimization process is 
repeated several times during the trip with a reduced prediction horizon length. For 
every optimization process the SOC constraint of the end of the prediction horizon has 
to be known. This is especially important for CD operation, as the SOC during the trip 
changes considerably. Optimizing with a prediction horizon which includes the entire 
trip, the resultant SOC value is 𝑆𝑂𝐶∗(𝑘𝑁) = 0.3. Using instead a receding prediction 
horizon, the constraint value is unknown and has to be determined before starting the 
trip by calculating a SOC set point function for the whole trip (Fig. 4.1). The resultant 
function is highly determining in the fuel economy of the vehicle. 

 
Fig. 4.1. Exemplary set point function 𝑆𝑂𝐶∗(𝑘) for optimization using a receding prediction 
horizon. 

Due to the condition that this set point function has to be calculated for the entire trip, 
the algorithm presented in Chapter 3 cannot be employed as the computational load 
would be too high. Instead, a different optimization based on a simpler vehicle model is 
proposed, which does not consider torques and gear, but only the power flow between 
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the components. This optimization is performed using a MILP algorithm which calcu-
lates the optimal 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ (𝑘) for the trip using the available prediction data. The func-
tion 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗  is used to set the final SOC constraint for the optimization of gear and 
torque by DP Eq. (3.10)  

𝑥(𝑁) = 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ �𝑘0 + 𝑁𝑝�   . (4.1) 

where 𝑘0 is the start time of the optimization process and 𝑁𝑝 is the prediction horizon 
length. In such a way the prediction horizon can be reduced significantly, whilst still 
achieving results close to minimal fuel consumption. It is assumed that trip prediction 
data for vehicle speed and road grade is available to the EMS.  

4.1 Mixed Integer Linear Programming 
Mixed integer linear programming (MILP) is an extension of linear programming (LP) 
[83], both being subclasses of convex optimization problems [84]. MILP permits in 
addition to continuous variables also the use of integer variables as part of the optimiza-
tion problem. This is important for the powertrain model of HEV, as the engine state 
(on and off) influences considerably fuel consumption and cannot be described by con-
tinuous variables. As its state is binary, it can be expressed by an integer variable with 
upper and lower bound. An approach using LP for a series HEV is presented in [54] and 
an algorithm using MILP for torque optimization disregarding the gear in [55]. The to 
LP related quadratic programming (QP) is used in [45] for a non-predictive strategy and 
in [42] for optimizing the power weighting factor (compare Section 1.4). A MILP is 
described similar to a LP by [85]: 

minimize (𝒄1𝑇𝒙1 + 𝒄2𝑻𝒙2)

subject to 𝑨1𝒙1 + 𝑨2𝒙2 ≤ 𝒃

𝒙1 ≥ 𝟎

𝒙2 ≥ 𝟎   ,𝒙2 ∈ ℕ0    .

 (4.2) 

In this formulation 𝒙 = (𝒙1,𝒙2) = (𝑥1, 𝑥2, … , 𝑥𝑛) is an n-dimensional column vector of 
nonnegative variables, 𝒄 is an n-dimensional column vector, 𝑨 is a 𝑚 × 𝑛 matrix, and 𝒃 
is an m-dimensional column vector. The constraints 𝑨1𝒙1 + 𝑨2𝒙2 ≤ 𝒃 define a feasible 
region of 𝒙. This kind of optimization problem is known as constraint problem [83].  



79 

 

 
Fig. 4.2. Example of a set of feasible solutions with level sets of the objective function (3x1+2x2) 
[86]. 

In respect to the number of elements of 𝒙 three classes of problem sizes are distin-
guished: the small-scale problem with five or less variables, the intermediate–scale 
problem and the large-scale problem with a hundred or more variables. The problem 
arising from the EMS optimization is, following this classification, a large-scale prob-
lem. In order to solve a MILP problem, it is firstly converted into the LP problem  

minimize 𝒄𝑇𝒙

subject to 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 𝟎

 (4.3) 

for which a variety of different solvers exist. A frequently used algorithm to solve the 
LP problem is the simplex algorithm, which cause especially for large-scale problems 
high computational costs. Some more recent methods, which are more appropriate for 
solving large-scale problems, are the interior-point methods. The interior-point methods 
are based on concepts of nonlinear programming techniques [83] and are a class of dif-
ferent methods, of which an important subclass are the path following methods. The 
methods are based on a reformulation of the original LP problem into a barrier problem 

minimize 𝑐𝑇𝒙 − 𝜇� log 𝑥𝑗

𝑛

𝑗

   , (4.4) 

which corresponds for 𝜇 = 0  to the original problem. For 𝜇 → ∞  the function ap-
proaches the boarder of the feasible region, thus defining a path called central path (Fig. 
4.3). A path following algorithm is an iterative search algorithm and updates the current 
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solution 𝒙𝑘 by finding a way through the interior of the feasible region by using an ap-
proximation 𝑝 of the path direction [86]:  

𝒙𝑘+1 = 𝒙𝑘 + 𝑝(𝒙𝑘, 𝜇𝑘) (4.5) 

where 𝜇𝑘 is the interior path parameter selected by the algorithm. 

 
Fig. 4.3. Interior path of path following method [86]. 

For MILP problems, the vector 𝒙2 containing the integer variables increases the com-
plexity of the problem. Solving a MILP problem is done by a LP-relaxation of the prob-
lem, i.e. the integer constraint of 𝒙2 is in a first step disregarded. The obtained LP prob-
lem of the relaxation is then computed using the path following algorithm, considering 
the integer variables 𝒙2 continuous. The cutting plane algorithm permits the search for 
an integer solution by adding to the LP-relaxation additional constraints which are only 
fulfilled by integer values. For higher efficiency, the cutting plane algorithm is com-
bined with a method known as branch-and-bound. When the solution of the LP problem 
does not fulfil the condition that all elements of 𝒙𝟐 are integer values, the algorithm 
creates two new subproblems of the original, which exclude the obtained solution by 
additional constraints. That is, if the solution for 𝒙𝟐 yields e.g. 𝒙𝟐 = 9.4, the two new 
subproblems have as constraint 

subproblem 1: 𝒙𝟐 ≤ 9
subproblem 2: 𝒙𝟐 ≥ 10    . 

(4.6) 

These two subproblems are two new branches and are subsequently solved and are split 
in new subproblems. In this manner a tree structure with advancing limitation of the 
solution set results. The name part bound results from the fact that the solution of a re-
laxation is a lower bound of the problem: 
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min{𝒄1𝑇𝒙1 + 𝒄2𝑻𝒙2�𝒙1,𝒙2 ∈ ℝ} ≤ min{𝒄1𝑇𝒙1 + 𝒄2𝑻𝒙2�𝒙1 ∈ ℝ,𝒙2 ∈ ℕ0}     . (4.7) 

By using the bound Eq. (4.7), branches of subproblems can be cut and the complexity of 
the problem reduced. A detailed description can be found e.g. in [85]. In this work, a 
solver using the combination of both branch-and-bound and cutting plane algorithm is 
employed, known as branch-and-cut algorithm. The integer condition of the state vari-
able therefore adds additional complexity to the problem compared to programs with 
only continuous variables, but the efficient LP-solvers still permit the computation of 
the EMS optimization within a few seconds on a typical desktop computer. 

4.2 Optimization Problem Formulation 
A MILP requires a linear problem formulation. Therefore, the vehicle description can 
either include engine and motor torque or the gear. Relation between angular wheel 
speed 𝜔𝑤ℎ and electric motor speed 𝜔𝑒𝑚  

𝜔𝑒𝑚 = 𝑔𝑟 𝜔𝑤ℎ (4.8) 

as well as the corresponding torques (being 𝜂𝑡𝑟𝑎𝑛𝑠 = 1) 

𝑇𝑒𝑚 = 𝑇𝑤ℎ/𝑔𝑟 (4.9) 

is due to the non-constant gear ratio 𝑔𝑟 nonlinear. The same nonlinear relation, as in Eq. 
(4.8) exists for the engine, as electric motor and engine are mounted on the same shaft. 
One solution could be excluding the gear from the optimization problem, as performed 
in [55]. Considering that in this work the gear is included in the optimization problem, 
here the power based powertrain model from Section 2.4 is instead used. Using the 
power based model, with 𝑃 = 𝑇𝜔, the nonlinear Eq. (4.8) and (4.9) result (again for 
𝜂𝑡𝑟𝑎𝑛𝑠 = 1) in 

𝑃𝑒𝑚 = 𝑃𝑤ℎ   . (4.10) 

Therefore, gear, angular speed and torque do not form part of the MILP (Section 2.4). 
By the additional constraint  

0 ≤ 𝒙2 ≤ 1 (4.11) 

the integer variable corresponds to a binary variable defined as 

𝒙2 = � 0    false
1    true     .

� (4.12) 

In such a way, the binary variable 𝑠𝑖𝑐𝑒 refers to the engine state 
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𝑠𝑖𝑐𝑒(𝑘) = 𝒙2 = �
0 engine off

1 engine on    ,
� (4.13) 

where 𝑘 is a discrete time point with a step width of 1s. As all elements (𝑥1, 𝑥2, … , 𝑥𝑁) 
of 𝒙 must be positive, electric machine mechanical power 𝑃𝑒𝑚 and electrical power are 
split into the two positive variables, respectively: 

𝑃𝑒𝑚(𝑘) = 𝑃𝑒𝑚+ (𝑘) − 𝑃𝑒𝑚− (𝑘) 

𝑃𝑖𝑛𝑣,𝐴𝐶(𝑘) = 𝑃𝑖𝑛𝑣,𝐴𝐶
+ (𝑘) − 𝑃𝑖𝑛𝑣,𝐴𝐶

− (𝑘)    . 
(4.14) 

Separating 𝑃𝑒𝑚 in the two components 𝑃𝑒𝑚+ (𝑘) and 𝑃𝑒𝑚− (𝑘), using Eq. (1.2) gives  

𝑃𝑟𝑒𝑞 = 𝑃𝑒𝑚+ − 𝑃𝑒𝑚− + 𝑃𝑖𝑐𝑒    . (4.15) 

A separation of 𝑃𝑖𝑐𝑒 into two variables is not necessary, as for negative values the clutch 
is disengaged to separate the engine from the rest of the powertrain. In motoring mode 
(𝑃𝑒𝑚(𝑘) > 0) using Eq. (2.29) gives 

𝑃𝑒𝑚+ (𝑘) = 𝑎𝑒𝑚,𝑚𝑜𝑡 𝑃𝑖𝑛𝑣,𝐴𝐶
+ (𝑘)   . (4.16) 

In generating mode using Eq. (2.30) gives 

𝑃𝑖𝑛𝑣,𝐴𝐶
− (𝑘) = 𝑎𝑒𝑚,𝑔𝑒𝑛 𝑃𝑒𝑚− (𝑘)     . (4.17) 

The influence of the motor power on battery charge is described by 

𝑃𝑏𝑎𝑡(𝑘) =
𝐸𝑏𝑎𝑡(𝑘 − 1) − 𝐸𝑏𝑎𝑡(𝑘)

Δ𝑡
     . (4.18) 

To prevent engine use in regenerative braking mode (𝑃𝑟𝑒𝑞 < 0, Eq. (2.26)), the inequal-
ity constraint 

𝑠𝑖𝑐𝑒(𝑘)  𝑃𝑟𝑒𝑞(𝑘) ≥ 0 (4.19) 

is used.  𝑃𝑟𝑒𝑞  is calculated as a function of cycle power 𝑃�𝑐𝑦𝑐𝑙𝑒  from Eq. (3.33) and 
𝜂𝑡𝑟𝑎𝑛𝑠 using Eq. (2.26). 

The MILP objective function to minimize is 
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⎥
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= arg min
𝑃𝑒𝑚(𝑘),𝑠𝑖𝑐𝑒(𝑘)

[𝑓𝐿𝑀(𝑃𝑒𝑚(𝑘), 𝑠𝑖𝑐𝑒(𝑘)]   . (4.20) 

where 𝑓𝐿𝑀 stands for the linear vehicle model described above and in Section 2.4. The 
component constraints are  

0 ≤ 𝑃𝑒𝑚+ (𝑘) ≤ 𝑃𝑒𝑚,𝑚𝑎𝑥 
0 ≤ 𝑃𝑒𝑚− (𝑘) ≤ −𝑃𝑒𝑚,𝑚𝑖𝑛 
0 ≤ 𝑃𝑖𝑐𝑒(𝑘) ≤ 𝑃𝑖𝑐𝑒,𝑚𝑎𝑥 𝑠𝑖𝑐𝑒(𝑘) 

𝐸𝑏𝑎𝑡,𝑚𝑖𝑛 ≤ 𝐸𝑏𝑎𝑡(𝑘) ≤ 𝐸𝑏𝑎𝑡,𝑚𝑎𝑥     .   

(4.21) 

The initial and final boundary conditions for the battery energy are defined by 

𝐸𝑏𝑎𝑡(𝑘0) = 𝑆𝑂𝐶0 𝐸𝑏𝑎𝑡,𝑚𝑎𝑥 

𝐸𝑏𝑎𝑡(𝑁) ≥ 𝑆𝑂𝐶𝑁 𝐸𝑏𝑎𝑡,𝑚𝑎𝑥 
(4.22) 

where 𝑘0 is the initial time step and 𝑁 the last time step of the driving cycle.  

4.3 Definition of the SOC Set Point Function 
From the MILP described above the optimal power distribution between engine and 
electric motor in terms of fuel consumption is obtained, and, consequently, the battery 
energy level corresponding to the state of charge due to 𝐸𝑏𝑎𝑡 = 𝐸𝑏𝑎𝑡,𝑛𝑜𝑚 𝑆𝑂𝐶 to the 
state of charge. In the following discussion, the state of charge across a trip obtained by 
the MILP is 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ (𝑘).  

The A-DP algorithm from Section 3.2 is in Section 4.4 employed in an MPC framework 
using a receding prediction horizon (Fig. 1.21) to control gear 𝑔, 𝑇𝑖𝑐𝑒 and 𝑇𝑒𝑚. In Sec-
tion 4.4 the combination of a receding prediction horizon and the A-DP algorithm from 
Section 3.2 is analysed employing 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ . 

The DP algorithm requires the boundary condition 𝑆𝑂𝐶∗(𝑁) to define the terminal cost 
in Eq. (3.10), i.e. the target SOC. Using a receding prediction horizon, 𝑆𝑂𝐶∗(𝑁) is not 
the target SOC at the end of trip, and has therefore to be defined by a function 𝑆𝑂𝐶∗(𝑘). 
For best results, 𝑆𝑂𝐶∗(𝑘) should coincide with the global optimal SOC. An inaccurate 
set point function can result in sub-optimal fuel efficency. However, 𝑆𝑂𝐶∗(𝑘) has to be 
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calculated before starting the trip, considering the whole trip length. Therefore, the cal-
culation is a trade-off between accuracy and calculation time. 

Accuracy of 𝑆𝑂𝐶∗(𝑘) is crucial, especially when using short predictions horizons. Us-
ing long prediction horizons of 600s or more, even sub-optimal 𝑆𝑂𝐶∗(𝑡) show good 
results, as demonstrated in [61] with a linear function of the trip distance. In the follow-
ing, to facilitate the use of short prediction horizons and thus decrease computational 
load of the gear and torque control, the MILP is instead employed for calculation of the 
function 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ (𝑘). 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ (𝑘) is calculated for the driving cycles BCN-CTS, CTS-
BCN, FTP-72 and the CADC. The accuracy of 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ (𝑘) is evaluated by comparing 
them to the global optimal SOC. Deviation from the global optimum (calculated by S-
DP) is analysed to formulate proposals to improve results.  

Instead of an optimization based function 𝑆𝑂𝐶∗(𝑘) also a linear (in terms of trip dis-
tance) function 𝑆𝑂𝐶𝑙𝑖𝑛∗ (𝑘) can be used [61]. Comparing the function 𝑆𝑂𝐶𝑙𝑖𝑛∗ (𝑘) with 
𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗  and the global optimum for the BCN-CTS cycle, 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗  is significantly 
closer to the global optimum (Fig. 4.4). This results from consideration of the power 
requirement of the cycle, i.e. includes information about the power load during the cycle 
and vehicle component efficiencies. 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗  also coincides well with the global opti-
mum for the cycles FTP-72 and CADC (Fig. 4.4, Fig. 4.5, Fig. 4.7), only during the 
CTS-BCN cycle a greater deviation between second 600 and second 1250 can be ob-
served (Fig. 4.6). 

 
Fig. 4.4. The SOC set point functions 𝑆𝑂𝐶𝑙𝑖𝑛∗ (𝑘) and 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ (𝑘) for the BCN-CTS cycle com-
pared to the global optimal SOC. 
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Fig. 4.5. SOC set point function for the CADC compared to the global optimum. 

 
Fig. 4.6. SOC set point function for CTS-BCN cycle compared to the global optimum. 

 
Fig. 4.7. SOC set point function for FTP-72 cycle compared to the global optimum. 

In the following, the reasons for deviations of the SOC from the global optimum are 
analysed, and proposals are made to improve results. Deviation of 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗  from global 
optimum results from the different power distribution between engine and electric mo-
tor across the cycle. The corresponding power distribution between 𝑃𝑒𝑚  and 𝑃𝑖𝑐𝑒 
for 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗  is depicted in Fig. 4.15. During the cycle, engine starts distribution is simi-
lar to that of the global optimum (Fig. 4.16). 

During the cycle CTS-BCN, The MILP has a shorter engine run time of 401s, instead of 
437s. This can be observed between second 1200 and 1230, in which the MILP does not 
run the engine. Considering engine run time and mechanical energy 𝐸𝑖𝑐𝑒 generated dur-
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ing the trip (Table XII), for the MILP an average mechanical power of 𝑃�𝑖𝑐𝑒,𝑀𝐼𝐿𝑃 =
21,3kW results, compared to 𝑃�𝑖𝑐𝑒,𝑔𝑙𝑜𝑏−𝑜𝑝𝑡 = 19,3kW for the global optimum. A shorter 
engine run time and a higher average engine power is also observed for the cycles BCN-
CTS and CADC. This different power profile of the engine compared to the global op-
timum results in deviations of the SOC across the cycle. An important reason for the 
deviation of engine power is the difference between the specific fuel consumption as a 
function of engine power 𝑃𝑖𝑐𝑒 of the MILP engine model (Fig. 4.11), and the model 
used for calculating the global optimum (Fig. 4.10). While the convex engine model 
used for the MILP has its minimal specific consumption at 𝑃𝑖𝑐𝑒 = 26.7kW, the fuel 
table based nonlinear model has minimal fuel consumption in a lower power region at 
approximately 𝑃𝑖𝑐𝑒 ≈ 14kW. The preferred use of the load point for minimal fuel con-
sumption can be observed also for the cycles CADC (Fig. 4.13) and BCN-CTS (Fig. 
4.15).  

 
Fig. 4.8. Power distribution for the cycle CTS- BCN obtained by the MILP. 

 
Fig. 4.9. Power distribution for the cycle CTS-BCN obtained by the DP. 

In addition to differences in the engine model, the MILP is based on a simplified battery 
model using constant battery efficiency. The constant efficiency can lead, particularly in 
combination with the engine model characteristics, to increased energy buffering in the 
battery. For further evaluation, the indicator 𝐸𝑏𝑎𝑡,Σ is defined, which depicts the energy 
flow through the battery but neglects influence of the battery efficiency: 
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𝐸𝑏𝑎𝑡,𝑖𝑛 = ��𝑃𝑖𝑛𝑣,𝐷𝐶(𝑘) Δ𝑡�
𝑘

       𝑃𝑏𝑎𝑡(𝑘) < 0 

𝐸𝑏𝑎𝑡,𝑜𝑢𝑡 = �𝑃𝑏𝑎𝑡(𝑘) Δ𝑡
𝑘

          𝑃𝑏𝑎𝑡(𝑘) > 0 

𝐸𝑏𝑎𝑡,Σ = 𝐸𝑏𝑎𝑡,𝑖𝑛 + 𝐸𝑏𝑎𝑡,𝑜𝑢𝑡   . 

(4.23) 

Generally, using the battery in charge mode should be limited to driving situations in 
which a significant increase in engine efficiency is achieved. If not, losses in the electric 
components can exceed the engine efficiency gain. Comparing the battery energy flow 
𝐸𝑏𝑎𝑡,Σ of the MILP and the global optimum, the battery is used more intensively by the 
MILP with an increase of 𝐸𝑏𝑎𝑡,Σ between 4.0 and 5.3% (Table XII). Advantageous is a 
battery use at a relatively low battery power. Assuming a constant battery output volt-
age, the output power is proportional to the output current. As the ohmic losses of the 
battery increase quadratically with the current, battery efficiency decreases at higher 
output power. This effect is intensified by output voltage drop resulting from increased 
power delivery. This decrease in battery efficiency at high power is significantly higher 
than increases in electric motor or inverter efficiency. However, the MILP uses a battery 
model with constant battery efficiency; therefore high battery power is not penalized. 
This, and that the engine model has minimal specific fuel consumption at higher load 
points, explains the increased battery use. The constant battery efficiency of the MILP 
also leads to peaks of 𝑃𝑒𝑚 during BCN-CTS between second 1000 and 1500. However, 
during the FTP-72 cycle, battery power flow is about 10.7% lower. Due to the low 
power profile of the trip, the battery model used for calculation of the global optimum 
driving electrically yields a battery efficiency of 0.97 (Table XIII). Therefore, to im-
prove achieved results further, battery efficiency should be considered as power de-
pendent. 

The increased battery loss during the FTP-72 is compensated for by a higher mechanical 
energy 𝐸𝑖𝑐𝑒  produced by the engine. The strong increase in 𝐸𝑖𝑐𝑒  during the CADC is 
caused instead by a long period of engine operation at its point of minimal specific con-
sumption, which is higher than the power requirement. Therefore, more electric energy 
is buffered and more losses in the electric system occur. This demonstrates the impor-
tance of fuel consumption model accuracy, particularly as the accuracy is considered by 
the objective function of the MILP and thus influences MILP results strongly. While 
fuel consumption coincides well with the global optimum for the BCN-CTS and CTS-
BCN with deviations of 0.4% and 2.0%, deviation for FTP-72 and CADC is higher 
(Table XIV).  
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Fig. 4.10. Specific consumption of the engine 
model used for calculation of the global opti-
mum. 

Fig. 4.11. Specific consumption of the convex 
engine model. 

For the FTP cycle, fuel consumption is 7.3% higher with increased engine energy of 
4.7% (Table XII). This results partly from the modelled fuel power curve in combina-
tion with the cycle’s low power profile, as fuel consumption of the MILP model is 
higher when 𝑃𝑖𝑐𝑒 < 9kW, in comparison with the model used for calculation of the 
global optimum (Fig. 4.12). This model deviation is reinforced by CS operation during 
the FTP-72 cycle, as there is no stored battery energy which can be distributed across 
the trip to avoid engine operation in low efficiency regions. For the CADC the relation-
ship is the reverse, the fuel consumption is 4.3% higher in contrast to 7.7% more pro-
duced energy. This means that the MILP operates the engine for longer at the operating 
point with minimal specific fuel consumption (Fig. 4.13).  

Summarising, even though the SOC obtained across the cycle is already close the global 
optimum, from analysis of the results, three proposals are made to further improve re-
sults.  

• Due to constant electric component efficiencies, results obtained by MILP de-
pend heavily on the minimal fuel consumption operating point of the engine. 
Therefore, the convex description used should be modified to move the highest 
efficiency to a lower power region. 

• Fuel consumption at low engine power does not correspond precisely with 
measured engine consumption. This can be prevented by adding a fourth straight 
line to the convex model to better approximate the low power region. As the use 
of such additional constraints to the MILP can increase calculation time, its im-
pact should be evaluated. 

• Improving constant battery model efficiency is a priority. Using a convex ap-
proach such as used for the engine model, this power dependence can be in-
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cluded in the MILP. This results in an additional inequality constraint for the 
MILP, and as such its impact on calculation time has to be evaluated. Successful 
implementation of this proposal may eliminate the necessity of the first pro-
posal. 

 
Fig. 4.12. Engine model approximation at low engine power. 

Table XII: Mechanical engine energy and electrical energy flow to and from the battery ob-
tained by the MILP compared to the global optimum and relative difference d. 
Cycle 𝐸𝑖𝑐𝑒,𝑀𝐼𝐿𝑃 

/ MJ 

𝐸𝑖𝑐𝑒,𝑔𝑙𝑜𝑏−𝑜𝑝𝑡  

/ MJ 

d / % 𝐸𝑏𝑎𝑡,Σ,𝑀𝐼𝐿𝑃 

/ MJ 

𝐸𝑏𝑎𝑡,Σ,𝑔𝑙𝑜𝑏−𝑜𝑝𝑡

/ MJ 

d / % 

FTP-72 4.597 4.389 4.7 3.249 3.637 -10.7 

BCN-CTS 11.966 11.813 1.3 10.411 10.007 4.0 

CTS-BCN 8.561 8.445 1.4 12.079 11.588 4.2 

CACD  2.822 2.620 7.7 15.319 14.548 5.3 

Table XIII: Average component efficiencies of electric motor (𝜂𝑒𝑚) and battery (𝜂𝑏𝑎𝑡) of the 
global optimum. 
 FTP-72 BCN-CTS CTS-BCN CACD 

𝜂̅𝑒𝑚 0.950 0.947 0.949 0.956 

𝜂̅𝑏𝑎𝑡 0.974 0.955 0.948 0.939 

Table XIV: Fuel consumption obtained by the MILP compared to the global optimum. 
Cycle 𝑉𝑓,𝑀𝐼𝐿𝑃 l/100km⁄   𝑉𝑓,𝑔𝑙𝑜𝑏−𝑜𝑝𝑡  l/100km⁄   d / % 

FTP-72 3.89 3.62 7.3 

BCN-CTS 3.36 3.35 0.4 

CTS-BCN 2.41 2.36 2.0 

CACD 1.17 1.12 4.3 
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Fig. 4.13. Power distribution obtained by the MILP for the CADC. 

 
Fig. 4.14. Power distribution obtained by the MILP for the FTP-72 cycle. 

 
Fig. 4.15. Optimal power distribution during the BCN-CTS cycle obtained by the MILP. 

 
Fig. 4.16. Global optimal power distribution during the BCN-CTS cycle. 
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Calculation times are between 2.4s for the FTP-72 cycle and 21.7s for the CTS-BCN 
cycle (Table XV). MILP can theoretically lead to long calculation times and high mem-
ory use due to its integer values and the resulting split into sub-problems to be solved. 
However, typical optimization problems can be solved quickly by employing the 
branch-and-cut algorithm. Using the time step Δ𝑡 = 1s, for the CTS-BCN cycle result 
2231 integer states to optimize, which results in increased calculation time. In order to 
further accelerate the algorithm, an important number of the integer states can be initial-
ised for trip sections with 𝑣 = 0 and for high power trip sections. 

Table XV: Calculations times of the MILP (Intel i3 (1.8GHz) running Windows x64). 
 FTP-72 BCN-CTS CTS-BCN CACD 

𝑡 / s 2.4 9.5 21.7 8.1 

4.4 Implementation of an MPC Framework 

The functions 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ (𝑘) obtained in Section 4.3 are used in this section to implement 
a receding prediction horizon in an MPC framework [87]. Using an MPC framework, a 
predictive optimization is started every 𝑁𝑐 using the A-DP algorithm from Section 3.2. 
While applying the control sequence (𝒖𝑖) for a control horizon, the control sequence for 
the next control horizon is simultaneously being calculated (Fig. 4.17). Therefore, the 
control horizon length 𝑁𝑐  has to be chosen such that during this time span the predictive 
optimization for the employed prediction horizon length (and in a later step the adapta-
tion of a rule-based strategy in Chapter 5) is finalized. Taking 𝑛 as the count number of 
the repeatedly executed MPC, the control obtained by an optimization starting at 𝑛𝑁𝑐 
can only be applied from (𝑛 + 1)𝑁𝑐. Therefore, an optimization which starts execution 
at 𝑛𝑁𝑐 uses the prediction window  

 [(𝑛 + 1)𝑁𝑐  ; (𝑛 + 1)𝑁𝑐 + 𝑁𝑝] (4.24) 

where 𝑁𝑝 is the prediction horizon length considered by the optimization. Due to this 
delay, using a shorter control horizon 𝑁𝑐 has two advantages. Firstly, it has more precise 
knowledge of the optimization constraint  𝑆𝑂𝐶∗((𝑛 + 1)𝑁𝑐  ), which is a necessary 
boundary condition for the predictive optimization. Secondly, assuming application in a 
real world driving situation, the trip prediction data can be refreshed more frequently 
and thus is more precise. While a shorter 𝑁𝑐 is advantageous, it must be chosen long 
enough that optimization for the next control horizon can be terminated. The proposed 
algorithm is validated with 𝑁𝑐 = 120 and 𝑁𝑐 = 60. For simplicity, it is assumed that 
the predictive optimization starting at 𝑛𝑁𝑐 has precise knowledge of the initial boundary 
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condition 𝑆𝑂𝐶((𝑛 + 1)𝑁𝑐  ). This assumption corresponds to assuming that calculation 
time 𝑡𝑐𝑎𝑙𝑐 = 0s. In Section 5.5 it is demonstrated that results obtained using this as-
sumption are valid.  

 
Fig. 4.17. Idealized calculation of the predictive optimization using an MPC framework. 
𝑡𝑐𝑎𝑙𝑐,𝑖  is the calculation time required for the optimization of [(𝑖 − 1)𝑁𝑐; (𝑖 − 1)𝑁𝑐 + 𝑁𝑝]. 

4.5 Simulations with Receding Prediction Horizon 
Simulations are carried out for the FTP-72 cycle employing CS mode, and for the BCN-
CTS cycle employing CD mode. Results (𝒖𝑖

𝑜𝑝𝑡) obtained from the MPC framework 
based optimization are introduced in the vehicle forward model for comparison with the 
global optimum results (calculated by S-DP algorithm from Section 3.1). As electrical 
energy consumption can vary due to the receding horizon, for comparison the CO2 mass 
𝑚CO2 emissions per km is also calculated using Eq. (3.46). Simulations are executed 
with different prediction horizon lengths of 200s, 300s, 450s and 600s. The control ho-
rizon is chosen 𝑁𝑐 = 120s and is for 𝑁𝑝 = 60s reduced to 𝑁𝑐 = 60s (to fulfil 𝑁𝑐 ≤ 𝑁𝑝). 
The respective relative difference between EMS results and the global optimum are in-
dicated in Table XVI and Table XVII. Relative difference for each prediction horizon 
length 𝑁𝑝 is given by 

𝑑𝑁𝑝 =
𝑥𝑁𝑝 − 𝑥𝑔𝑙𝑜𝑏−𝑜𝑝𝑡

𝑥𝑔𝑙𝑜𝑏−𝑜𝑝𝑡
    . (4.25) 

The prediction horizon length influences fuel efficiency and computational cost. Due to 
the employed DP based optimization, computational cost increases exponentially with 
the prediction horizon length (Fig. 4.18, Fig. 4.19). Computational cost is also influ-
enced by idle times (𝑣 = 0 km h⁄ ) and trip sections with 𝑃𝑤ℎ < 0. During these sec-
tions, the engine does not operate as the power source, reducing the decision tree of the 
shortest path search to one edge describing the regenerated braking energy (Fig. 3.2), 
and thus the algorithm has to evaluate fewer possible SOC changes from one time step 
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to the next. This is why the calculation time for the BCN-CTS corresponds to the worst 
case scenario for computation time, as in its middle section there are rarely phases with 
regenerative braking, i.e. 𝑃𝑐𝑦𝑐𝑙𝑒 < 0 . Therefore, maximal calculation time is almost 
double the average.  

Calculation times indicated are obtained by executing the MPC framework on an Intel 
i3 1.8GHz processor running Windows x64. Maximal calculation time for predictive 
optimization during the computationally more intensive BCN-CTS cycle for a predic-
tion horizon length of 600s (i.e. 𝑁𝑝 = 600), is 𝑡𝑐𝑎𝑙𝑐,𝑚𝑎𝑥 = 66.1s, compared to 808s 
using an infinite prediction horizon (Table XIX). For 𝑁𝑝 = 60, maximal calculation 
time goes considerably down to 𝑡𝑐𝑎𝑙𝑐,𝑚𝑎𝑥 = 1.5s, which is a further reduction of over 
98%. Maximal calculation time for the FTP-72 cycle 𝑡𝑐𝑎𝑙𝑐,𝑚𝑎𝑥 is 1.0s for 𝑁𝑝 = 60, and 
22.7s for 𝑁𝑝 = 600 (Table XVIII). However, calculation time 𝑡𝑐𝑎𝑙𝑐,𝑚𝑎𝑥 obtained for the 
BCN-CTS cycle has more significance than the values for the FTP-72 cycle, as the case 
of 𝑁𝑝 = 60 and 𝑁𝑝 = 60 corresponds to the worst case scenario described above. The 
observed exponential increase of computation time with increasing prediction horizon 
length is characteristic of the DP algorithm. 

 
Fig. 4.18. Calculation time of the DP during the FTP-72 cycle as a function of the prediction 
horizon length. 

 
Fig. 4.19. Calculation time of the DP during the BCN-CTS cycle as a function of the prediction 
horizon length. 
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Prediction horizon length has only a slight impact on fuel consumption. For the FTP-72 
cycle, deviation of CO2 emissions per km increase from 0.3% with a prediction horizon 
length of 600s to 0.7% with a horizon length of 60s. For the BCN-CTS cycle, deviation 
of 𝑚𝐶𝑂2  from the global optimum increases from 0.2% (𝑁𝑝 = 600) to 0.3% (𝑁𝑝 =
200) to 0.5% (𝑁𝑐 = 60, 𝑁𝑝 = 60). This increase stems from a rise in fuel consumption 
of 0.30%, compared to 0.04%. As a longer prediction horizon is more tolerant of inac-
curacies in 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ , results from a prediction horizon length of 450s and 600s come 
closer to the global optimum; however, results of all prediction horizon lengths are 
close to the global optimum for both cycles.  

 
Fig. 4.20. SOC during FTP-72 cycle employing CS mode for different prediction horizon 
lengths and the global optimum. 

 
Fig. 4.21. SOC during BCN-CTS cycle employing CD mode for different prediction horizon 
lengths and the global optimum. 

Table XVI: Relative deviation from the global optimum for different prediction horizon lengths 
(FTP-72 cycle). 
 𝑑300 / % 𝑑300 / % 𝑑300 / % 𝑑450 / % 𝑑600 / % 

𝑉𝑓 / l/100km 0.1 0.0 0.0 -0.1 -0.1 

𝑚CO2 /g km⁄  0.7 0.3 0.3 0.3 0.3 
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Table XVII: Relative deviation from the global optimum for different prediction horizon lengths 
(BCN-CTS cycle). 
 𝑑60 / % 𝑑200 / % 𝑑300 / % 𝑑450 / % 𝑑600 / % 

𝑉𝑓 / l/100km 0.7 0.3 0.2 0.1 0.0 

Δ𝐸𝑏𝑎𝑡  / kWh/100km 0.1 0.4 0.4 0.4 0.4 

𝑚CO2/ g km⁄  0.5 0.3 0.2 0.2 0.1 

 

 
Fig. 4.22. Results for FTP-72 cycle as a function of the prediction horizon length. The values on 
the right end are the global optimal results using an infinite prediction horizon. 

 
Fig. 4.23. Results for the BCN-CTS cycle as function of the prediction horizon length. 
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Table XVIII: Simulation results for FTP-72 cycle for different prediction horizon lengths. 
 𝑁𝑝 = 60 𝑁𝑝 = 200 𝑁𝑝 = 300 𝑁𝑝 = 600 Glob. opt. 

𝑉𝑓 / l/100km 3.62 3.62 3.62 3.62 3.62 

Δ𝐸𝑏𝑎𝑡  / kWh/100km 0.100 0.067 0.076 0.081 0.005 

𝑚CO2 /g km⁄  87.8 87.6 87.5 87.5 87.3 

𝑡𝑐𝑎𝑙𝑐,𝑚𝑎𝑥 / s 1.0 4.5 7.6 22.7 387 

Table XIX: Simulation results for BCN-CTS cycle for different prediction horizon lengths. 
 𝑁𝑝 = 60 𝑁𝑝 = 200 𝑁𝑝 = 300 𝑁𝑝 = 600 Glob. opt. 

𝑉𝑓 / l/100km 3.37 3.35 3.35 3.35 3.34 

Δ𝐸𝑏𝑎𝑡  / kWh/100km 7.252 7.275 7.272 7.272 7.245 

𝑚CO2/ g km⁄  108.5 108.3 108.2 108.1 107.9 

𝑡𝑐𝑎𝑙𝑐,𝑚𝑎𝑥 / s 1.5 9.1 19.8 66.1 808 

4.6 Conclusions 
In this chapter a method to calculate the optimal SOC in terms of fuel efficiency for a 
future trip is presented. The SOC is calculated with a rapid MILP assuming trip fore-
knowledge. By calculating the SOC set point function before trip start, it can be used in 
an MPC framework for implementation of a receding prediction horizon. Through utili-
sation of the SOC set point function CD operation of the PHEV is supported. While the 
obtained SOC set point function coincides well with results obtained using DP in Chap-
ter 3 for the FTP-72, BCN-CTS and CADC cycles, the function obtained for the CTS-
BCN cycle differs in the middle section. Deviation is caused by the linear vehicle model 
description used for the MILP algorithm and proposals for improvement are made. 

Using the SOC set point function within the MPC framework, and carrying out the 
torque and gear optimization using the accelerated DP algorithm described in Section 
3.2, results obtained indicate that the prediction horizon length can be reduced consid-
erably with little reduction in fuel economy. Simulations are carried out with prediction 
horizon lengths of 60s, 200s, 300s, 450s and 600s. Using a prediction horizon length of 
60s, computation time is reduced by 98% when compared to a prediction horizon length 
of 600s and by approximately 99.8% when compared to an entire trip length prediction 
horizon. Computation time reduction depends heavily on the employed optimization 
algorithm within the MPC framework. The impact of the prediction horizon is particu-
larly high, given that calculation time for the employed DP algorithm increases expo-
nentially with prediction horizon length. 
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Fuel economy is closest to the global optimum in terms of fuel efficiency, calculated by 
DP, using the longest simulated prediction horizon length of 600s, and reduces only 
slightly for shorter horizons. Even the shortest simulated length of 60s still yields fuel 
economy close to the global optimum. Deviation from the global optimum for fuel con-
sumption and CO2 emissions is below 0.7%, with deviation of electrical energy con-
sumption below 0.5% for the cycles FTP-72 and BCN-CTS.  

In the middle trip section of the CTS-BCN cycle, the SOC set point function deviates 
from the global optimum, which results in the EMS having to employ the less efficient 
charge mode, and consequently fuel consumption and CO2 emissions increase. The con-
sequences of this are discussed in the next chapter and show the importance of the accu-
racy of the SOC set point function. Where trip prediction data relating to speed and road 
grade are accurate, results obtained are valid. 

Finally, using MILP for calculation of a SOC set point function allows not only the use 
of the A-DP approach, but also the reduction of the prediction horizon length for any 
other optimization algorithm having the initial and final SOC of the prediction horizon 
as boundary conditions. 
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5 Adaptive Rule-based EMS 
In the previous chapter a predictive EMS has been presented, which combines an A-DP 
algorithm with a model predictive framework for the implementation of a receding pre-
diction horizon. In order to achieve charge depletion, a SOC set point function 𝑆𝑂𝐶∗(𝑡) 
is calculated before starting the trip (Section 4.3). The calculation of 𝑆𝑂𝐶∗(𝑡) as well as 
optimization with a limited prediction horizon depend on trip foreknowledge by the 
EMS which is obtained from route indication by the driver in combination with road 
and traffic data evaluated by predictive trip algorithms (Section 1.5). However, even as 
available technologies improve significantly and new technologies such as ITS and 
V2V will help further enhance prediction, a level of inaccuracy of prediction data will 
remain. In addition to accuracy of prediction data, aspects other than fuel consumption 
have to be considered by an EMS. This includes gear shift frequency, acceleration be-
haviour and for drivetrain structures which permit the decoupling of the engine from the 
powertrain by means of a clutch, the number of engine starts. The reduction in engine 
starts can be achieved by adapting the cost function of the optimization algorithm, such 
as used by an instantaneous cost function EMS based in [57] which considers the en-
ergy required to accelerate the engine from standstill to idle speed. A similar cost could 
also be considered by the cost function of the optimization presented in Section 3.1. As 
the objective is a strategy which, in addition to reduction engine starts, is robust to erro-
neous prediction data, a rule-based strategy is instead chosen.  

Rule-based strategies are generally designed manually, i.e. without the use of optimiza-
tion algorithms but with consideration given to the system component efficiency such as 
in [88]. Due to their manual design, these approaches such as fuzzy controllers are 
known as intuitive strategies. The rules of such an EMS can refer to the actual torque 
demand, the SOC and the velocity (Fig. 5.1). Often the rules are defined to imitate the 
behaviour of optimization based strategies or its parameters are optimized by using off-
line solutions such as genetic algorithms [89].  

An advantage of intuitive strategies is their explicitly defined rules, which provide an 
easier understand of powertrain behaviour in specific driving situations, thus simplify-
ing the process of solving any problems that may arise. Furthermore, frequency of en-
gine starts and gear shifting is more reliably controlled. However, vehicle fuel con-
sumption generally increases as a result of sub-optimal (in terms of fuel efficiency) en-
gine start and gear shifting behaviour regarding fuel consumption, i.e. the operation of 
engine and motor in lower efficiency regions. Another disadvantage of current rule-
based strategies is the additional challenges they present in achieving optimal battery 
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SOC for the trip. With fixed, predefined rules, future SOC development depends heav-
ily on the cycle type. Rules adapted by a non-predictive optimization do not reliably 
achieve the target SOC and thus yield sub-optimal fuel efficiency results.  

 

Fig. 5.1. Typical rule-based EMS for parallel HEV in terms of 
motor torque and vehicle speed according to [73]. 

Although rule-based CD approaches are possible by adapting the rules regarding the 
upcoming cycle section type (e.g. urban or extra urban) [90], for achieving a defined 
target SOC such rule adaptation can only be carried out with the support of optimization 
algorithms. In [91] a CD rule-based strategy for PHEV is presented with a fixed dis-
charge rate, i.e. trip prediction data is not used. In this approach the final SOC depends 
therefore on the trip profile. In [92] another CD rule-based strategy is presented, using 
as a priori information only the trip length. Therefore, the strategy cannot consider the 
power requirements of terrain elevation and motorway sections and other high power 
demands sections during the cycle.  

In the following Sections 5.1-5.4 the EMS approach for a rule-based strategy with high 
fuel efficiency in CD and CS mode is presented. The results which can theoretically be 
achieved with rule adaptation based on a global optimization are presented in Section 
5.5. In Section 5.7, the rule-based approach is combined with the real time implement-
able EMS of Section 4.4 to analyse the influence on fuel economy. Finally, the robust-
ness of the results is tested for inaccurate prediction data in Section 5.8.  

5.1 Rule-based EMS Structure 
The proposed rule-based EMS first selects the operation mode depending on power re-
quest 𝑃𝑟𝑒𝑞 by the driver and vehicle speed 𝑣. The available modes are regenerative brak-
ing mode, electric mode, charge mode and boost mode (Section 1.2.2). In the following, 
the ICE mode (𝑇𝑖𝑐𝑒 ≠ 0Nm,𝑇𝑒𝑚 = 0Nm)  is considered a special case of the boost 
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mode. In electric and regenerative braking mode, the engine is switched off and decoup-
led from the powertrain by opening the clutch. In charge and boost mode (referred to as 
hybrid modes in the following due to use of both engine and electric motor ), the engine 
is started and the clutch is closed. The electric motor supports the engine by a positive 
torque (boost mode) or generating electrical energy by a negative torque (charge mode). 
The rules for the mode selection are depicted in Fig. 5.2. If the power request 𝑃𝑟𝑒𝑞 ex-
ceeds the power 𝑃𝑏𝑜𝑜𝑠𝑡, boost mode is entered. 𝑃𝑏𝑜𝑜𝑠𝑡 corresponds to the optimal con-
sumption line 𝑇𝑖𝑐𝑒,𝑠𝑝𝑐.𝑚𝑖𝑛 . In addition to 𝑃𝑏𝑜𝑜𝑠𝑡  there is a lower limit 𝑃ℎ𝑦𝑏𝑟𝑖𝑑  which 
separates electric mode from hybrid mode 𝑃ℎ𝑦𝑏𝑟𝑖𝑑 is adapted during the trip by a SVM 

implementation (Section 5.4) based on the optimal control sequence (𝒖𝑖
𝑜𝑝𝑡) obtained by 

the predictive optimization. Whether hybrid mode (𝒖𝑖
𝑜𝑝𝑡) from and the predictive opti-

mization is used, or a rule-based choice of torque and gear, depends on the accuracy of 
the prediction data. When the predictive optimization for the next control horizon 𝑁𝑐 
results in operation in electric mode only, the engine is only started when the power 
demands exceeds 𝑃𝑏𝑜𝑜𝑠𝑡 (Fig. 5.2, right). A flow chart of these rules is depicted in Fig. 
5.4. In order to avoid frequent engine starts, a hysteresis of 4kW between electric mode 
and hybrid mode is implemented. 

The rules are embedded in the EMS, whose logical sections are depicted in Fig. 5.3. The 
trip forecast using GPS/GIS information is beyond the scope of this work, the focus of 
which is restricted to vehicle control. At trip start, the MILP calculates the SOC set 
point function 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗  based on the forecasted trip data. During the trip, the MPC is 

 
Fig. 5.2. Operation modes as a function of vehicle speed 𝑣 and power request 𝑃𝑟𝑒𝑞. 𝑃ℎ𝑦𝑏𝑟𝑖𝑑 is 

adapted during the cycle. 𝑃𝛴,𝑚𝑎𝑥  is the maximal power which can be delivered if engine and 
electric motor operate at maximal power. The dark gray marks the electric mode, whereas the 
lighter gray area marks the hybrid modes with engine use. 
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executed every 𝑛𝑁𝑐 . Firstly, the predicted vehicle speed 𝑣(∙ |𝑛𝑁𝑐) for the prediction 
horizon 𝑁𝑝 

𝑣(∙ |𝑛𝑁𝑐) = (𝑣(𝑘|𝑛𝑁𝑐), 𝑣(𝑘 + 1|𝑛𝑁𝑐), … , 𝑣�𝑘 + 𝑁𝑝�𝑛𝑁𝑐)� (5.1) 

at time step 𝑘 just as the road inclination 𝛼𝑟𝑜𝑎𝑑(∙ |𝑛𝑁𝑐) is used to calculate the future 
power request by the driver 𝑃𝑟𝑒𝑞(∙ |𝑛𝑁𝑐). Using 𝑃𝑟𝑒𝑞(∙ |𝑛𝑁𝑐) and 𝑣(∙ |𝑛𝑁𝑐), gear 𝑔 and 
torques 𝑇𝑒𝑚(∙ |𝑛𝑁𝑐) and 𝑇𝑖𝑐𝑒(∙ |𝑛𝑁𝑐) are obtained by the A-DP algorithm from Section 
3.2 using 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗  for the required boundary condition of the SOC at the end of the 
prediction horizon. From the torque 𝑇𝑖𝑐𝑒(∙ |𝑛𝑁𝑐) and 𝑇𝑒𝑚(∙ |𝑛𝑁𝑐) the operation mode 
for every time step is determined (see operating points in Fig. 5.15). The optimal sepa-
rator 𝑃ℎ𝑦𝑏𝑟𝑖𝑑 between electric mode and hybrid is then obtained using SVM. 

 

Fig. 5.3. Block diagram of the complete EMS. 

5.2 Hybrid Mode Control 
Due to the time-continuous implementation of the rule-based EMS, in the following for 
rule description a notation based on time 𝑡 is used. The relationship between 𝑘 and 𝑡 is 
given by 𝑡 = 𝑘 ∙ 1s. Values obtained by the time-discrete optimization algorithm DP 
and MILP are, when necessary, linearly interpolated.  

The first decision of the rule-based strategy at every execution step is the selection of 
either electric mode or hybrid mode, which comprise boost and charge mode. The selec-
tion is done regarding the limits 𝑃ℎ𝑦𝑏𝑟𝑖𝑑 and 𝑃𝑏𝑜𝑜𝑠𝑡 (Fig. 5.4). Hybrid mode is selected 
when 𝑃𝑟𝑒𝑞 exceeds one of these limits. In hybrid mode, when the driving condition cor-
responds to the predicted, i.e. 

𝑣(𝑡) ∈ [𝑣(𝑡|𝑛𝑁𝑐) − 5km h⁄ ;  𝑣(𝑡|𝑛𝑁𝑐) + 5km h⁄ ] (5.2) 
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𝑃𝑟𝑒𝑞(𝑡) ∈ �𝑃𝑟𝑒𝑞(𝑡|𝑛𝑁𝑐) − 5kW;  𝑃𝑟𝑒𝑞(𝑡|𝑛𝑁𝑐) + 5kW� 

values of 𝑇𝑒𝑚, 𝑇𝑖𝑐𝑒 and 𝑔 obtained by the predictive optimization are used (Fig. 5.4). In 
the case that the actual driving situation does not correspond with the predicted one, 
𝑇𝑒𝑚, 𝑇𝑖𝑐𝑒 and 𝑔 are controlled by rules. In the following, the rules are described which 
define powertrain control in case of inaccurate prediction data. In the charge/boost 
mode region of Fig. 5.2, the SOC is compared to 𝑆𝑂𝐶𝐷𝑃∗  which is obtained by the pre-
dictive optimization. If  

𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝐷𝑃∗ (𝑡) − 0.005    , (5.3) 

charge mode is entered to approach 𝑆𝑂𝐶𝐷𝑃∗ (𝑡). In contrast, when  

𝑆𝑂𝐶(𝑡) > 𝑆𝑂𝐶𝐷𝑃∗ (𝑡) − 0.005    , (5.4) 

boost mode is entered. This ensures that the SOC remains close to the set point function 
𝑆𝑂𝐶𝐷𝑃∗  and consequently 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ . 

 
Fig. 5.4. Flowchart of the rule-based strategy. 
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5.2.1 Boost Mode 

If boost mode is entered because of 𝑃𝑟𝑒𝑞 > 𝑃𝑏𝑜𝑜𝑠𝑡, the engine is supported by the elec-
tric motor: 

𝑇𝑖𝑐𝑒(𝑡) = 𝑇𝑖𝑐𝑒,𝑠𝑝𝑐,𝑚𝑖𝑛(𝜔𝑖𝑐𝑒) 

𝑇𝑒𝑚(𝑡) = 𝑇𝑟𝑒𝑞(𝑡) − 𝑇𝑖𝑐𝑒 (𝑡)    . 
(5.5) 

On the contrary, when entering boost mode because of Eq. (5.4), i.e. with a lower torque 
request than 𝑇𝑖𝑐𝑒,𝑠𝑝𝑐,𝑚𝑖𝑛 , the engine torque is 

𝑇𝑖𝑐𝑒(𝑡) = 𝑇𝑟𝑒𝑞(𝑡)    . (5.6) 

5.2.2 Charge Mode 

To guarantee fuel efficient operation in charge mode, torque is minimized in terms of 
the fuel consumption – battery power ratio 𝑚̇𝑓/𝑃𝑏𝑎𝑡 as a function of the motor speed 
𝜔𝑒𝑚 and power request 𝑃𝑟𝑒𝑞: 

𝑇𝑖𝑐𝑒(𝜔𝑒𝑚,𝑃𝑟𝑒𝑞) = arg min
𝑃𝑏𝑎𝑡

�
𝑚̇𝑓(𝑃𝑏𝑎𝑡,𝜔𝑒𝑚,𝑃𝑟𝑒𝑞)

𝑃𝑏𝑎𝑡
� 

𝑇𝑒𝑚�𝜔𝑒𝑚,𝑃𝑟𝑒𝑞� = arg min
𝑃𝑏𝑎𝑡

�
𝑚̇𝑓(𝑃𝑏𝑎𝑡,𝜔𝑒𝑚,𝑃𝑟𝑒𝑞)

𝑃𝑏𝑎𝑡
�    . 

(5.7) 

The corresponding values of 𝑇𝑖𝑐𝑒 and 𝑇𝑒𝑚 are calculated for the vehicle characteristics 
and stored in lookup tables (Fig. 5.5, Fig. 5.6). 

  
Fig. 5.5. 𝑇𝑖𝑐𝑒 with minimal ratio min(𝑚̇𝑓/𝑃𝑟𝑒𝑞) 
as function of 𝜔𝑒𝑚 and 𝑃𝑟𝑒𝑞. 

Fig. 5.6. 𝑇𝑒𝑚 with minimal ratio min(𝑚̇𝑓/𝑃𝑟𝑒𝑞) 
as function of 𝜔𝑒𝑚 and 𝑃𝑟𝑒𝑞. 
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Using lookup tables, rounding errors are generated; here by the grid spacing of 𝑃𝑟𝑒𝑞 and 

𝜔𝑒𝑚. The maximum error �𝑇𝑟𝑒𝑞′ − 𝑇𝑟𝑒𝑞� , 𝑇𝑟𝑒𝑞′ being the value stored in tha lookup ta-
ble, generated by the rounding error of 𝑃𝑟𝑒𝑞 is, considering the grid spacing of 𝑃𝑟𝑒𝑞 of 
1kW is (Fig. 5.7) 

𝑒𝑇,𝑚𝑎𝑥(𝜔𝑒𝑚) = max
𝑃𝑟𝑒𝑞′ ,𝑃𝑟𝑒𝑞

�
1
𝜔𝑒𝑚

�𝑃𝑟𝑒𝑞′ − 𝑃𝑟𝑒𝑞�� =
1
𝜔𝑒𝑚

500W (5.8) 

The maximum error resulting from the grid spacing of 𝜔𝑒𝑚 of 50s−1 is given by (Fig. 
5.8) 

𝑒𝑇,𝑚𝑎𝑥�𝑃𝑟𝑒𝑞� = max
 𝜔𝑒𝑚 ,𝜔𝑒𝑚 

′
�𝑃𝑟𝑒𝑞 �

𝜔𝑒𝑚 − 𝜔𝑒𝑚′

 𝜔𝑒𝑚 𝜔𝑒𝑚 
′ �� ≈ 𝑃𝑟𝑒𝑞  ∙ 2.45 10−4s   . (5.9) 

To compensate for the error, only the torque 𝑇𝑖𝑐𝑒′ is extracted from the lookup table 
whereas the electric motor torque is a function of the driver request 𝑇𝑒𝑚 = 𝑇𝑟𝑒𝑞 − 𝑇𝑖𝑐𝑒′ 

 
Fig. 5.7. Torque error caused by using lookup tables as a function of 𝜔𝑒𝑚. 

 
Fig. 5.8. Torque error caused by using lookup tables as a function of 𝑃𝑟𝑒𝑞. 

5.3 Gear Shift Control 
When operating in hybrid mode and the real driving situation corresponds to the pre-
dicted (see Eq. (5.2)), the gear from (𝒖𝑖

𝑜𝑝𝑡) obtained by the predictive optimization is 
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used. In the opposite case, the EMS uses two different gear schedules, one for electric 
mode and one for hybrid mode. Using gear schedules in parallel HEVs is more chal-
lenging than in conventional vehicles, because in addition to engine efficiency also effi-
ciency of the electric powertrain components has to be considered. It is recommendable 
to use at least two different schedules, one for driving electrically and one for engine 
supported driving, because the high efficiency regions of engine and electric motor are 
distributed quite differently. The gear schedule used here for electric mode is optimized 
in terms of electric motor efficiency (Fig. 5.12). From a measured efficiency table 
𝜂𝑒𝑚(𝑇𝑒𝑚,𝜔𝑒𝑚) and using Eq. (2.5) the optimal gear can be calculated as a function of 
electric motor power and vehicle speed  

𝑔𝑒𝑚(𝑃𝑒𝑚, 𝑣) = arg max
𝑔

𝜂𝑒𝑚(𝑃𝑒𝑚, 𝑣,𝑔)     . (5.10) 

In hybrid mode, efficiency considerations become more difficult. As both engine and 
electric motor are operating, the optimal gear depends on the respective operating point 
of both machines. An approach is using a third gear shifting schedule for hybrid mode, 
as proposed in [93], [94]. Another approach is to use gear shifting schedules which de-
pend on three input parameters, namely vehicle speed, engine and motor torque [95]. A 
generalized shifting schedule for hybrid mode can only be optimized for a specific 
power distribution between electric motor and engine. To analyse the influence of bat-
tery power on the optimal schedule, from the DP lookup tables of Section 3.2 the gear 
table 𝑭𝑔 is evaluated for three power distribution cases with a battery power 𝑃𝑏𝑎𝑡 
of 0kW, 10kW and -10kW. The gear is selected in terms of fuel efficiency 

𝑔ℎ𝑦𝑏𝑟𝑖𝑑 = arg min
𝑔
𝑚̇𝑓(𝑃𝑤ℎ, 𝑣,𝑃𝑏𝑎𝑡)    . (5.11) 

The value can be extracted from the lookup table 𝑭𝑔(𝑃𝑤ℎ, 𝑣,Δ𝐸𝑏𝑎𝑡) of Eq. (3.35) using  
Δ𝐸𝑏𝑎𝑡 = 𝑃𝑏𝑎𝑡Δ𝑡. The case 𝑃𝑏𝑎𝑡 = 0kW is close to the case regarding only the engine 
efficiency depicted in Fig. 5.13. A difference results from the grid shift of the lookup 
table due to the battery power 𝐸𝑏𝑎𝑡,𝑠ℎ𝑖𝑓𝑡 in electric mode by (Eq. (3.19)). Therefore, the 

axis dimension 𝑃�𝑖𝑐𝑒 corresponds not exactly, but only within the margin ±0.5kW to the 
value of 𝑃𝑖𝑐𝑒: 

�𝑃�𝑖𝑐𝑒 − 𝑃𝑖𝑐𝑒� ≤ 0.5kW    . (5.12) 

The limitation of the gears by a vertical line results from the engine speed limitation 
done by the calculation of DP to values of 𝜔𝑒𝑚 ∈ [900; 4000].  
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Fig. 5.9. Optimal gear 𝑔ℎ𝑦𝑏𝑟𝑖𝑑 in terms of fuel mass flow in ICE mode with 𝑃𝑏𝑎𝑡 = 0𝑘𝑊. 

  
Fig. 5.10. Optimal gear 𝑔ℎ𝑦𝑏𝑟𝑖𝑑 in terms of 

fuel mass flow in boost mode (𝑃𝑏𝑎𝑡  =
 10𝑘𝑊). 

Fig. 5.11. Optimal gear 𝑔ℎ𝑦𝑏𝑟𝑖𝑑  in terms of 

fuel mass flow in charge mode (𝑃𝑏𝑎𝑡 =
−10𝑘𝑊). 

The resulting gear schedules 𝑔ℎ𝑦𝑏𝑟𝑖𝑑(𝑃𝑖𝑐𝑒, 𝑣) as a function of 𝑃𝑏𝑎𝑡 (Fig. 5.9, Fig. 5.10, 
Fig. 5.11) show frayed limits due to its extraction from the lookup tables and interpola-
tion to the grid 𝑃�𝑖𝑐𝑒. Nevertheless, the different cases can be compared. As the gear 
schedules are quite similar for different 𝑃𝑏𝑎𝑡, charge, boost and ICE mode the same 
schedule is used. Using only two gear schedules results in less gear shifts, as every 
change of the active gear schedule can lead to additional gear shifts. Therefore, in hy-
brid mode the influence of the electric motor efficiency is neglected and instead only 
the engine efficiency is optimized. The gear decision depends on 𝑃𝑖𝑐𝑒∗  and 𝑣 to operate 
the engine at highest efficiency (Fig. 5.13), i.e. lowest specific fuel consumption: 

𝑔𝑖𝑐𝑒(𝑃𝑖𝑐𝑒∗ , 𝑣) = arg min
𝑔
𝑚̇𝑓,𝑠𝑝𝑐  (𝑃𝑖𝑐𝑒∗ , 𝑣,𝑔)    . (5.13) 

𝑃𝑖𝑐𝑒∗  is here defined by 
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𝑃𝑖𝑐𝑒∗ = �
 𝑇𝑟𝑒𝑞𝜔𝑖𝑐𝑒 charge mode
 𝑇𝑖𝑐𝑒𝜔𝑖𝑐𝑒 boost mode    ,

� (5.14) 

to prevent gear shift events caused by changes of 𝑇𝑖𝑐𝑒 when changing between boost and 
charge mode by Eq. (5.3), as in charge mode the engine torque is extracted from table 
𝑇𝑖𝑐𝑒�𝑃𝑟𝑒𝑞,𝜔� of Eq. (5.7), while in boost mode 𝑇𝑖𝑐𝑒 depends directly on the torque de-
mand by the driver. Both gear shifting schedules include a hysteresis of Δ𝑃𝑟𝑒𝑞 = 4kW 
(not depicted). 

  
Fig. 5.12. Gear shifting schedule 𝑔𝑒𝑚 in elec-
tric mode. 

Fig. 5.13. Gear shifting schedule 𝑔𝑖𝑐𝑒 in hy-
brid mode. 

5.4 Support Vector Machine 
Automatic classification of operating mode as either electric or hybrid mode is done 
using a support vector machine (SVM). The SVM is a concept of the statistical learning 
theory [96], an area of research which was pioneered by Vapnik and Chervonenkis in 
the 1960s. It is used for pattern recognition, i.e. to find a separator for pattern belonging 
to two different classes. Firstly, the separator is calculated using patterns whose class 
known. Once found the separator, patterns of unknown class can be classified. The 
separator, an optimal hyperplane, can be found computational efficient by formulating a 
quadratic programming problem. The patterns, also called observations, are named by 
𝒙𝑖 and can be of any set Χ. The class 𝑦𝑖 is usually defined as element of the set 𝑦𝑖 ∈
{−1,1}. These pairs of pattern and their class are given by 

��𝒙1,𝑦1,�, … , �𝒙𝑚, 𝑦𝑚,�|𝒙𝑖 ∈ Χ, 𝑦𝑖 ∈ {−1,1}�   . (5.15) 
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The pattern 𝒙𝑖 is defined here by the values 𝑃𝑟𝑒𝑞 and 𝑣. The operating points in the 2-
dimensional feature space can be separated linearly (Fig. 5.15), i.e. using a linear kernel 
function [97]. A SVM with linear kernel function separates both classes by the hyper-
plane (Fig. 5.14) 

< 𝒘,𝒙 > +𝑏 = 0 (5.16) 

where 𝒘𝜖ℝ𝑛, 𝑏𝜖ℝ and the operator <, > defining the canonical dot product. The ca-
nonical dot product for 𝒙𝜖ℝ𝑛 is defined as  

< 𝒙,𝒙′ ≥�[𝒙]𝑖[𝒙′]𝑖

𝑛

𝑖=1

 (5.17) 

where [𝒙]𝑖 denotes the ith entry of �𝒙�. The separating hyperplane of a SVM is called op-
timal hyperplane, as it separates the patterns of the two classes in such a way, that the 
distance (margin) of the training patterns to this hyperplane is maximized: 

max min{‖𝒙 − 𝒙𝑖‖ |  < 𝒘,𝒙 > +𝑏 = 0, 𝑖 = 1, … ,𝑚}     . (5.18) 

In order to relax the constraints, a soft margin is introduced by using slack variables 𝜉𝑖. 
This relaxation is necessary, as in practice the classes cannot be separated perfectly. 
After rescaling the normal vector 𝒘 and the bias 𝑏 of the hyperplane such that the points 
closest to the hyperplane satisfy 𝑦𝑖(〈𝒘,𝒙𝑖〉 + 𝑏) ≥ 1, using the slack variables results  

𝑦𝑖(〈𝒘,𝒙𝑖〉 + 𝑏) ≥ 1 − 𝜉𝑖    ,    1 ≤ 𝑖 ≤ 𝑚 (5.19) 

so that some patterns 𝒙𝑖 can violate the separation by the hyperplane. Normalizing 𝒘, 
the maximization problem Eq. (5.18) can be formulated as minimization problem of 
‖𝒘‖ which is equivalence to minimizing ‖𝒘‖2. Considering the slack variables, the 
optimal hyperplane is defined by 

min
1
2
‖𝒘‖2 + �𝜉𝑖

𝑚

𝑖=1

    ,𝒘 ∈ ℝ2 (5.20) 

This problem can be solved using quadratic programming (compare with MILP in Sec-
tion 4.1) with the constraints of Eq. (5.19) (for more details see e.g. [97]). 
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Fig. 5.14. Optimal hyperplane separator of patterns from two different classes [97]. 

In the present case, the patterns 𝒙𝑖 are formed by the m optimized operating points of 
the powertrain for the next prediction horizon. The operating points are specified by 
sum of engine and electric motor power 𝑃𝑟𝑒𝑞 and the vehicle speed 𝑣 

𝒙𝑖 = �
𝑣
𝑃𝑟𝑒𝑞�    . (5.21) 

The classification of the training patterns into the two classes electric mode and hybrid 
mode is made considering the corresponding torque 𝑇𝑖𝑐𝑒  of the operating point. If 
𝑇𝑖𝑐𝑒 = 0, the pattern is from class 1 (electric mode). If 𝑇𝑖𝑐𝑒 ≠  0, the pattern is from 
class -1 (hybrid mode). After calculating the hyperplane defined by 𝒘 and 𝑏, future op-
erating points can be classified using the function 

𝑦𝑖 = 𝑓(𝒙𝑖) = sgn(〈𝒘,𝒙𝑖〉 + 𝑏)     . (5.22) 

As the patterns defined in Eq. (5.21) have only two characteristics and thus 𝒙 ∈ ℝ2, the 
hyperplane is a straight line. The average classification error, i.e. the number of patterns 
that are misclassified by the hyperplane (outliers), are 2.56% for the FTP-72 cycle and 
1.42% for the BCN-CTS cycle. The separator is used in the EMS by adding a hysteresis 
of ±2kW to prevent chattering of the engine, as whenever 𝑃𝑟𝑒𝑞  passes the separator 
𝑃ℎ𝑦𝑏𝑟𝑖𝑑 the engine is started or stopped. 
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Fig. 5.15. Separator 𝑃ℎ𝑦𝑏𝑟𝑖𝑑 (blue lines) between electric mode and hybrid mode at different 
times during the BCN-CTS cycle calculated using SVM. Depicted are the predicted operating 
points and their optimal operation mode. 

 
Fig. 5.16. Separator 𝑃ℎ𝑦𝑏𝑟𝑖𝑑 (blue lines) between electric mode and hybrid mode at different 
times during the FTP-72 cycle calculated using SVM. 

5.5 EMS Implementation using Global Optimization 
To evaluate the rule-based EMS without the influence of the real time implementable 
optimization from Section 4.4 later employed in the MPC framework, the rule-based 
strategy is carried out based on global optimal results (𝑁𝑝 = ∞) obtained by the S-DP 
algorithm presented in Section 3.1. In the following Section 5.7, instead the real time 
implementable optimization is used. 

For rule adaptation by SVM, operating points of the next 200s. Simulations are carried 
out for the FTP-72 cycle using CS operation and the BCN-CTS cycle using CD opera-
tion. The control horizon is 𝑁𝑐 = 120. Simulations are executed based on the assump-
tion that 𝑡𝑐𝑎𝑙𝑐 = 0s (see Section 4.4 for a detailed explanation). A validation of this as-
sumption is given in Section 5.6.  
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By way of example, the obtained rules are depicted in Fig. 5.17 and Fig. 5.18 for two 
sections of the BCN-CTS cycle. For the interval (600s; 720s], optimal control sequence 
(𝒖𝑖

𝑜𝑝𝑡) includes the hybrid mode as well as the electric mode. Therefore, SVM is em-
ployed and calculates the depicted limit 𝑃ℎ𝑦𝑏𝑟𝑖𝑑 between electric and hybrid mode. On 

the contrary, optimal control sequence (𝒖𝑖
𝑜𝑝𝑡) for the interval (1800s; 1920s] includes 

only the electric mode. Therefore, SVM is not executed and the limit 𝑃ℎ𝑦𝑏𝑟𝑖𝑑 is not in-
cluded in the rule-based strategy (Fig. 5.18). 

 
Fig. 5.17. Rule-based strategy 600 seconds into the BCN-CTS cycle obtained from (𝒖𝑖

𝑜𝑝𝑡) for 
the marked trip section (right hand side) and resulting operating points (blue=boost, 
green=charge, red=ICE mode) 

 
Fig. 5.18. Rule-based strategy 1800 seconds into the BCN-CTS cycle obtained from (𝒖𝑖

𝑜𝑝𝑡) for 
the marked trip section (right hand side) and resulting operating points. 

The EMS operates in hybrid mode (Fig. 5.19) in phases with high power demand, i.e. 
acceleration phases (𝑡 = 677s) and during the motorway section (beginning second 
1036). Selection of hybrid mode by the rule-based EMS coincides largely with the 
global optimum (calculated by S-DP from Section 3.1) indicated in Fig. 5.26. During 

these parts the optimal control sequence �𝒖𝑖
𝑜𝑝𝑡� is used. This leads to a strong coinci-
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dence of the engine operating points (Fig. 5.22 and Fig. 5.23). During the FTP-72 cycle 
with CS operation, the EMS starts the engine at lower power demand (Fig. 5.21), as due 
to missing high power sections the required charge maintenance is otherwise not 
achieved. A lower limit 𝑃ℎ𝑦𝑏𝑟𝑖𝑑 between electric and hybrid mode leads to a stronger 
influence of the hysteresis introduced between these modes (Fig. 5.16), resulting in a 
strong reduction of engine starts and engine operation at lower, less efficient load points 
(Fig. 5.24, Fig. 5.25). 

Short peaks of 𝑃𝑟𝑒𝑞 in acceleration phases can result in an undesired engine start, as 
caused by a positive road slope (Fig. 2.15)  1550 seconds into the BCN-CTS cycle (Fig. 
5.20). In order to prevent these short engine starts, an additional delay could be intro-
duced which starts the engine only when the power limit is exceeded for a certain time. 
In total, number of engine starts is reduced from 19 to 16 during the BCN-CTS cycle 
and from 74 to 55 during the FTP-72 cycle. 

 
Fig. 5.19. Operation modes during the BCN-CTS cycle selected by the rule-based EMS. 

 

Fig. 5.20. Engine torque 𝑇𝑖𝑐𝑒  during the BCN-CTS cycle of the global optimum and the rule-
based EMS. 
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Fig. 5.21. Operation modes during the FTP-72 cycle selected by the rule-based EMS. 

  
Fig. 5.22. Global optimum engine operating 
points during BCN-CTS. 

Fig. 5.23. Engine operating points during 
BCN-CTS using the rule-based EMS. 

  
Fig. 5.24. Global optimum engine operating 
points during FTP-72. 

Fig. 5.25. Engine operating points during 
FTP-72 using the rule-based EMS. 
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Fig. 5.26. Hybrid mode during BCN-CTS. Blue bars indicate that �𝒖𝑖

𝑜𝑝𝑡� is applied, while black 
bars indicate rule-based control from Section 5.2.2. 

Obtained results are compared to the global optimum in terms of fuel efficiency, i.e. the 
number of engine starts and gear shifts are disregarded. The relative differences 

𝑑𝑥 =
𝑥𝐸𝑀𝑆 − 𝑥𝑔𝑙𝑜𝑏−𝑜𝑝𝑡

𝑥𝑔𝑙𝑜𝑏−𝑜𝑝𝑡
 (5.23) 

are indicated in Table XX. CO2 emissions are calculated using Eq. (3.46). 

For both cycles SOC at end of trip is at 0.295 and 0.297 close to the target SOC of 0.3. 
In the case of the FTP-72 cycle, the SOC deviation during the cycle is slightly different 
(Fig. 5.29) as the number of engine starts is significantly reduced (Fig. 5.27). However, 
this reduction in engine start/stops inevitably increases fuel and energy consumption by 
obtaining lower powertrain efficiency. Compared to the global optimum, fuel consump-
tion increases by 0.7%, while 𝑚CO2 increases by 1.5%. For the BCN-CTS cycle, fuel 
consumption increases by 0.9% and CO2 emissions by 0.8%. Summarising, reducing the 
number of engine starts leads to a reduction in powertrain efficiency and thus a rise in 
both electrical energy and fuel consumption. 

 
Fig. 5.27. Engine torque 𝑇𝑖𝑐𝑒  during FTP-72 cycle of rule-based EMS and global optimum. 
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Fig. 5.28. Gear during the BCN-CTS cycle of rule-based EMS and global optimum. 

  

Fig. 5.29. SOC during the FTP-72 cycle of the 
rule-based EMS and the global optimum. 

Fig. 5.30. SOC during the BCN-CTS cycle of 
the rule-based EMS and the global optimum. 

Table XX: Simulation results for the cycles FTP-72 and BCN-CTS. 
 FTP-72 BCN-CTS 

 EMS Glob.opt. 𝑑𝑥 / % EMS Glob. opt. 𝑑𝑥 / % 

𝑆𝑂𝐶𝑒𝑛𝑑 0.295 0.300 - 0.297 0.301 - 

𝑉𝑓 / l/100km 3.65 3.63 0.7 3.37 3.35 0.9 

Δ𝐸𝑏𝑎𝑡  / kWh/100km 0.180 0.005 - 7.290 7.249 0.6 

𝑚CO2 /g km⁄  88.8 87.5 1.5 108.8 108.0 0.8 

Engine starts 58 74 -21.6 17 19 -10.5 

Gear shifts 486 527 -7.8 207 243 -14.8 
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5.6 Validation of Simulation Conditions 

When starting the execution of the DP algorithm at time 𝑛𝑁𝑐 , the exact value of 
𝑆𝑂𝐶((𝑛 + 1)𝑁𝑐) at the beginning of the next control horizon is not known without the 
assumption of 𝑡𝑐𝑎𝑙𝑐 = 0 made in Section 4.4 and Section 5.5. The optimization algo-
rithm therefore uses instead the estimation  𝑆𝑂𝐶� �(𝑛 + 1)𝑁𝑐� as an inital boundary con-
dition 𝑥0. This estimation is based on the set point function 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ (𝑘) and its devia-
tion from the current 𝑆𝑂𝐶(𝑛𝑁𝑐). An optimization starting at time 𝑛𝑁𝑐  uses the esti-
mated 𝑆𝑂𝐶�   

𝑆𝑂𝐶� �(𝑛 + 1)𝑁𝑐� = 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ �(𝑛 + 1)𝑁𝑐� + [𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ (𝑛 𝑁𝑐) − 𝑆𝑂𝐶(𝑛 𝑁𝑐)] . (5.24) 

𝑆𝑂𝐶� �(𝑛 + 1)𝑁𝑐�  is the inital constraint 𝑆𝑂𝐶∗(0)  of the DP algorithm in the MPC 
framework, here the A-DP. The final constraint of the prediction horizon end is 

𝑆𝑂𝐶∗(𝑘𝑁) =  𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ �(𝑛 + 1)𝑁𝑐 + 𝑁𝑝�    . (5.25) 

Instead, results presented in the previous sections are obtained by the idealization of 
𝑡𝑐𝑎𝑙𝑐 = 0, resulting in 

𝑆𝑂𝐶� �(𝑛 + 1)𝑁𝑐� = 𝑆𝑂𝐶�(𝑛 + 1)𝑁𝑐� (5.26) 

In a realistic scenario where the approximation 𝑆𝑂𝐶� �(𝑛 + 1)𝑁𝑐� from Eq. (5.24) is 
used as a boundary condition for the DP optimization with 𝑁𝑐 = 60, results do not dete-
riorate (Table XXIII). The SOC across the cycle (Fig. 5.31) is similarly close to the 
global optimum. The final SOC of 0.293 instead of 0.296 is slightly further below the 
target of 0.3, resulting in lower fuel consumption of 3.67l/100km instead of 
3.73l/100km 

Table XXI: Simulation results of CS operation (FTP-72 cycle) with 𝑁𝑐 = 60 using the estima-
tion 𝑆𝑂𝐶�  from Eq. (5.24). 
 EMS Global optimum 𝑑𝑥 / % 

𝑆𝑂𝐶𝑒𝑛𝑑 0.293 0.300 - 

𝑉𝑓 / l/100km 3.63 3.63 0.1 

𝑚CO2 /g km⁄  88.5 87.5 1.1 

Engine starts 59 74 -20.3 
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Fig. 5.31. SOC during FTP-72 cycle with 𝑁𝑐 = 60 using the estimation 𝑆𝑂𝐶�  from Eq. (5.24). 

5.7 EMS Implementation using A-DP 
The EMS in Section 5.5 uses the S-DP algorithm within the MPC framework with infi-
nite prediction horizon. As this is computationally too intensive for real time implemen-
tations, this section analyses the impact on results when using A-DP with receding pre-
diction horizon from Section 4.4 instead. Results for the FTP-72 cycle and the cycles 
BCN-CTS, CTS-BCN and CADC are obtained using a prediction horizon of 𝑁𝑝 = 200. 
For the cycles FTP-72 and BCN-CTS longer prediction horizons of 𝑁𝑝 = 300  and 
𝑁𝑝 = 450 are also evaluated.  

Calculation times using the A-DP algorithm with a receding prediction horizon are indi-
cated in Section 4.4. The rule adaptation process increases the calculation times indi-
cated in Table XVIII and Table XIX only slightly, as computational cost the rule adap-
tation by SVM is compared to the torque optimization small. The average calculation 
time for the SVM algorithm during the employed cycles is 0.45s for the FTP-72 and 
BCN-CTS, with a maximal calculation time of 0.59s during the FTP-72, and 0.58s dur-
ing the BCN-CTS cycle. Calculation times are indicated for execution on an Intel i3 
processor (1.8GHz) running Windows x64 (Table XXII).  

Table XXII: Calculation time of the rule adaptation by SVM. 
 FTP-72 BCN-CTS 

𝑡𝑐̅𝑎𝑙𝑐  0.45s 0.45s 

𝑡𝑐𝑎𝑙𝑐,𝑚𝑎𝑥  0.59s 0.58s 

 

Comparing the simulation results to the results from Section 5.5 using global optimiza-
tion, fuel economy is slightly lower. For both the FTP-72 and BCN-CTS cycle the final 
SOC is close to the target of 0.3, with a maximum deviation of 0.06 for 𝑁𝑝 = 200 
(Table XXI, Table XXIII). As a result of the higher negative final SOC deviation and 
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thus higher electrical energy consumption for shorter prediction horizon lengths, fuel 
consumption 𝑉𝑓 decreases from 0.5% to 1.6% for the FTP-72 cycle and from 1.4% to 
0.9% for the BCN-CTS cycle (Table XXV) compared to the global optimum. This rise 
of 𝑉𝑓 for the FTP-72 cycle strongly impacts on CO2 emissions, as due to CS operation 
all traction energy is supplied by fuel energy. However, CO2 emissions are almost con-
stant for the BCN-CTS cycle with varying 𝑁𝑝 values. The increase of 𝑉𝑓 using longer 
prediction horizons is compensated for by using less electrical energy. Summarising, 
using shorter horizons, the EMS is less effective in achieving the target SOC, which 
influences fuel efficiency. In contrast, in the case discussed, fuel efficiency increases as 
more electrical energy is used. However, this deviation is undesired, as a definition of a 
target SOC closer to 𝐸𝑏𝑎𝑡,𝑚𝑖𝑛 could result from using the less efficient CS mode to-
wards the cycle end. A deviation in the other direction, i.e. a higher SOC than the target 
SOC also has adverse effects on fuel economy.  

Table XXIII: Simulation results for CS operation (FTP-72 cycle). 
 EMS (𝑁𝑝 = 200) EMS (𝑁𝑝 = 300) EMS (𝑁𝑝 = 450) Glob. opt. 

𝑆𝑂𝐶𝑒𝑛𝑑 0.294 0.295 0.297 0.300 

𝑉𝑓 / l/100km 3.64 3.66 3.68 3.63 

Δ𝐸𝑏𝑎𝑡  / kWh/100km 0.197 0.158 0.086 0.005 

𝑚CO2 /g km⁄  88.6 88.9 89.2 87.5 

Table XXIV: Simulation results for CD operation (BCN-CTS cycle). 
 EMS (𝑁𝑝 = 200) EMS (𝑁𝑝 = 300) EMS (𝑁𝑝 = 450) Glob. opt. 

𝑆𝑂𝐶𝑒𝑛𝑑 0.294 0.299 0.302 0.301 

𝑉𝑓 / l/100km 3.38 3.39 3.39 3.35 

Δ𝐸𝑏𝑎𝑡  / kWh/100km 7.327 7.266 7.266 7.249 

𝑚CO2 /g km⁄  109.0 109.1 109.0 108.0 

Table XXV: Relative difference to the global optimum for different prediction horizon lengths - 
simulation results for the cycles FTP-72 and BCN-CTS. 
 BCN-CTS FTP-72 

 𝑑200 / % 𝑑300 / % 𝑑450 / % 𝑑200 / % 𝑑300 / % 𝑑450 / % 

𝑉𝑓 / l/100km 0.9 1.4 1.4 0.5 0.9 1.6 

Δ𝐸𝑏𝑎𝑡 / kWh/100km 1.1 0.2 -0.3 - - - 

𝑚CO2  / g km⁄  1.0 1.0 0.9 1.3 1.5 1.9 
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5.7.1 Frequency of Engine Starts and Gear Shifts 

Regarding the number of engine starts during the FTP-72 cycle, lengths the number is 
reduced for all simulated prediction horizon by more than 20% in comparison with the 
global optimum. The number of engine starts during the BCN-CTS cycle changes in 
respect to 𝑁𝑝 between -21.1% and 0% reduction (𝑁𝑝 = 300, see Table XXVIII, Table 
XXIX). As a result from the different engine start control (Fig. 5.35, Fig. 5.36) engine 
average run time increases (Fig. 5.33, Fig. 5.34) and losses in the electric system are 
higher, which have to be compensated by more produced energy by the engine. 

Changes in engine start control made by the rule-based EMS result in the engine operat-
ing at time instances where the operating point is sub-optimal in terms of engine and 
electric component efficiency. For avoiding engine efficiency, the powertrain operates 
in charge mode using load point shifting which results in an increased power transfer 
through the electric components. Using charge mode, electrical energy has to flow 
through the electric components twice: firstly when generating and storing the energy, 
and secondly when using it afterwards for boost or electric mode. This leads to an ap-
proximate electric system efficiency of  

𝜂̅𝑐ℎ𝑎𝑟𝑔𝑒 = (𝜂̅𝑒𝑚𝜂̅𝑖𝑛𝑣𝜂̅𝑏𝑎𝑡)2 = 0.689 (5.27) 

with 𝜂̅𝑒𝑚 = 0.95, 𝜂̅𝑖𝑛𝑣 = 0,92, 𝜂̅𝑏𝑎𝑡 = 0.95, compared to  

𝜂̅𝑔𝑟𝑖𝑑 = 𝜂̅𝑒𝑚𝜂̅𝑖𝑛𝑣𝜂̅𝑏𝑎𝑡 = 0.830 (5.28) 

when using electrical energy charged via the electrical grid. 

The modified engine start control by the EMS during the BCN-CTS cycle results in a 
higher energy flow of 𝐸𝑏𝑎𝑡,Σ = 10.760MJ through the battery as defined in Eq. (4.23) 
compared to 10.007MJ of the global optimum. The difference results only partly from 
the 0.101MJ difference in charge depletion Δ𝐸𝑏𝑎𝑡. The same increase of energy flow 
occurs for the FTP-72 cycle, in which the total electrical power flow rises by 0.486MJ.  

Increased energy flow through the electric system results in higher electrical energy 
losses, which have to be compensated for by the engine producing more mechanical 
energy. Despite more mechanical energy being produced by the engine, the total engine 
running time is shorter. Controlled by the EMS, engine running timer is 511s during the 
BCN-CTS and 331s during the FTP-72 cycle, while the global optimum is 535s and 
348s respectively. The shorter running times together with a higher energy flow 𝐸𝑏𝑎𝑡,Σ 
indicate the use of the charge mode at high power load. The high electrical power flow 
in charge mode leads to phases of high battery use resulting in higher currents and 
higher ohmic losses by 𝑃𝑙𝑜𝑠𝑠,𝑜ℎ𝑚𝑖𝑐 = 𝐼2𝑅. Consequently, battery efficiency using the 
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EMS strategy is lower for all cycles (Table XXVI), which is also reflected in compo-
nent energy losses of  components (Fig. 5.32). While the engine efficiency is almost 
constant, engine losses are higher due to the additional energy which has to be gener-
ated to compensate for the higher losses in the electric system. 

Table XXVI: Global optimum and rule-based EMS component efficiencies with 𝑁𝑝 = 200. 
 𝜂̅𝑖𝑐𝑒 𝜂̅𝑒𝑚 𝜂̅𝑏𝑎𝑡 

 Glob. Opt. EMS Glob. Opt. EMS Glob. Opt. EMS 

FTP-72 0.341 0.341 0.950 0.950 0.974 0.972 

BCN-CTS 0.347 0.347 0.947 0.947 0.955 0.953 

CTS-BCN 0.349 0.348 0.949 0.949 0.948 0.948 

CADC 0.353 0.343 0.956 0.955 0.939 0.932 

Table XXVII: Global optimum and EMS battery energy flow with 𝑁𝑝 = 200. 
 𝐸𝑏𝑎𝑡,Σ / MJ Δ𝐸𝑏𝑎𝑡  / MJ 

 Glob. Opt. EMS Glob. Opt. EMS 

FTP-72 3.637 4.129 0.002 0.085 

BCN-CTS 10.007 10.760 8.630 8.729 

CTS-BCN 11.588 12.212 8.633 8.301 

CADC 14. 548 14.414 8.648 8.595 

 
Fig. 5.32. Component losses for the different cycles compared to the global optimum. 
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Fig. 5.33. Global optimum engine run time 
during the BCN-CTS cycle. 

Fig. 5.34. Engine run time during the BCN-
CTS cycle (EMS with 𝑁𝑝 = 200). 

  

Fig. 5.35. Global optimum engine run time 
during the FTP-72 cycle. 

Fig. 5.36. Engine run time during the FTP-72 
cycle (EMS with 𝑁𝑝 = 200). 

Table XXVIII: Simulation results and deviation from the global optimum for the FTP-72 cycle 
using different prediction horizon lengths. 

 
EMS 

(𝑁𝑝 = 200) 

EMS 

 (𝑁𝑝 = 300) 

EMS 

(𝑁𝑝 = 450) 

Global 

optimum 

Engine starts 58 (-21.6%) 58 (-21.6%) 56 (-24.3%) 74 

Gear shifts 492 (-6.6%) 484 (-8.2%) 490 (-7.0%) 526 

Table XXIX: Simulation results for CD mode for the BCN-CTS cycle. 
 EMS 

 (𝑁𝑝 = 200) 

EMS 

 (𝑁𝑝 = 300) 

EMS 

(𝑁𝑝 = 450) 

Global 

optimum 

Engine starts 15 (-21.1%) 16 (-15.8%) 17 (-10.5%) 19 

Gear shifts 215 (-11.5%) 211 (-13.2%) 213 (-12.3%) 242 
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5.7.2 EMS Simulation for Driving Cycles CTS-BCN and CADC 

In this section results obtained by the EMS for the cycles CTS-BCN and CADC are 
evaluated. Of special interest is the CTS-BCN cycle, as the set point function 
𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ (𝑘) calculated in Section 4.3 shows a significant deviation from the global op-
timum SOC in the middle part. Due to this deviation, using a prediction horizon of 
𝑁𝑝 = 200, a final SOC close to the objective of 0.3 cannot be achieved. The final SOC 
of 0.342 corresponds to 4% less electrical energy consumption Δ𝐸𝑏𝑎𝑡  (Table XXX). 
Despite lower electrical energy consumption, total energy flow 𝐸𝑏𝑎𝑡,Σ is, with 0.624MJ, 
higher than the global optimum. Consequently, electric components energy losses are 
slightly higher (Fig. 5.32), taking into account that the charge mode and the later reutili-
zation of the electrical energy causes the losses twice in the electric motor, inverter and 
battery. The differences of the energy loss in the engine with 16.8MJ compared to 
15.8MJ does not result from the engine efficiency but from the greater requirement of 
mechanical energy to compensate the additional electrical losses and less use of stored 
electrical energy Δ𝐸𝑏𝑎𝑡 .The reason for these higher losses is the set point function 
𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ (𝑘) in combination with the peculiarity of the cycle, which from second 1265 
enters an urban section in combination with a negative slope (Fig. 5.39). Consequently, 
the power requirement is low and the EMS cannot, after initially following the function 
𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ (𝑘) , over the last 900s of the trip consumes the stored electrical energy, to 
achieve the target SOC of 0.3 (Fig. 5.41). At the beginning of the low power section the 
global optimum SOC is lower than 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ (𝑘) (Fig. 5.40). 

Using instead the global optimum SOC as set point function 𝑆𝑂𝐶𝑆−𝐷𝑃∗ , the final SOC, 
0.307, is significantly closer to the target SOC and fuel consumption only 3.3% higher 
(Table XXX) than the global optimum. For the CADC, the final SOC is 0.303, coming 
close to the target of 0.3, while the fuel consumption increases by 10.1%. This differ-
ence results partly from the lower engine efficiency, which is lower as a result from the 
EMS engine start control. However, relative rise in fuel consumption of 10.1% corre-
sponds to an absolute increase of only 0.035l, which is reflected in the lower increase in 
CO2 emissions per km by 3.5%. 

Results show the importance of accuracy of the SOC set point function for achieving 
target SOC in PHEV, as fuel economy achieved depends heavily on the way of charge 
depletion across the trip. While lower fuel efficiency for the CTS-BCN results in part 
from engine start control, a further 1% increase in CO2 emissions and 2.7% increase in 
fuel consumption (above the global optimum) results from sub-optimal discharging of 
the battery. 
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Fig. 5.37. Engine operating points during the 
CADC (global optimum). 

Fig. 5.38. Engine operating points during the 
CADC (EMS with 𝑁𝑝 = 200). 

 
Fig. 5.39. SOC during the CTS-BCN cycle with 𝑁𝑝 = 200. 

 
Fig. 5.40. Operation modes during CTS-BCN cycle (global optimum). 
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Fig. 5.41. Operation modes during CTS-BCN cycle (EMS, 𝑁𝑝 = 200). 

Table XXX: Relative difference to the global optimum of the strategy EMS with 𝑁𝑝 = 200 of the 
cycles CADC and CTS-BCN. 
 𝑑𝐶𝑇𝑆  %⁄  (𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗ ) 𝑑𝐶𝑇𝑆  %⁄  (𝑆𝑂𝐶𝐷𝑃∗ ) 𝑑𝐶𝐴𝐷𝐶  / % 

𝑆𝑂𝐶𝑒𝑛𝑑 0.324 0.307 0.303 

𝑉𝑓 / l/100km 6.0 3.3 10.1 

Δ𝐸𝑏𝑎𝑡  / kWh/100km -4.0 -1.3 -0.8 

𝑚CO2/ g km⁄  2.8 1.8 3.5 

Engine starts -52.6 -57.9 -8.2 

Gear shifts -14.1 -16.8 -13.9 

5.8 Robustness against Inaccurate Prediction Data 
Previous simulations are carried out assuming exact trip foreknowledge, in other words 
the EMS uses exact prediction data (EPD). In order to demonstrate the robustness of the 
EMS with inaccurate prediction data, in this section the EMS uses trip prediction data 
which does not correspond exactly with the real trip. The distorted prediction data 
(DPD) are used for predictive optimization and rule adaptation, while the vehicle drives 
the driving cycles BCN-CTS and FTP-72. In order to generate the DPD, an arbitrary 
noise is added to the standard trip profile by multiplying the cycle speed with a random 
time dependent factor 𝑘𝑑𝑖𝑠𝑡′ . Firstly, a random value 𝑘𝑑𝑖𝑠𝑡  is drawn from a uniform 
distribution from the interval (-0.05,0.05) with an expected value of 0. The sum of 𝑘𝑑𝑖𝑠𝑡 
is the distortion factor at every time step: 

𝑘𝑑𝑖𝑠𝑡
′(𝑘) = � 𝑘𝑑𝑖𝑠𝑡

𝑘

𝑘′=1
(𝑘)    . (5.29) 

These random values are used to calculate the cycle with the distorted cycle speed 
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𝑣𝑑𝑖𝑠𝑡(𝑘) = 𝑣𝑐𝑦𝑐𝑙𝑒(𝑘) ∙ �1 + 𝑘𝑑𝑖𝑠𝑡
′(𝑘)�    . (5.30) 

As the distortion factor 𝑘𝑑𝑖𝑠𝑡
′(𝑘)  is a sum, distortion grows with trip duration. This reflects 

that the prediction data accuracy decreases with increasing distance. However, trip pre-
diction data is here not updated during the simulations with ongoing simulation time. 
From a generated set of different DPD, one DPD tending to a lower speed than the cycle 
(DPD1) and one DPD tending to higher velocity (DPD2) are chosen. The DPD is used 
for simulations with the BCN-CTS cycle (Fig. 5.42) and the FTP-72 cycle (Fig. 5.43). 

 
Fig. 5.42. Distorted prediction data (DPD1 and DPD2) for BCN-CTS cycle. 

 
Fig. 5.43. Distorted prediction data (DPD1 and DPD2) for FTP-72 cycle. 

Simulations are executed as in Section 5.7 with a control horizon length 𝑁𝑐 = 120 and 
a prediction horizon length 𝑁𝑝 = 200. Calculation of the set point function 𝑆𝑂𝐶𝑀𝐼𝐿𝑃∗  
and predictive optimization are performed using the DPD. During simulation, due to the 
deviation of DPD and real trip data, control sequence (𝒖𝑖

𝑜𝑝𝑡) calculated A-DP cannot as 
often used as in the case of exact prediction data. This is reflected in Fig. 5.44, which 
indicates the sections operating in hybrid mode in which the optimal control sequence 
(𝒖𝑖

𝑜𝑝𝑡) is applied (Fig. 5.26). When the vehicles operate in hybrid mode and (𝒖𝑖
𝑜𝑝𝑡) 

cannot be applied, the strategy described in Section 5.2 is used. The simulation results 
show that the proposed EMS is robust with inaccurate prediction data and still yields 
fuel economy close to the global optimum. For the FTP-72 cycle the final SOC is lower 



126 

 

than the target of 0.3 (Table XXXI), while for the BCN-CTS cycle it is higher (Table 
XXXII). This leads to 2.5% higher CO2 emissions for the BCN-CTS using the predic-
tion data DPD1, and 1.7% higher emissions using the prediction data DPD2. Emissions 
rise for the FTP-72 by 1.9% and 1.2%. Lastly, number of engine starts is reduced in all 
cases by 15.8% -36.8%. 

 
Fig. 5.44. Hybrid mode during BCN-CTS cycle (DPD1). Blue bars indicate that predictive op-

timization results (𝒖𝑖
𝑜𝑝𝑡) are applied, while black bars indicate rule-based control from Section 

5.2.2. 

Table XXXI: Simulation results and deviation from the global optimum for rule-based strategy 
in CS mode (FTP-72 cycle) and 𝑁𝑝 = 200. 
 EMS (DPD1) EMS (DPD2) Global optimum 

𝑆𝑂𝐶𝑒𝑛𝑑 0.296 0.293 0.300 

𝑉𝑓 / l/100km 3.68 (1.4%) 3.64 (0.3%) 3.63 

Δ𝐸𝑏𝑎𝑡  / kWh/100km 0.121 0.234 0.005 

𝑚CO2 /g km⁄  89.2 (1.9%) 88.6 (1.2%) 87.5 

Engine starts 52 (-29.7%) 55 (-25.7%) 74 

Gear shifts 478 (-9.1%) 496 (-5.7%) 526 

Table XXXII: Simulation results and deviation from the global optimum for CD mode (BCN-
CTS cycle) and 𝑁𝑝 = 200𝑠. 
 EMS (DPD1) EMS (DPD2) Global optimum 

𝑆𝑂𝐶𝑒𝑛𝑑 0.303 0.301 0.301 

𝑉𝑓 / l/100km 3.46 (3.5%) 3.42 (2.3%) 3.35 

Δ𝐸𝑏𝑎𝑡  / kWh/100km 7.210 (-0.5%) 7.244 (-0.1%) 7.249 

𝑚CO2 /g km⁄  110.6 (2.5%) 109.8 (1.7%) 108.0 

Engine starts 12 (-36.8%) 16 (-15.8%) 19 

Gear shifts 201 (-16.9%) 205 (-15.3%) 242 
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Fig. 5.45. Engine operating points during the 
FTP-72 cycle (𝑁𝑝 = 200, DPD1). 

Fig. 5.46. Engine operating points during the 
FTP-72 cycle (𝑁𝑝 = 200, DPD2). 

  
Fig. 5.47. Engine operating points during the 
BCN-CTS cycle (𝑁𝑝 = 200, DPD1). 

Fig. 5.48. Engine operating points during the 
BCN-CTS cycle (𝑁𝑝 = 200, DPD2). 

5.9 Conclusions 
The MPC approach using a receding prediction horizon from Chapter 4 achieves good 
results in terms of fuel economy and achieves optimal battery charge depletion across 
the trip. As the optimization results obtained relate to engine and electric motor torque, 
erroneous prediction data leads to torque deviations and thus to a deviation in vehicle 
speed. Using a torque ratio leads to sub-optimal results and can lead to an increased 
number of engine starts.  
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In order to employ the algorithm in a real-world scenario, considering divergence be-
tween trip predictions and actual trip values, the algorithm is integrated in a rule-based 
EMS structure. Where real vehicle speed deviates from predicted speed, a predefined 
local optimization is applied which considers vehicle speed and the torque demanded by 
the driver. Where vehicle speed and torque demand coincides with prediction data, 
torque obtained by predictive optimization is used. 

Simulations of the EMS are carried out with a control horizon length of 120s, during 
which optimization for the following control horizon is executed. This includes calcula-
tion of gear and torque as well as an adaptation of the rule-based strategy which selects 
the operation mode. In addition to ensuring robustness against inaccurate prediction 
data, the rule-based EMS reduces frequency of engine starts and gear shifts. Results 
show a reduction of engine starts of 21.1%-57.9%, and of gear shifts of 6.6%-16.8% 
compared to the global optimum in terms of fuel economy. However, these improve-
ments inevitably bring losses in fuel economy. Assuming exact prediction data, these 
losses are low, with fuel consumption and CO2 emissions within 1.9% and 1.6% of 
compared to the global optimum respectively, for the BCN-CTS and FTP-72 cycle. 
From simulations of the CTS-BCN cycle and the CADC result greater deviations of 
2.8% and 3.5%, respectively. In case of the CTS-BCN, the increase results partly from a 
sub-optimal SOC set point function and can be reduced to 1.8% using an accurate func-
tion. Increase for the CADC results from the greatly reduced number of engine starts by 
over 50%. 

The EMS is robust against inaccurate prediction data in terms of fuel economy and en-
gine start and gear shifting frequency. With inaccurate prediction data, predictive opti-
mization is combined with a local optimization of torques in charge mode. Results show 
deviation of fuel economy and CO2 emissions from the global optimum of below 2.5% 
of and 3.5% respectively. 
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6 Summary and Outlook 
In this dissertation, a real time implementable energy management strategy (EMS) for 
plug-in HEV has been proposed. The EMS focuses on the optimization of torque and 
gear during a trip to minimize fuel consumption. Besides fuel economy, the following 
are also considered: 

• optimal depletion of stored electrical energy across the entire trip 
• the number of engine starts and gear shifts 
• low computational cost. 

Minimal fuel consumption is achieved by maintaining engine operation in high effi-
ciency regions and the substitution of fuel for electrical energy stored in the battery as 
the power source. For optimal efficiency, fuel substitution requires a predictive optimi-
zation. Due to currently available technologies such as automobile navigation systems 
which use geographic information systems (GIS), trip foreknowledge can be assumed 
when the driver indicates his destination. In the near future, prediction quality is ex-
pected to improve further when new technologies such as intelligent transportation sys-
tems (ITS) and vehicle-to-vehicle communication (V2V) become available. The EMS 
uses torque and gear obtained from predictive optimization within an adaptive rule-
based strategy, which improves drivability and assures improved fuel economy even 
when prediction data is inaccurate.  

6.1 Summary of Contributions 
The EMS which has been proposed presents a novel combination of a torque and gear 
optimization with an online optimized rule-based strategy. This combined optimization 
approach achieves minimal fuel consumption and improved drivability as well as less 
wear due to reduced frequency of gear shifts and engine start/stops. Torque/gear optimi-
zation and rule adaptation are executed sequentially by the EMS, in three optimization 
steps. The first execution step of the EMS is the calculation of a battery state of charge 
(SOC) set point function for the whole trip length. This function, which is calculated 
using a mixed integer linear program (MILP), leads to the following contributions: 

• the use of two optimization algorithms, one of which is a MILP which defines 
the SOC boundary condition of a second DP algorithm, thus reducing the predic-
tion horizon length and calculation cost within a charge-depleting strategy 
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• the use of MILP with a power flow based vehicle model to overcome model 
non-linearities. 

In execution step two, the SOC function calculated using MILP is used as SOC bound-
ary condition in a DP based algorithm in a model predictive control framework. The DP 
algorithm realizes an optimization of torque and gear using a receding prediction hori-
zon. Results obtained by the accelerated DP algorithm show deviation from minimal 
consumption of electric and fuel energy weighted against CO2 emissions of less than 
0.07%. Computational cost is by a factor of approximately 50 significantly reduced. 
Further reduction in calculation time by approximately 99.8% can be achieved employ-
ing the DP algorithm in an MPC framework achieving deviation from the global opti-
mum CO2 emissions lower than 0.7%. Contributions in respect to the acceleration of 
dynamic programming for use in real time strategies are: 

• the proposal of using vehicle specific lookup tables which are accessed in re-
spect to the predicted driving cycle power demand and vehicle speed, 

• the correction of rounding errors generated by using lookup tables by introduc-
ing an additional variable which approximates the resulting SOC error at every 
time step. 

The algorithm is embedded in a rule-based EMS to reduce the number of engine starts 
and assure functionality of the EMS when prediction data is inaccurate. The novel con-
tributions of the rule-based part of the EMS are  

• the continuous adaptation of its rules during the trip bases on an online optimiza-
tion to achieve the target SOC at end of trip, 

• use of an optimized charge mode regarding the torque split within the rule-based 
strategy. 

Results obtained demonstrate that carbon dioxide emissions are within 3.5% of the 
global optimum. These results are obtained by reducing both engine starts and gear 
shifts in comparison with the global optimum in terms of fuel efficiency. Even with 
distorted prediction data the deterioration of CO2 emission was below 2.5%. 

6.2 Outlook 
The proposed strategy achieves a significant increase in fuel economy and an almost 
complete discharge of stored electrical energy during the cycle. However, the use of a 
receding prediction horizon for cycle patterns with a long section of low power demand 
towards the cycle end, as in the recorded CTS-BCN driving cycle, showed that due to 
inaccuracy of the SOC set point function, full charge depletion was not achieved. This 
behaviour results partly from the simplified linear vehicle model, and its constant bat-
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tery and electric motor efficiency model. Therefore, further investigation could be di-
rected at how convex description of these components, such as used in the above pro-
posed engine model, improves results and affects calculation time.  

Further research could also look at the behaviour of the adaptive rule-based strategy 
with real prediction data, i.e. trip data obtained from a trip prediction algorithm on a real 
trip. This can be realized by implementing the EMS in a real vehicle using equipment 
for rapid control prototyping. For real-time implementation, size of lookup tables used 
by the accelerated DP algorithm can be reduced. 

Finally, further research has to focus on methods for implementing the EMS in vehicle 
control units. For this work, the EMS was realized by a script based implementation in 
Matlab. Real time application makes code optimizations and adaptations necessary. 
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Glossary 
A-DP Accelerated DP algorithm 

AER All-electric range  

BEV Battery electric vehicle 

CADC Common Artemis Driving Cycle 

CD Charge-depleting 

CS Charge-sustaining 

DP Dynamic programming 

ECU Engine control unit 

EM Electric motor  

EMS Energy management strategy 

FTP Federal Test Procedure 

GIS Geographic information system 

GPS Global Positioning System 

HEV Hybrid electric vehicle 

ICE Internal combustion engine 

ITS Intelligent transportation system 

LP Linear programming 

MILP Mixed integer linear programming 

MPC Model predictive control 

NEDC New European Driving Cycle 

PHEV Plug-in hybrid electric vehicle 

S-DP Standard DP algorithm 

SOC State of charge 

SOE State of energy 

SVM Support vector machine 

V2V Vehicle-to-vehicle communication 


