Tfy-56.4332 Fuel cells and hydrogen Lecture #1

Introduction to fuel cells

Basics of fuel cells

Source: Ryan O'Hayre et al: Fuel Cell Fundamentals. Wiley, 2006.

Slides: Peter Lund (+Janne Halme)

Lecturing 2015: Janne Halme

<u>Components</u> Period: III - IV (alternate years, lectured spring 2015)

- 8 **Lectures** Wednesdays 12:15 14:00 K215
 - Lecturers: Doc. Janne Halme (main), Prof. Peter Lund, Dr. Olli Himanen (VTT)
- 6 **Exercises** Mondays 12:50 14:00 K326
 - Assistants: Dr. Imran Asghar, Mr. Erno Kemppainen
- 6 Homework returned exercises, 5/6 required
- 2 hours lab work in groups in March, 3 page lab report
- Sit in **exam**, or alternatively a **project work**

<u>Workload</u>

 Lectures 16 h; Exercises 12 h + assistant reception times 8 hours; Home work 14 h; Group work: 20 h; Independent studies and exam: 60 h

Passing and evaluation

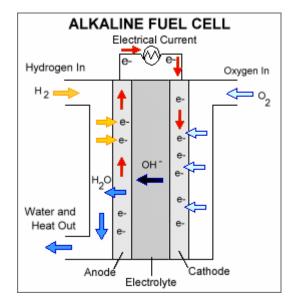
Spring 2015: Written assignments AND (exam OR project work)

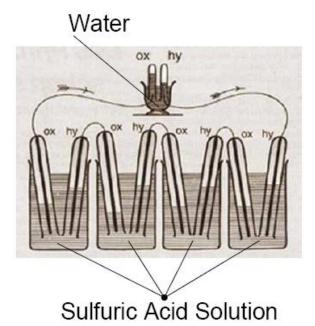
- Homework 5/6, group labwork & lab report 1/1
- exam OR group project work & report
- evaluation: homework (20 %), lab report (20%), exam OR project work (60 %)

After Spring 2015: Exam (100 %)

Course material

- Lecture notes and exercises are delivered through NOPPA
- Books:
 - **1)** Fuel Cell Handbook 7th edition. U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (through NOPPA)
 - 2) Frano Barbir: PEM Fuel Cells, Theory and Practice. Elsevier B.V. 2005. ISBN-13: 978-0-12-078142-3 / ISBN-10: 0-12-078142-5. Available in the main library. On-line access at campus (Ebrary, Knovel, Elsevier)
 - **3)** Ryan O'Hayre et al: Fuel Cell Fundamentals. Wiley, 2006.
- Group Work will be based on 1)-2) and other material


Additional: Plenty of E-books available via Aalto Library Examples:

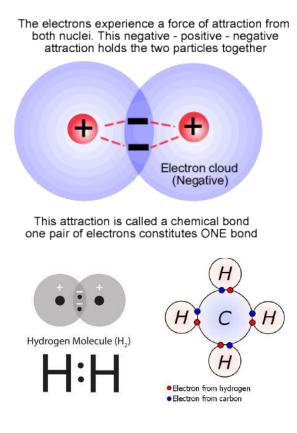

- Fuel cell technology handbook / edited by Gregor Hoogers, 2003, (link)
- Fuel cells : current technology challenges and future research needs / Noriko Hikosaka Behling. 2013 (Link)

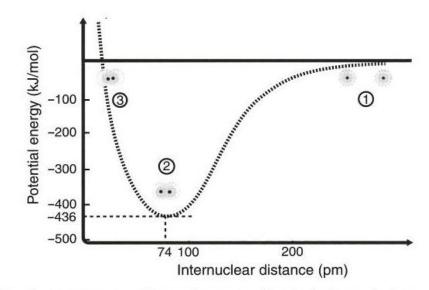
What is a fuel cell ?

- A fuel cell is an electrochemical device that converts chemical energy from a fuel into electrical energy without any moving parts
- Fuel cells are operationally equivalent to a battery, but the reactants or fuel in a fuel cell can be replaced unlike a standard disposable or rechargeable battery

Examples of applications

- Mobile, stationary and portable power applications
- Power range from mWs to few hundred kWs





Chemical energy release – reconfiguring of bonds

- Atoms are connected through bonds that lower their total energy
- Bond is formed \rightarrow energy is released
- Bond is broken \rightarrow energy is absorbed
- Net release of energy : energy released > energy absorbed

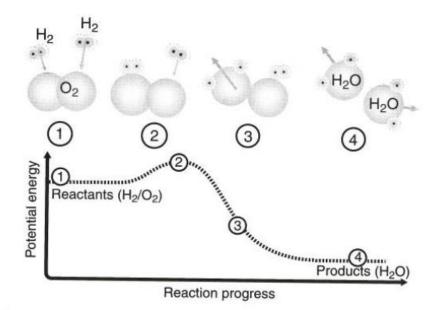
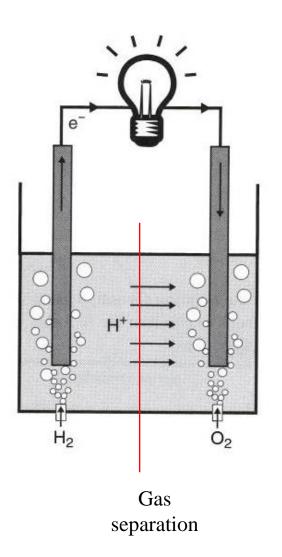


Figure 1.3. Bonding energy versus internuclear separation for hydrogen–hydrogen bond. (1) No bond exists. (2) Most stable bonding configuration. (3) Further overlap unfavorable due to internuclear repulsion.

Simple combustion reaction

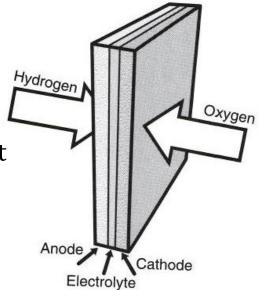
- Basic combustion equation: $H_2 + \frac{1}{2}O_2 \iff H_2O + heat$
- Collision of molecules → O₂ and H₂ bonds break → New H₂O bonds formed
 → Energy of new configuration lower → Heat released
- Reconfiguration of bonds involves fast electron transfer;

Q: how can we slow the e⁻ transfer from fuel species to oxidant species ? A: separate reactants so that electron reconfiguration is much slower


Figure 1.2. Schematic of H_2-O_2 combustion reaction. (Arrows indicate the relative motion of the molecules participating in the reaction.) Starting with the reactant H_2-O_2 gases (1), hydrogen-hydrogen and oxygen-oxygen bonds must first be broken, requiring energy input (2) before hydrogen-oxygen bonds are formed, leading to energy output (3, 4).

Physical principle of a fuel cell

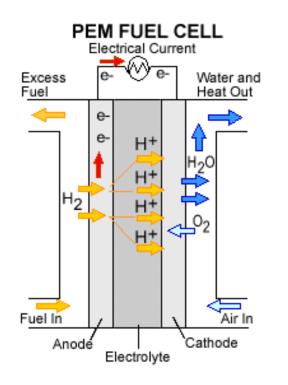
• In a fuel cell, electrons are forced to move through an external circuit before completing the reaction (i.e. reconfiguring the bonds)


$$H_2 + \frac{1}{2}O_2 \rightleftharpoons H_2O$$
$$H_2 \rightleftharpoons 2H^+ + 2e^-$$
$$\frac{1}{2}O_2 + 2H^+ + 2e^- \rightleftharpoons H_2O$$

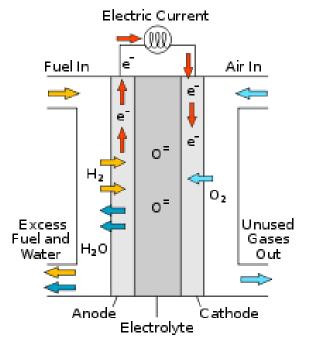
- How ? An electrolyte is employed to allow ions (e.g. H⁺, O²⁻) but not electrons (e⁻) to flow
- Electrolyte = ionic conductor
- A simple fuel cells has two electrodes (for both half reactions) and an electrolyte
- An ionically permeable membrane may be used to keep the gases separate

Basic operation of FC

- Reaction area determines the current (electricity) production → large areas lead to large current → maximize surface-to-volume → thin and porous structures
- Anode = oxidation reaction (electrons liberated)
- Cathode = reduction reaction (electrons consumed)
- Good gas access necessary; oxidant (air) and reactant (fuel) separated by the electrolyte


Major steps in a fuel cell

- 1. Flow field plates (channels, groves) distribute the reactants over the electrodes
- 2. Fast electrochemical reactions result in high current; catalysts needed; kinetics is a limiting factor
- Charge balance requires ion transport (by hopping), slow and losses
 → thin electrolyte preferred
- 4. Product removal. Similar to 1)


Figure 1.8. Cross section of fuel cell illustrating major steps in electrochemical generation of electricity: (1) reactant transport; (2) electrochemical reaction; (3) ionic and electronic conduction; (4) product removal.

Fuel cell types

- Fuel cells are distinguished based on the electrolyte used
- All have same underlying operation principle, but operate at different temperatures, use different materials, differ in performance, etc.
- Most important fuel cells are: Polymer electrolyte membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC).

SOFC

Fuel cell general characteristics

Fuel cell type	Electrolyte material	Transported ion	Operating temperature
Polymer electrolyte membrane fuel cell (PEMFC)	Cation conducting polymer membrane	H^{+}	20-80 °C
Direct methanol/ethanol fuel cell (DMFC/DEFC)	Cation conducting polymer membrane	H^{+}	20-80 °C
Direct formic acid fuel cell (DFACF)	Cation conducting polymer membrane	H^+	20-80 °C
Direct borohydride fuel cell (DBFC)	Aqueous alkaline solution (e.g. KOH), Anion or cation conducting polymer membrane	OH⁻ or Na⁺	20-80 °C
Phosphoric acid fuel cell (PAFC)	Molten phosphoric acid (H ₃ PO ₄)	H^+	150-200 °C
Alkaline fuel cell (AFC)	Aqueous alkaline solution (e.g. KOH)	OH	<250 °C
Molten carbonate fuel cell (MCFC)	Molten alkaline carbonate (e.g. NaHCO ₃)	CO3 ²⁻	600-700 °C
Solid oxide fuel cell (SOFC)	O ²⁻ conducting ceramic oxide (e.g. Y ₂ O ₃ - stabilized ZrO ₂)	O ²⁻	600-1000 °C

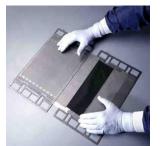
Comparison of fuel cell technologies

FUEL CELL TECHNOLOGIES PROGRAM

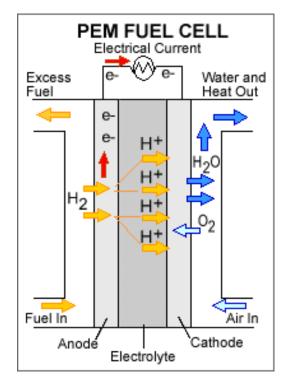
Fuel Cell Common Operating Typical Stack Efficiency Disadvantages Applications Advantages Type Electrolyte Temperature Size Polymer Perfluoro 50-100°C < 1kW-100kW 60% Backup power Solid electrolyte re- Expensive catalysts 122-212° Electrolyte sulfonic acid transpor- Portable power duces corrosion & electrolyte Sensitive to fuel impurities Membrane typically tation Distributed generation management problems Low temperature waste (PEM) 80°C 35% Transporation Low temperature heat stationary Specialty vehicles Quick start-up Sensitive to CO₂ Alkaline Aqueous 90-100°C 10-100 kW 60% Military Cathode reaction faster (AFC) solution of 194-212°F in fuel and air Space in alkaline electrolyte, potassium leads to high performance Electrolyte management hydroxide Low cost components soaked in a matrix Distributed generation **Phosphoric** Phosphoric 150-200°C 400 kW 40% Higher temperature enables CHP Pt catalyst acid soaked 302-392°F 100 kW Increased tolerance to fuel Acid Long start up time (PAFC) in a matrix module impurities Low current and power 600-700°C Electric utility High efficiency Molten Solution 300 45-50% High temperature cor-Carbonate 1112-1292°F kW-3 MW of lithium. Distributed generation Fuel flexibility rosion and breakdown 300 kW (MCFC) sodium, and/ Can use a variety of catalysts of cell components or potassium module Suitable for CHP Long start up time carbonates. Low power density soaked in a matrix Solid Oxide Yttria stabi-700-1000°C 1 kW-2 MW 60% Auxiliary power High efficiency High temperature cor-(SOFC) lized zirconia 1202-1832°F Electric utility Fuel flexibility rosion and breakdown Distributed generation Can use a variety of catalysts of cell components Solid electrolyte High temperature opera- Suitable for CHP & CHHP tion requires long start up Hybrid/GT cycle time and limits

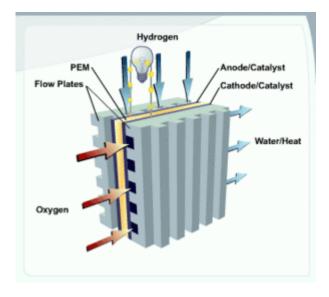
Comparison of Fuel Cell Technologies

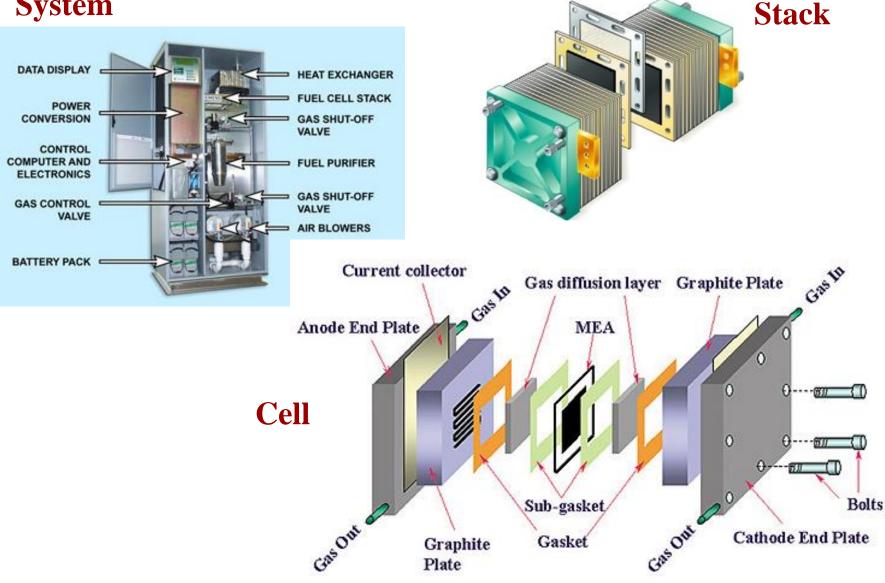
For More Information

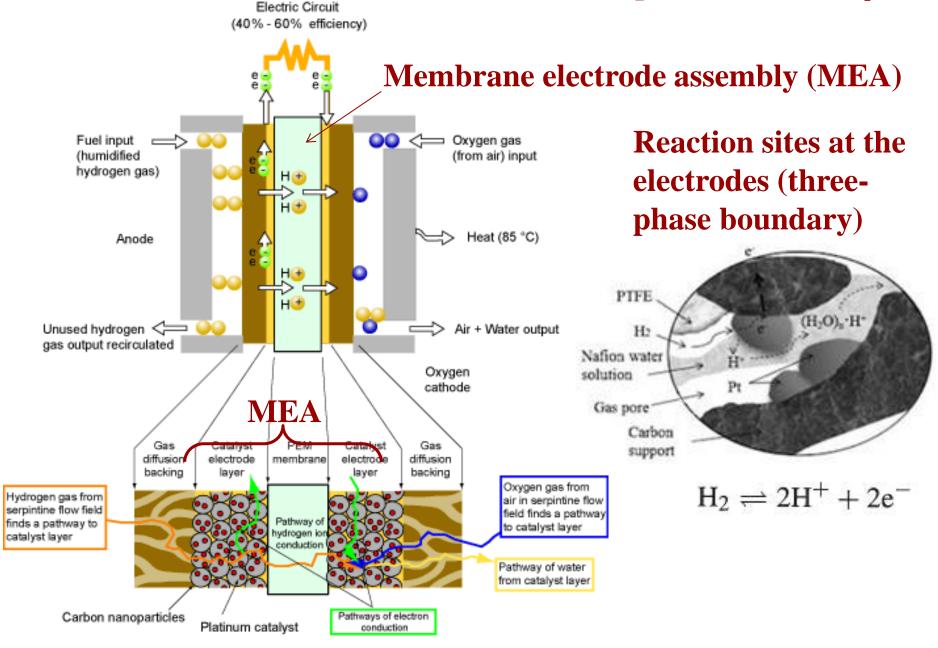

More information on the Fuel Cell Technologies Program is available at http://www.hydrogenandfuelcells.energy.gov.

PEM Fuel Cell


Anode: $H_2 \rightleftharpoons 2H^+ + 2e^-$ Cathode: $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightleftharpoons H_2O$ Overall: $H_2 + \frac{1}{2}O_2 \rightleftharpoons H_2O$

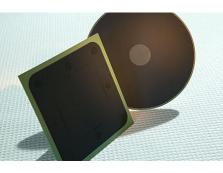

- The most popular fuel cell type used in mobile, stationary and portable applications (1 mW-100 kW); low temperature operation (<<100 °C)
- Solid electrolyte (polymer) that requires water to make H⁺ conductive; slow electrochemistry on the cathode (air) requiring a Pt-catalyst
- Mass and heat flow management important

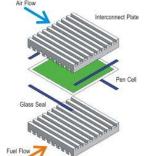




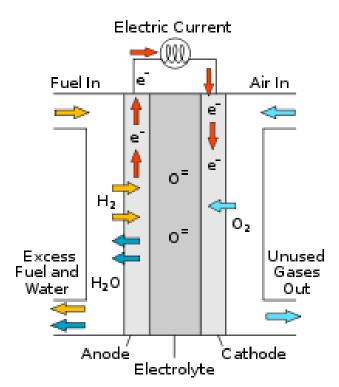
Fuel cell components (example: PEMFC)

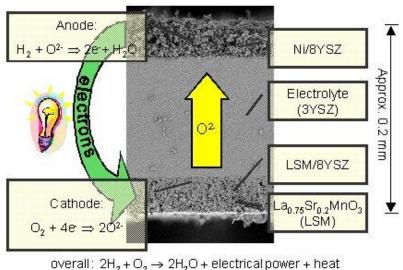
Fuel cell components (example: PEMFC)

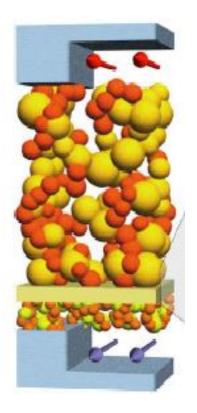


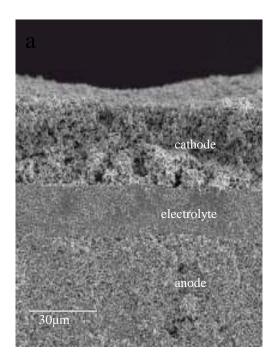

SOFC Fuel Cell

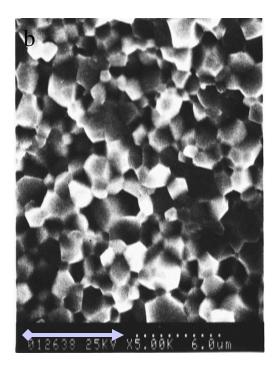
Anode:


Cathode: Overall:

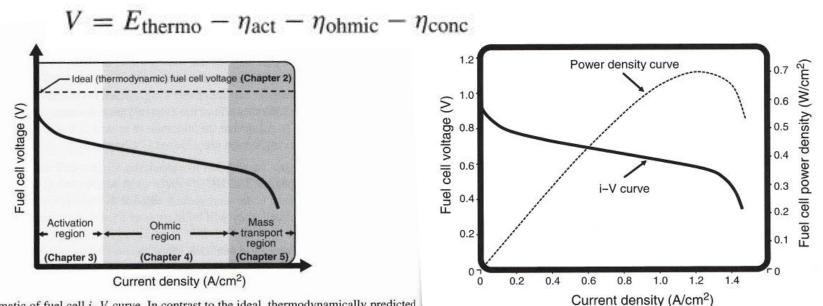

- $-H_{2} + O^{2-} \rightarrow 2H_{2}O + 2e^{-}$ $-CO + O^{2-} \rightarrow CO_{2} + 2e^{-}$ $-CH_{4} + 4O^{2-} \rightarrow 2H_{2}O + CO_{2} + 8e^{-}$ $\frac{1}{2}O_{2} + 2e^{-} \rightarrow O^{2-}$ $-H_{2} + \frac{1}{2}O_{2} \rightarrow H_{2}O$ $-CO + \frac{1}{2}O_{2} \rightarrow CO_{2}$ $-CH_{4} + 2O_{2} \rightarrow CO_{2} + 2H_{2}O$
- SOFC= high temperature fuel cells (>700 °C); ceramic electrolyte with T-dependent ion conductivity
- High T \rightarrow flexible to fuels, no catalysts
- High T \rightarrow material problems, slow response
- Well suitable for co-generation







SOFC Fuel Cell


Electrolyte 25µm

b) porous anode

Fuel cell performance

- Fuel cell performance is described by the current-voltage (I-V) curve
- Normalized : current density mA/cm², power density W/cm² (kW/L, W/kg))
- Ideal thermodynamical voltage versus real voltage with loss mechanisms
 - Activation losses (electrochemical reactions, kinetics)
 - Ohmic losses (ionic and electronic conduction)
 - Concentration losses (mass transport)

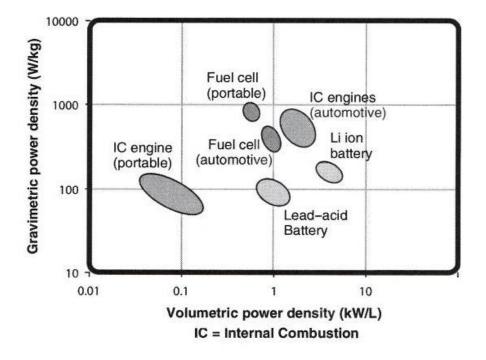


Figure 1.9. Schematic of fuel cell i-V curve. In contrast to the ideal, thermodynamically predicted oltage of a fuel cell (dashed line), the real voltage of a fuel cell is lower (solid line) due to unvoidable losses. Three major losses influence the shape of this i-V curve; they will be described in Chapters 3–5.

Fuel cell advantages and disadvantages

• Advantages:

- More efficient than combustion engines
- Power and capacity can easily be scaled
- No moving parts, silent, no emissions
- Disadvantages
 - Costs
 - Volumetric power density poor, gravimetric power density better
 - Fuel (e.g. Hydrogen)
 - Several operational issues

